Properties

Label 2592.3.e.i.161.13
Level $2592$
Weight $3$
Character 2592.161
Analytic conductor $70.627$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,3,Mod(161,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2592.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.6268845222\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.13
Character \(\chi\) \(=\) 2592.161
Dual form 2592.3.e.i.161.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.832715i q^{5} +2.52101 q^{7} +10.9430i q^{11} -8.72906 q^{13} +20.8637i q^{17} -1.50150 q^{19} +1.15712i q^{23} +24.3066 q^{25} -18.1689i q^{29} -51.3818 q^{31} -2.09929i q^{35} -7.93951 q^{37} -25.2742i q^{41} +38.6837 q^{43} +68.8846i q^{47} -42.6445 q^{49} -46.5195i q^{53} +9.11241 q^{55} -102.919i q^{59} -88.3302 q^{61} +7.26882i q^{65} -22.6384 q^{67} -104.256i q^{71} -75.2115 q^{73} +27.5875i q^{77} +103.735 q^{79} +62.0650i q^{83} +17.3735 q^{85} +1.95722i q^{89} -22.0061 q^{91} +1.25032i q^{95} -118.434 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 120 q^{25} + 72 q^{49} + 192 q^{61} + 24 q^{73} - 192 q^{85} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.832715i − 0.166543i −0.996527 0.0832715i \(-0.973463\pi\)
0.996527 0.0832715i \(-0.0265369\pi\)
\(6\) 0 0
\(7\) 2.52101 0.360145 0.180072 0.983653i \(-0.442367\pi\)
0.180072 + 0.983653i \(0.442367\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.9430i 0.994820i 0.867516 + 0.497410i \(0.165716\pi\)
−0.867516 + 0.497410i \(0.834284\pi\)
\(12\) 0 0
\(13\) −8.72906 −0.671466 −0.335733 0.941957i \(-0.608984\pi\)
−0.335733 + 0.941957i \(0.608984\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 20.8637i 1.22728i 0.789586 + 0.613639i \(0.210295\pi\)
−0.789586 + 0.613639i \(0.789705\pi\)
\(18\) 0 0
\(19\) −1.50150 −0.0790265 −0.0395132 0.999219i \(-0.512581\pi\)
−0.0395132 + 0.999219i \(0.512581\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.15712i 0.0503094i 0.999684 + 0.0251547i \(0.00800784\pi\)
−0.999684 + 0.0251547i \(0.991992\pi\)
\(24\) 0 0
\(25\) 24.3066 0.972263
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 18.1689i − 0.626513i −0.949669 0.313257i \(-0.898580\pi\)
0.949669 0.313257i \(-0.101420\pi\)
\(30\) 0 0
\(31\) −51.3818 −1.65748 −0.828739 0.559636i \(-0.810941\pi\)
−0.828739 + 0.559636i \(0.810941\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 2.09929i − 0.0599796i
\(36\) 0 0
\(37\) −7.93951 −0.214581 −0.107291 0.994228i \(-0.534218\pi\)
−0.107291 + 0.994228i \(0.534218\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 25.2742i − 0.616445i −0.951314 0.308222i \(-0.900266\pi\)
0.951314 0.308222i \(-0.0997341\pi\)
\(42\) 0 0
\(43\) 38.6837 0.899620 0.449810 0.893124i \(-0.351492\pi\)
0.449810 + 0.893124i \(0.351492\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 68.8846i 1.46563i 0.680427 + 0.732815i \(0.261794\pi\)
−0.680427 + 0.732815i \(0.738206\pi\)
\(48\) 0 0
\(49\) −42.6445 −0.870296
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 46.5195i − 0.877727i −0.898554 0.438864i \(-0.855381\pi\)
0.898554 0.438864i \(-0.144619\pi\)
\(54\) 0 0
\(55\) 9.11241 0.165680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 102.919i − 1.74439i −0.489156 0.872196i \(-0.662695\pi\)
0.489156 0.872196i \(-0.337305\pi\)
\(60\) 0 0
\(61\) −88.3302 −1.44804 −0.724018 0.689781i \(-0.757707\pi\)
−0.724018 + 0.689781i \(0.757707\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.26882i 0.111828i
\(66\) 0 0
\(67\) −22.6384 −0.337886 −0.168943 0.985626i \(-0.554035\pi\)
−0.168943 + 0.985626i \(0.554035\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 104.256i − 1.46840i −0.678935 0.734198i \(-0.737558\pi\)
0.678935 0.734198i \(-0.262442\pi\)
\(72\) 0 0
\(73\) −75.2115 −1.03030 −0.515148 0.857101i \(-0.672263\pi\)
−0.515148 + 0.857101i \(0.672263\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.5875i 0.358279i
\(78\) 0 0
\(79\) 103.735 1.31310 0.656552 0.754281i \(-0.272014\pi\)
0.656552 + 0.754281i \(0.272014\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 62.0650i 0.747772i 0.927475 + 0.373886i \(0.121975\pi\)
