Properties

Label 20-253e10-1.1-c0e10-0-0
Degree $20$
Conductor $1.074\times 10^{24}$
Sign $1$
Analytic cond. $1.02985\times 10^{-9}$
Root an. cond. $0.355335$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s − 2·5-s + 9-s − 11-s + 2·12-s + 4·15-s + 2·20-s − 23-s + 25-s − 2·31-s + 2·33-s − 36-s − 2·37-s + 44-s − 2·45-s − 2·47-s − 49-s − 2·53-s + 2·55-s − 2·59-s − 4·60-s − 2·67-s + 2·69-s + 9·71-s − 2·75-s − 2·89-s + ⋯
L(s)  = 1  − 2·3-s − 4-s − 2·5-s + 9-s − 11-s + 2·12-s + 4·15-s + 2·20-s − 23-s + 25-s − 2·31-s + 2·33-s − 36-s − 2·37-s + 44-s − 2·45-s − 2·47-s − 49-s − 2·53-s + 2·55-s − 2·59-s − 4·60-s − 2·67-s + 2·69-s + 9·71-s − 2·75-s − 2·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(11^{10} \cdot 23^{10}\)
Sign: $1$
Analytic conductor: \(1.02985\times 10^{-9}\)
Root analytic conductor: \(0.355335\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 11^{10} \cdot 23^{10} ,\ ( \ : [0]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.01021963574\)
\(L(\frac12)\) \(\approx\) \(0.01021963574\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
23 \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
good2 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
3 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
5 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
7 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
13 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
17 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
19 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
31 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
37 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
41 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
43 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
47 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
53 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
59 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
61 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
67 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
71 \( ( 1 - T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
73 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
89 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
97 \( ( 1 - T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.96332786324097638901111599888, −4.95535212339125014341763807347, −4.80806915706543327818837999032, −4.77476252338135007775150815745, −4.77194773003216484007251457075, −4.20033045365264577573635538334, −4.09732894344899986174028099083, −4.08620711099445895595878795897, −4.06621496211129415832596826603, −3.94106124337465679784161016062, −3.73837341827522809199844503466, −3.66906143112531900718428331295, −3.27037138492957112978123090684, −3.26744404599477569037837159736, −3.25297195246930043817121171869, −3.19252179404765312929147401789, −2.96486559833008781205357508615, −2.54329993479200130555116758660, −2.45557400861177700161023646592, −2.15046498995458974666359606139, −2.04958587117098386591449677648, −1.76931037847701579835770158532, −1.68272420117990294505165198837, −1.48027246511287223912638691342, −0.68990414883233159863030181307, 0.68990414883233159863030181307, 1.48027246511287223912638691342, 1.68272420117990294505165198837, 1.76931037847701579835770158532, 2.04958587117098386591449677648, 2.15046498995458974666359606139, 2.45557400861177700161023646592, 2.54329993479200130555116758660, 2.96486559833008781205357508615, 3.19252179404765312929147401789, 3.25297195246930043817121171869, 3.26744404599477569037837159736, 3.27037138492957112978123090684, 3.66906143112531900718428331295, 3.73837341827522809199844503466, 3.94106124337465679784161016062, 4.06621496211129415832596826603, 4.08620711099445895595878795897, 4.09732894344899986174028099083, 4.20033045365264577573635538334, 4.77194773003216484007251457075, 4.77476252338135007775150815745, 4.80806915706543327818837999032, 4.95535212339125014341763807347, 4.96332786324097638901111599888

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.