L(s) = 1 | − 2·3-s − 4-s − 2·5-s + 9-s − 11-s + 2·12-s + 4·15-s + 2·20-s − 23-s + 25-s − 2·31-s + 2·33-s − 36-s − 2·37-s + 44-s − 2·45-s − 2·47-s − 49-s − 2·53-s + 2·55-s − 2·59-s − 4·60-s − 2·67-s + 2·69-s + 9·71-s − 2·75-s − 2·89-s + ⋯ |
L(s) = 1 | − 2·3-s − 4-s − 2·5-s + 9-s − 11-s + 2·12-s + 4·15-s + 2·20-s − 23-s + 25-s − 2·31-s + 2·33-s − 36-s − 2·37-s + 44-s − 2·45-s − 2·47-s − 49-s − 2·53-s + 2·55-s − 2·59-s − 4·60-s − 2·67-s + 2·69-s + 9·71-s − 2·75-s − 2·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01021963574\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01021963574\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
| 23 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
good | 2 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 3 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 5 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 7 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 17 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 19 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 31 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 43 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 47 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 59 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 67 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 71 | \( ( 1 - T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 89 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 97 | \( ( 1 - T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.96332786324097638901111599888, −4.95535212339125014341763807347, −4.80806915706543327818837999032, −4.77476252338135007775150815745, −4.77194773003216484007251457075, −4.20033045365264577573635538334, −4.09732894344899986174028099083, −4.08620711099445895595878795897, −4.06621496211129415832596826603, −3.94106124337465679784161016062, −3.73837341827522809199844503466, −3.66906143112531900718428331295, −3.27037138492957112978123090684, −3.26744404599477569037837159736, −3.25297195246930043817121171869, −3.19252179404765312929147401789, −2.96486559833008781205357508615, −2.54329993479200130555116758660, −2.45557400861177700161023646592, −2.15046498995458974666359606139, −2.04958587117098386591449677648, −1.76931037847701579835770158532, −1.68272420117990294505165198837, −1.48027246511287223912638691342, −0.68990414883233159863030181307,
0.68990414883233159863030181307, 1.48027246511287223912638691342, 1.68272420117990294505165198837, 1.76931037847701579835770158532, 2.04958587117098386591449677648, 2.15046498995458974666359606139, 2.45557400861177700161023646592, 2.54329993479200130555116758660, 2.96486559833008781205357508615, 3.19252179404765312929147401789, 3.25297195246930043817121171869, 3.26744404599477569037837159736, 3.27037138492957112978123090684, 3.66906143112531900718428331295, 3.73837341827522809199844503466, 3.94106124337465679784161016062, 4.06621496211129415832596826603, 4.08620711099445895595878795897, 4.09732894344899986174028099083, 4.20033045365264577573635538334, 4.77194773003216484007251457075, 4.77476252338135007775150815745, 4.80806915706543327818837999032, 4.95535212339125014341763807347, 4.96332786324097638901111599888
Plot not available for L-functions of degree greater than 10.