−0.927475 + 0.373886i \(0.878025\pi\)
\(84\) 0 0
\(85\) 17.3735 0.204395
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.95722i 0.0219912i 0.999940 + 0.0109956i \(0.00350008\pi\)
−0.999940 + 0.0109956i \(0.996500\pi\)
\(90\) 0 0
\(91\) −22.0061 −0.241825
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.25032i 0.0131613i
\(96\) 0 0
\(97\) −118.434 −1.22097 −0.610486 0.792027i \(-0.709026\pi\)
−0.610486 + 0.792027i \(0.709026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 55.7039i 0.551524i 0.961226 + 0.275762i \(0.0889301\pi\)
−0.961226 + 0.275762i \(0.911070\pi\)
\(102\) 0 0
\(103\) −201.947 −1.96066 −0.980328 0.197377i \(-0.936758\pi\)
−0.980328 + 0.197377i \(0.936758\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 55.1900i 0.515794i 0.966172 + 0.257897i \(0.0830295\pi\)
−0.966172 + 0.257897i \(0.916970\pi\)
\(108\) 0 0
\(109\) −44.6887 −0.409988 −0.204994 0.978763i \(-0.565717\pi\)
−0.204994 + 0.978763i \(0.565717\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 108.164i 0.957201i 0.878033 + 0.478600i \(0.158856\pi\)
−0.878033 + 0.478600i \(0.841144\pi\)
\(114\) 0 0
\(115\) 0.963548 0.00837868
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 52.5978i 0.441998i
\(120\) 0 0
\(121\) 1.25027 0.0103328
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 41.0583i − 0.328467i
\(126\) 0 0
\(127\) 172.177 1.35573 0.677863 0.735188i \(-0.262906\pi\)
0.677863 + 0.735188i \(0.262906\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 88.7027i − 0.677120i −0.940945 0.338560i \(-0.890060\pi\)
0.940945 0.338560i \(-0.109940\pi\)
\(132\) 0 0
\(133\) −3.78531 −0.0284610
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 89.6228i 0.654181i 0.944993 + 0.327090i \(0.106068\pi\)
−0.944993 + 0.327090i \(0.893932\pi\)
\(138\) 0 0
\(139\) 149.584 1.07614 0.538071 0.842900i \(-0.319153\pi\)
0.538071 + 0.842900i \(0.319153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 95.5223i − 0.667988i
\(144\) 0 0
\(145\) −15.1295 −0.104341
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 140.079i − 0.940130i −0.882632 0.470065i \(-0.844230\pi\)
0.882632 0.470065i \(-0.155770\pi\)
\(150\) 0 0
\(151\) 145.132 0.961140 0.480570 0.876956i \(-0.340430\pi\)
0.480570 + 0.876956i \(0.340430\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 42.7864i 0.276041i
\(156\) 0 0
\(157\) −247.079 −1.57375 −0.786876 0.617111i \(-0.788303\pi\)
−0.786876 + 0.617111i \(0.788303\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.91711i 0.0181187i
\(162\) 0 0
\(163\) −189.342 −1.16161 −0.580805 0.814043i \(-0.697262\pi\)
−0.580805 + 0.814043i \(0.697262\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 231.590i 1.38677i 0.720568 + 0.693384i \(0.243881\pi\)
−0.720568 + 0.693384i \(0.756119\pi\)
\(168\) 0 0
\(169\) −92.8035 −0.549133
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 259.699i − 1.50115i −0.660786 0.750574i \(-0.729777\pi\)
0.660786 0.750574i \(-0.270223\pi\)
\(174\) 0 0
\(175\) 61.2772 0.350156
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 220.358i 1.23105i 0.788118 + 0.615524i \(0.211056\pi\)
−0.788118 + 0.615524i \(0.788944\pi\)
\(180\) 0 0
\(181\) −286.189 −1.58116 −0.790578 0.612362i \(-0.790220\pi\)
−0.790578 + 0.612362i \(0.790220\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.61135i 0.0357370i
\(186\) 0 0
\(187\) −228.312 −1.22092
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.57954i − 0.00826983i −0.999991 0.00413491i \(-0.998684\pi\)
0.999991 0.00413491i \(-0.00131619\pi\)
\(192\) 0 0
\(193\) −232.133 −1.20276 −0.601381 0.798962i \(-0.705383\pi\)
−0.601381 + 0.798962i \(0.705383\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 214.012i 1.08636i 0.839618 + 0.543178i \(0.182779\pi\)
−0.839618 + 0.543178i \(0.817221\pi\)
\(198\) 0 0
\(199\) −25.8912 −0.130106 −0.0650532 0.997882i \(-0.520722\pi\)
−0.0650532 + 0.997882i \(0.520722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 45.8040i − 0.225635i
\(204\) 0 0
\(205\) −21.0462 −0.102664
