L(s) = 1 | − 0.832i·5-s + 2.52·7-s + 10.9i·11-s − 8.72·13-s + 20.8i·17-s − 1.50·19-s + 1.15i·23-s + 24.3·25-s − 18.1i·29-s − 51.3·31-s − 2.09i·35-s − 7.93·37-s − 25.2i·41-s + 38.6·43-s + 68.8i·47-s + ⋯ |
L(s) = 1 | − 0.166i·5-s + 0.360·7-s + 0.994i·11-s − 0.671·13-s + 1.22i·17-s − 0.0790·19-s + 0.0503i·23-s + 0.972·25-s − 0.626i·29-s − 1.65·31-s − 0.0599i·35-s − 0.214·37-s − 0.616i·41-s + 0.899·43-s + 1.46i·47-s + ⋯ |
Λ(s)=(=(2592s/2ΓC(s)L(s)−Λ(3−s)
Λ(s)=(=(2592s/2ΓC(s+1)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
2592
= 25⋅34
|
Sign: |
−1
|
Analytic conductor: |
70.6268 |
Root analytic conductor: |
8.40398 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2592(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2592, ( :1), −1)
|
Particular Values
L(23) |
≈ |
0.2797221789 |
L(21) |
≈ |
0.2797221789 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+0.832iT−25T2 |
| 7 | 1−2.52T+49T2 |
| 11 | 1−10.9iT−121T2 |
| 13 | 1+8.72T+169T2 |
| 17 | 1−20.8iT−289T2 |
| 19 | 1+1.50T+361T2 |
| 23 | 1−1.15iT−529T2 |
| 29 | 1+18.1iT−841T2 |
| 31 | 1+51.3T+961T2 |
| 37 | 1+7.93T+1.36e3T2 |
| 41 | 1+25.2iT−1.68e3T2 |
| 43 | 1−38.6T+1.84e3T2 |
| 47 | 1−68.8iT−2.20e3T2 |
| 53 | 1+46.5iT−2.80e3T2 |
| 59 | 1+102.iT−3.48e3T2 |
| 61 | 1+88.3T+3.72e3T2 |
| 67 | 1+22.6T+4.48e3T2 |
| 71 | 1+104.iT−5.04e3T2 |
| 73 | 1+75.2T+5.32e3T2 |
| 79 | 1−103.T+6.24e3T2 |
| 83 | 1−62.0iT−6.88e3T2 |
| 89 | 1−1.95iT−7.92e3T2 |
| 97 | 1+118.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.211265252017805586840193072430, −8.214404685847028919743143788437, −7.62515714680995720704014669152, −6.86173768810247844913682357071, −5.99980059136094838986967626430, −5.06342126662355035175387943881, −4.44212113286540848003998368430, −3.50625426613519406456793072506, −2.27676870552868203902573217232, −1.49780312972647529081046037878,
0.06434818735268672757909301150, 1.28995232984659540889772957903, 2.58611050954368057664360660493, 3.28571318575708496882507668006, 4.41493322603006516038952621437, 5.22413325288899517902175070887, 5.88796779794047603359779058836, 7.01702668276124018503603047220, 7.39127383978954496838946267359, 8.424935950817085136211634069890