Properties

Label 2-2592-3.2-c2-0-3
Degree $2$
Conductor $2592$
Sign $-1$
Analytic cond. $70.6268$
Root an. cond. $8.40398$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.832i·5-s + 2.52·7-s + 10.9i·11-s − 8.72·13-s + 20.8i·17-s − 1.50·19-s + 1.15i·23-s + 24.3·25-s − 18.1i·29-s − 51.3·31-s − 2.09i·35-s − 7.93·37-s − 25.2i·41-s + 38.6·43-s + 68.8i·47-s + ⋯
L(s)  = 1  − 0.166i·5-s + 0.360·7-s + 0.994i·11-s − 0.671·13-s + 1.22i·17-s − 0.0790·19-s + 0.0503i·23-s + 0.972·25-s − 0.626i·29-s − 1.65·31-s − 0.0599i·35-s − 0.214·37-s − 0.616i·41-s + 0.899·43-s + 1.46i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2592\)    =    \(2^{5} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(70.6268\)
Root analytic conductor: \(8.40398\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2592} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2592,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2797221789\)
\(L(\frac12)\) \(\approx\) \(0.2797221789\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 0.832iT - 25T^{2} \)
7 \( 1 - 2.52T + 49T^{2} \)
11 \( 1 - 10.9iT - 121T^{2} \)
13 \( 1 + 8.72T + 169T^{2} \)
17 \( 1 - 20.8iT - 289T^{2} \)
19 \( 1 + 1.50T + 361T^{2} \)
23 \( 1 - 1.15iT - 529T^{2} \)
29 \( 1 + 18.1iT - 841T^{2} \)
31 \( 1 + 51.3T + 961T^{2} \)
37 \( 1 + 7.93T + 1.36e3T^{2} \)
41 \( 1 + 25.2iT - 1.68e3T^{2} \)
43 \( 1 - 38.6T + 1.84e3T^{2} \)
47 \( 1 - 68.8iT - 2.20e3T^{2} \)
53 \( 1 + 46.5iT - 2.80e3T^{2} \)
59 \( 1 + 102. iT - 3.48e3T^{2} \)
61 \( 1 + 88.3T + 3.72e3T^{2} \)
67 \( 1 + 22.6T + 4.48e3T^{2} \)
71 \( 1 + 104. iT - 5.04e3T^{2} \)
73 \( 1 + 75.2T + 5.32e3T^{2} \)
79 \( 1 - 103.T + 6.24e3T^{2} \)
83 \( 1 - 62.0iT - 6.88e3T^{2} \)
89 \( 1 - 1.95iT - 7.92e3T^{2} \)
97 \( 1 + 118.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.211265252017805586840193072430, −8.214404685847028919743143788437, −7.62515714680995720704014669152, −6.86173768810247844913682357071, −5.99980059136094838986967626430, −5.06342126662355035175387943881, −4.44212113286540848003998368430, −3.50625426613519406456793072506, −2.27676870552868203902573217232, −1.49780312972647529081046037878, 0.06434818735268672757909301150, 1.28995232984659540889772957903, 2.58611050954368057664360660493, 3.28571318575708496882507668006, 4.41493322603006516038952621437, 5.22413325288899517902175070887, 5.88796779794047603359779058836, 7.01702668276124018503603047220, 7.39127383978954496838946267359, 8.424935950817085136211634069890

Graph of the $Z$-function along the critical line