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 16.4310i − 0.0786171i
\(210\) 0 0
\(211\) 93.9504 0.445263 0.222631 0.974903i \(-0.428535\pi\)
0.222631 + 0.974903i \(0.428535\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 32.2124i − 0.149825i
\(216\) 0 0
\(217\) −129.534 −0.596932
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 182.121i − 0.824076i
\(222\) 0 0
\(223\) −299.372 −1.34247 −0.671237 0.741243i \(-0.734237\pi\)
−0.671237 + 0.741243i \(0.734237\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 364.774i − 1.60693i −0.595349 0.803467i \(-0.702986\pi\)
0.595349 0.803467i \(-0.297014\pi\)
\(228\) 0 0
\(229\) −281.958 −1.23126 −0.615629 0.788036i \(-0.711098\pi\)
−0.615629 + 0.788036i \(0.711098\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 208.568i 0.895140i 0.894249 + 0.447570i \(0.147710\pi\)
−0.894249 + 0.447570i \(0.852290\pi\)
\(234\) 0 0
\(235\) 57.3613 0.244090
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 29.0098i 0.121380i 0.998157 + 0.0606899i \(0.0193301\pi\)
−0.998157 + 0.0606899i \(0.980670\pi\)
\(240\) 0 0
\(241\) −232.911 −0.966437 −0.483218 0.875500i \(-0.660532\pi\)
−0.483218 + 0.875500i \(0.660532\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 35.5107i 0.144942i
\(246\) 0 0
\(247\) 13.1067 0.0530636
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 112.869i 0.449676i 0.974396 + 0.224838i \(0.0721853\pi\)
−0.974396 + 0.224838i \(0.927815\pi\)
\(252\) 0 0
\(253\) −12.6624 −0.0500488
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 337.414i 1.31290i 0.754371 + 0.656448i \(0.227942\pi\)
−0.754371 + 0.656448i \(0.772058\pi\)
\(258\) 0 0
\(259\) −20.0156 −0.0772804
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 505.730i − 1.92293i −0.274930 0.961464i \(-0.588655\pi\)
0.274930 0.961464i \(-0.411345\pi\)
\(264\) 0 0
\(265\) −38.7375 −0.146179
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 337.414i − 1.25433i −0.778887 0.627164i \(-0.784216\pi\)
0.778887 0.627164i \(-0.215784\pi\)
\(270\) 0 0
\(271\) 12.0273 0.0443813 0.0221907 0.999754i \(-0.492936\pi\)
0.0221907 + 0.999754i \(0.492936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 265.988i 0.967227i
\(276\) 0 0
\(277\) −199.886 −0.721611 −0.360805 0.932641i \(-0.617498\pi\)
−0.360805 + 0.932641i \(0.617498\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 334.906i 1.19184i 0.803046 + 0.595918i \(0.203212\pi\)
−0.803046 + 0.595918i \(0.796788\pi\)
\(282\) 0 0
\(283\) 470.153 1.66132 0.830659 0.556782i \(-0.187964\pi\)
0.830659 + 0.556782i \(0.187964\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 63.7167i − 0.222009i
\(288\) 0 0
\(289\) −146.296 −0.506213
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 151.557i − 0.517259i −0.965977 0.258630i \(-0.916729\pi\)
0.965977 0.258630i \(-0.0832709\pi\)
\(294\) 0 0
\(295\) −85.7023 −0.290516
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 10.1005i − 0.0337811i
\(300\) 0 0
\(301\) 97.5220 0.323994
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 73.5538i 0.241160i
\(306\) 0 0
\(307\) −123.852 −0.403426 −0.201713 0.979445i \(-0.564651\pi\)
−0.201713 + 0.979445i \(0.564651\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 96.8945i 0.311558i 0.987792 + 0.155779i \(0.0497887\pi\)
−0.987792 + 0.155779i \(0.950211\pi\)
\(312\) 0 0
\(313\) −96.4999 −0.308306 −0.154153 0.988047i \(-0.549265\pi\)
−0.154153 + 0.988047i \(0.549265\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 138.376i − 0.436516i −0.975891 0.218258i \(-0.929963\pi\)
0.975891 0.218258i \(-0.0700375\pi\)
\(318\) 0 0
\(319\) 198.822 0.623268
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 31.3270i − 0.0969875i
\(324\) 0 0
\(325\) −212.174 −0.652842
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 173.659i 0.527839i
\(330\) 0 0
\(331\) −298.986 −0.903281 −0.451641 0.892200i \(-0.649161\pi\)
−0.451641 + 0.892200i \(0.649161\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.8513i 0.0562725i
\(336\) 0 0
\(337\) −47.7082 −0.141567 −0.0707837 0.997492i \(-0.522550\pi\)
−0.0707837 + 0.997492i \(0.522550\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 562.272i − 1.64889i
\(342\) 0 0
\(343\) −231.037 −0.673577
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 120.983i − 0.348654i −0.984688 0.174327i \(-0.944225\pi\)
0.984688 0.174327i \(-0.0557749\pi\)
\(348\) 0 0
\(349\) −387.512 −1.11035 −0.555175 0.831733i \(-0.687349\pi\)
−0.555175 + 0.831733i \(0.687349\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.92090i 0.0224388i 0.999937 + 0.0112194i \(0.00357132\pi\)
−0.999937 + 0.0112194i \(0.996429\pi\)
\(354\) 0 0
\(355\) −86.8156 −0.244551
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 210.527i 0.586425i 0.956047 + 0.293212i \(0.0947243\pi\)
−0.956047 + 0.293212i \(0.905276\pi\)
\(360\) 0 0
\(361\) −358.745 −0.993755
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 62.6298i 0.171588i
\(366\) 0 0
\(367\) −343.880 −0.937004 −0.468502 0.883462i \(-0.655206\pi\)
−0.468502 + 0.883462i \(0.655206\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 117.276i − 0.316109i
\(372\) 0 0
\(373\) 354.708 0.950960 0.475480 0.879726i \(-0.342274\pi\)
0.475480 + 0.879726i \(0.342274\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 158.597i 0.420682i
\(378\) 0 0
\(379\) 269.497 0.711073 0.355536 0.934662i \(-0.384298\pi\)
0.355536 + 0.934662i \(0.384298\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 83.9367i − 0.219156i −0.993978 0.109578i \(-0.965050\pi\)
0.993978 0.109578i \(-0.0349499\pi\)
\(384\) 0 0
\(385\) 22.9725 0.0596689
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 310.634i − 0.798544i −0.916833 0.399272i \(-0.869263\pi\)
0.916833 0.399272i \(-0.130737\pi\)
\(390\) 0 0
\(391\) −24.1418 −0.0617437
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 86.3819i − 0.218688i
\(396\) 0 0
\(397\) 436.104 1.09850 0.549249 0.835658i \(-0.314914\pi\)
0.549249 + 0.835658i \(0.314914\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 409.658i − 1.02159i −0.859703 0.510795i \(-0.829351\pi\)
0.859703 0.510795i \(-0.170649\pi\)
\(402\) 0 0
\(403\) 448.515 1.11294
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 86.8823i − 0.213470i
\(408\) 0 0
\(409\) −422.163 −1.03218 −0.516092 0.856533i \(-0.672614\pi\)
−0.516092 + 0.856533i \(0.672614\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 259.461i − 0.628234i
\(414\) 0 0
\(415\) 51.6825 0.124536
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 635.062i 1.51566i 0.652452 + 0.757830i \(0.273741\pi\)
−0.652452 + 0.757830i \(0.726259\pi\)
\(420\) 0 0
\(421\) −47.5562 −0.112960 −0.0564800 0.998404i \(-0.517988\pi\)
−0.0564800 + 0.998404i \(0.517988\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 507.126i 1.19324i
\(426\) 0 0
\(427\) −222.682 −0.521503
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 614.503i 1.42576i 0.701286 + 0.712880i \(0.252610\pi\)
−0.701286 + 0.712880i \(0.747390\pi\)
\(432\) 0 0
\(433\) 118.672 0.274070 0.137035 0.990566i \(-0.456243\pi\)
0.137035 + 0.990566i \(0.456243\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.73741i − 0.00397578i
\(438\) 0 0
\(439\) 490.147 1.11651 0.558254 0.829670i \(-0.311472\pi\)
0.558254 + 0.829670i \(0.311472\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 193.088i 0.435864i 0.975964 + 0.217932i \(0.0699312\pi\)
−0.975964 + 0.217932i \(0.930069\pi\)
\(444\) 0 0
\(445\) 1.62981 0.00366248
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 449.191i 1.00043i 0.865902 + 0.500213i \(0.166745\pi\)
−0.865902 + 0.500213i \(0.833255\pi\)
\(450\) 0 0
\(451\) 276.576 0.613252
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18.3248i 0.0402743i
\(456\) 0 0
\(457\) 94.0564 0.205813 0.102906 0.994691i \(-0.467186\pi\)
0.102906 + 0.994691i \(0.467186\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 340.966i − 0.739623i −0.929107 0.369811i \(-0.879422\pi\)
0.929107 0.369811i \(-0.120578\pi\)
\(462\) 0 0
\(463\) 571.299 1.23391 0.616953 0.787000i \(-0.288367\pi\)
0.616953 + 0.787000i \(0.288367\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 421.650i − 0.902891i −0.892299 0.451446i \(-0.850909\pi\)
0.892299 0.451446i \(-0.149091\pi\)
\(468\) 0 0
\(469\) −57.0716 −0.121688
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 423.316i 0.894960i
\(474\) 0 0
\(475\) −36.4964 −0.0768345
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 808.679i 1.68827i 0.536134 + 0.844133i \(0.319884\pi\)
−0.536134 + 0.844133i \(0.680116\pi\)
\(480\) 0 0
\(481\) 69.3045 0.144084
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 98.6219i 0.203344i
\(486\) 0 0
\(487\) −155.199 −0.318684 −0.159342 0.987223i \(-0.550937\pi\)
−0.159342 + 0.987223i \(0.550937\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 631.410i − 1.28597i −0.765880 0.642984i \(-0.777696\pi\)
0.765880 0.642984i \(-0.222304\pi\)
\(492\) 0 0
\(493\) 379.071 0.768906
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 262.831i − 0.528836i
\(498\) 0 0
\(499\) −891.640 −1.78685 −0.893427 0.449208i \(-0.851706\pi\)
−0.893427 + 0.449208i \(0.851706\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 281.433i − 0.559509i −0.960072 0.279754i \(-0.909747\pi\)
0.960072 0.279754i \(-0.0902531\pi\)
\(504\) 0 0
\(505\) 46.3854 0.0918523
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 492.144i − 0.966884i −0.875376 0.483442i \(-0.839386\pi\)
0.875376 0.483442i \(-0.160614\pi\)
\(510\) 0 0
\(511\) −189.609 −0.371056
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 168.165i 0.326533i
\(516\) 0 0
\(517\) −753.806 −1.45804
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 633.968i 1.21683i 0.793619 + 0.608415i \(0.208194\pi\)
−0.793619 + 0.608415i \(0.791806\pi\)
\(522\) 0 0
\(523\) 42.6893 0.0816240 0.0408120 0.999167i \(-0.487006\pi\)
0.0408120 + 0.999167i \(0.487006\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1072.02i − 2.03419i
\(528\) 0 0
\(529\) 527.661 0.997469
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 220.620i 0.413922i
\(534\) 0 0
\(535\) 45.9575 0.0859019
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 466.660i − 0.865788i
\(540\) 0 0
\(541\) −585.520 −1.08229 −0.541146 0.840929i \(-0.682009\pi\)
−0.541146 + 0.840929i \(0.682009\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 37.2129i 0.0682806i
\(546\) 0 0
\(547\) 859.622 1.57152 0.785761 0.618531i \(-0.212272\pi\)
0.785761 + 0.618531i \(0.212272\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 27.2806i 0.0495111i
\(552\) 0 0
\(553\) 261.518 0.472908
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 394.616i 0.708467i 0.935157 + 0.354234i \(0.115258\pi\)
−0.935157 + 0.354234i \(0.884742\pi\)
\(558\) 0 0
\(559\) −337.672 −0.604065
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 433.763i 0.770449i 0.922823 + 0.385225i \(0.125876\pi\)
−0.922823 + 0.385225i \(0.874124\pi\)
\(564\) 0 0
\(565\) 90.0695 0.159415
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 216.219i − 0.379999i −0.981784 0.189999i \(-0.939151\pi\)
0.981784 0.189999i \(-0.0608486\pi\)
\(570\) 0 0
\(571\) −1050.22 −1.83927 −0.919633 0.392778i \(-0.871514\pi\)
−0.919633 + 0.392778i \(0.871514\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.1256i 0.0489140i
\(576\) 0 0
\(577\) 235.000 0.407279 0.203640 0.979046i \(-0.434723\pi\)
0.203640 + 0.979046i \(0.434723\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 156.467i 0.269306i
\(582\) 0 0
\(583\) 509.064 0.873181
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 773.013i 1.31689i 0.752630 + 0.658443i \(0.228785\pi\)
−0.752630 + 0.658443i \(0.771215\pi\)
\(588\) 0 0
\(589\) 77.1499 0.130985
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 504.381i − 0.850557i −0.905062 0.425279i \(-0.860176\pi\)
0.905062 0.425279i \(-0.139824\pi\)
\(594\) 0 0
\(595\) 43.7989 0.0736117
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 43.7974i − 0.0731176i −0.999332 0.0365588i \(-0.988360\pi\)
0.999332 0.0365588i \(-0.0116396\pi\)
\(600\) 0 0
\(601\) −9.79174 −0.0162924 −0.00814621 0.999967i \(-0.502593\pi\)
−0.00814621 + 0.999967i \(0.502593\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 1.04112i − 0.00172086i
\(606\) 0 0
\(607\) −351.448 −0.578991 −0.289496 0.957179i \(-0.593488\pi\)
−0.289496 + 0.957179i \(0.593488\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 601.298i − 0.984122i
\(612\) 0 0
\(613\) 733.118 1.19595 0.597976 0.801514i \(-0.295972\pi\)
0.597976 + 0.801514i \(0.295972\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 643.528i 1.04299i 0.853253 + 0.521497i \(0.174626\pi\)
−0.853253 + 0.521497i \(0.825374\pi\)
\(618\) 0 0
\(619\) −248.639 −0.401678 −0.200839 0.979624i \(-0.564367\pi\)
−0.200839 + 0.979624i \(0.564367\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.93418i 0.00792003i
\(624\) 0 0
\(625\) 573.475 0.917560
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 165.648i − 0.263351i
\(630\) 0 0
\(631\) 479.055 0.759200 0.379600 0.925151i \(-0.376062\pi\)
0.379600 + 0.925151i \(0.376062\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 143.375i − 0.225787i
\(636\) 0 0
\(637\) 372.246 0.584374
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1177.76i 1.83738i 0.394981 + 0.918689i \(0.370751\pi\)
−0.394981 + 0.918689i \(0.629249\pi\)
\(642\) 0 0
\(643\) −176.171 −0.273983 −0.136992 0.990572i \(-0.543743\pi\)
−0.136992 + 0.990572i \(0.543743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 317.529i 0.490771i 0.969426 + 0.245386i \(0.0789146\pi\)
−0.969426 + 0.245386i \(0.921085\pi\)
\(648\) 0 0
\(649\) 1126.25 1.73536
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 1020.62i − 1.56298i −0.623921 0.781488i \(-0.714461\pi\)
0.623921 0.781488i \(-0.285539\pi\)
\(654\) 0 0
\(655\) −73.8641 −0.112770
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 147.334i − 0.223572i −0.993732 0.111786i \(-0.964343\pi\)
0.993732 0.111786i \(-0.0356571\pi\)
\(660\) 0 0
\(661\) 773.957 1.17089 0.585444 0.810713i \(-0.300920\pi\)
0.585444 + 0.810713i \(0.300920\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.15208i 0.00473997i
\(666\) 0 0
\(667\) 21.0235 0.0315195
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 966.599i − 1.44054i
\(672\) 0 0
\(673\) −125.473 −0.186438 −0.0932189 0.995646i \(-0.529716\pi\)
−0.0932189 + 0.995646i \(0.529716\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1101.31i − 1.62675i −0.581742 0.813374i \(-0.697629\pi\)
0.581742 0.813374i \(-0.302371\pi\)
\(678\) 0 0
\(679\) −298.574 −0.439726
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 469.992i − 0.688128i −0.938946 0.344064i \(-0.888196\pi\)
0.938946 0.344064i \(-0.111804\pi\)
\(684\) 0 0
\(685\) 74.6302 0.108949
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 406.072i 0.589364i
\(690\) 0 0
\(691\) 527.739 0.763733 0.381866 0.924218i \(-0.375281\pi\)
0.381866 + 0.924218i \(0.375281\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 124.561i − 0.179224i
\(696\) 0 0
\(697\) 527.315 0.756549
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 1162.38i − 1.65818i −0.559116 0.829089i \(-0.688859\pi\)
0.559116 0.829089i \(-0.311141\pi\)
\(702\) 0 0
\(703\) 11.9212 0.0169576
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 140.430i 0.198628i
\(708\) 0 0
\(709\) 200.058 0.282169 0.141085 0.989998i \(-0.454941\pi\)
0.141085 + 0.989998i \(0.454941\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 59.4547i − 0.0833867i
\(714\) 0 0
\(715\) −79.5428 −0.111249
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 447.907i 0.622958i 0.950253 + 0.311479i \(0.100824\pi\)
−0.950253 + 0.311479i \(0.899176\pi\)
\(720\) 0 0
\(721\) −509.112 −0.706120
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 441.623i − 0.609136i
\(726\) 0 0
\(727\) 507.475 0.698039 0.349020 0.937115i \(-0.386515\pi\)
0.349020 + 0.937115i \(0.386515\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 807.086i 1.10408i
\(732\) 0 0
\(733\) 1091.08 1.48852 0.744260 0.667890i \(-0.232802\pi\)
0.744260 + 0.667890i \(0.232802\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 247.732i − 0.336136i
\(738\) 0 0
\(739\) 114.753 0.155281 0.0776406 0.996981i \(-0.475261\pi\)
0.0776406 + 0.996981i \(0.475261\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 613.178i 0.825273i 0.910896 + 0.412637i \(0.135392\pi\)
−0.910896 + 0.412637i \(0.864608\pi\)
\(744\) 0 0
\(745\) −116.646 −0.156572
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 139.135i 0.185761i
\(750\) 0 0
\(751\) 387.889 0.516497 0.258248 0.966079i \(-0.416855\pi\)
0.258248 + 0.966079i \(0.416855\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 120.854i − 0.160071i
\(756\) 0 0
\(757\) 732.340 0.967424 0.483712 0.875227i \(-0.339288\pi\)
0.483712 + 0.875227i \(0.339288\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 890.685i 1.17041i 0.810884 + 0.585207i \(0.198987\pi\)
−0.810884 + 0.585207i \(0.801013\pi\)
\(762\) 0 0
\(763\) −112.661 −0.147655
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 898.388i 1.17130i
\(768\) 0 0
\(769\) 488.712 0.635516 0.317758 0.948172i \(-0.397070\pi\)
0.317758 + 0.948172i \(0.397070\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 579.450i 0.749612i 0.927103 + 0.374806i \(0.122291\pi\)
−0.927103 + 0.374806i \(0.877709\pi\)
\(774\) 0 0
\(775\) −1248.92 −1.61150
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 37.9493i 0.0487154i
\(780\) 0 0
\(781\) 1140.88 1.46079
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 205.746i 0.262097i
\(786\) 0 0
\(787\) −175.881 −0.223483 −0.111741 0.993737i \(-0.535643\pi\)
−0.111741 + 0.993737i \(0.535643\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 272.682i 0.344731i
\(792\) 0 0
\(793\) 771.040 0.972308
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 459.082i 0.576012i 0.957629 + 0.288006i \(0.0929924\pi\)
−0.957629 + 0.288006i \(0.907008\pi\)
\(798\) 0 0
\(799\) −1437.19 −1.79874
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 823.042i − 1.02496i
\(804\) 0 0
\(805\) 2.42912 0.00301754
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 89.1339i 0.110178i 0.998481 + 0.0550890i \(0.0175442\pi\)
−0.998481 + 0.0550890i \(0.982456\pi\)
\(810\) 0 0
\(811\) 625.256 0.770969 0.385484 0.922714i \(-0.374034\pi\)
0.385484 + 0.922714i \(0.374034\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 157.668i 0.193458i
\(816\) 0 0
\(817\) −58.0836 −0.0710938
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 722.140i 0.879586i 0.898099 + 0.439793i \(0.144948\pi\)
−0.898099 + 0.439793i \(0.855052\pi\)
\(822\) 0 0
\(823\) 299.067 0.363386 0.181693 0.983355i \(-0.441842\pi\)
0.181693 + 0.983355i \(0.441842\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1178.17i 1.42463i 0.701858 + 0.712317i \(0.252354\pi\)
−0.701858 + 0.712317i \(0.747646\pi\)
\(828\) 0 0
\(829\) −451.760 −0.544946 −0.272473 0.962163i \(-0.587841\pi\)
−0.272473 + 0.962163i \(0.587841\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 889.723i − 1.06810i
\(834\) 0 0
\(835\) 192.849 0.230956
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 317.246i − 0.378124i −0.981965 0.189062i \(-0.939455\pi\)
0.981965 0.189062i \(-0.0605448\pi\)
\(840\) 0 0
\(841\) 510.892 0.607481
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 77.2788i 0.0914542i
\(846\) 0 0
\(847\) 3.15196 0.00372132
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 9.18694i − 0.0107955i
\(852\) 0 0
\(853\) −111.847 −0.131122 −0.0655609 0.997849i \(-0.520884\pi\)
−0.0655609 + 0.997849i \(0.520884\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 602.799i 0.703383i 0.936116 + 0.351692i \(0.114393\pi\)
−0.936116 + 0.351692i \(0.885607\pi\)
\(858\) 0 0
\(859\) 1298.35 1.51147 0.755733 0.654880i \(-0.227281\pi\)
0.755733 + 0.654880i \(0.227281\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1332.38i − 1.54390i −0.635685 0.771949i \(-0.719282\pi\)
0.635685 0.771949i \(-0.280718\pi\)
\(864\) 0 0
\(865\) −216.255 −0.250006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1135.18i 1.30630i
\(870\) 0 0
\(871\) 197.612 0.226879
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 103.509i − 0.118296i
\(876\) 0 0
\(877\) −814.823 −0.929103 −0.464551 0.885546i \(-0.653784\pi\)
−0.464551 + 0.885546i \(0.653784\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 86.4877i − 0.0981700i −0.998795 0.0490850i \(-0.984369\pi\)
0.998795 0.0490850i \(-0.0156305\pi\)
\(882\) 0 0
\(883\) −367.217 −0.415875 −0.207937 0.978142i \(-0.566675\pi\)
−0.207937 + 0.978142i \(0.566675\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 678.335i 0.764752i 0.924007 + 0.382376i \(0.124894\pi\)
−0.924007 + 0.382376i \(0.875106\pi\)
\(888\) 0 0
\(889\) 434.061 0.488258
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 103.430i − 0.115824i
\(894\) 0 0
\(895\) 183.495 0.205022
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 933.550i 1.03843i
\(900\) 0 0
\(901\) 970.571 1.07722
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 238.314i 0.263330i
\(906\) 0 0
\(907\) −862.742 −0.951204 −0.475602 0.879661i \(-0.657770\pi\)
−0.475602 + 0.879661i \(0.657770\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1163.44i − 1.27710i −0.769581 0.638549i \(-0.779535\pi\)
0.769581 0.638549i \(-0.220465\pi\)
\(912\) 0 0
\(913\) −679.179 −0.743898
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 223.621i − 0.243861i
\(918\) 0 0
\(919\) 832.360 0.905724 0.452862 0.891581i \(-0.350403\pi\)
0.452862 + 0.891581i \(0.350403\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 910.059i 0.985979i
\(924\) 0 0
\(925\) −192.982 −0.208630
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1778.36i − 1.91427i −0.289643 0.957135i \(-0.593536\pi\)
0.289643 0.957135i \(-0.406464\pi\)
\(930\) 0 0
\(931\) 64.0308 0.0687764
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 190.119i 0.203336i
\(936\) 0 0
\(937\) 432.361 0.461431 0.230715 0.973021i \(-0.425893\pi\)
0.230715 + 0.973021i \(0.425893\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1756.76i − 1.86690i −0.358703 0.933452i \(-0.616781\pi\)
0.358703 0.933452i \(-0.383219\pi\)
\(942\) 0 0
\(943\) 29.2452 0.0310130
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1132.48i − 1.19586i −0.801549 0.597929i \(-0.795990\pi\)
0.801549 0.597929i \(-0.204010\pi\)
\(948\) 0 0
\(949\) 656.526 0.691809
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1509.90i 1.58436i 0.610286 + 0.792181i \(0.291055\pi\)
−0.610286 + 0.792181i \(0.708945\pi\)
\(954\) 0 0
\(955\) −1.31530 −0.00137728
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 225.940i 0.235600i
\(960\) 0 0
\(961\) 1679.09 1.74723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 193.301i 0.200312i
\(966\) 0 0
\(967\) −489.980 −0.506701 −0.253350 0.967375i \(-0.581533\pi\)
−0.253350 + 0.967375i \(0.581533\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 253.051i 0.260608i 0.991474 + 0.130304i \(0.0415954\pi\)
−0.991474 + 0.130304i \(0.958405\pi\)
\(972\) 0 0
\(973\) 377.103 0.387567
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1625.27i − 1.66353i −0.555127 0.831765i \(-0.687330\pi\)
0.555127 0.831765i \(-0.312670\pi\)
\(978\) 0 0
\(979\) −21.4179 −0.0218773
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1162.97i − 1.18308i −0.806276 0.591540i \(-0.798520\pi\)
0.806276 0.591540i \(-0.201480\pi\)
\(984\) 0 0
\(985\) 178.211 0.180925
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 44.7615i 0.0452594i
\(990\) 0 0
\(991\) 1411.24 1.42405 0.712027 0.702152i \(-0.247777\pi\)
0.712027 + 0.702152i \(0.247777\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 21.5599i 0.0216683i
\(996\) 0 0
\(997\) 1123.23 1.12661 0.563304 0.826250i \(-0.309530\pi\)
0.563304 + 0.826250i \(0.309530\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.3.e.i.161.13 24
3.2 odd 2 inner 2592.3.e.i.161.14 24
4.3 odd 2 inner 2592.3.e.i.161.11 24
9.2 odd 6 288.3.q.b.257.5 yes 24
9.4 even 3 288.3.q.b.65.5 24
9.5 odd 6 864.3.q.a.737.6 24
9.7 even 3 864.3.q.a.449.6 24
12.11 even 2 inner 2592.3.e.i.161.12 24
36.7 odd 6 864.3.q.a.449.5 24
36.11 even 6 288.3.q.b.257.8 yes 24
36.23 even 6 864.3.q.a.737.5 24
36.31 odd 6 288.3.q.b.65.8 yes 24
72.5 odd 6 1728.3.q.k.1601.8 24
72.11 even 6 576.3.q.l.257.5 24
72.13 even 6 576.3.q.l.65.8 24
72.29 odd 6 576.3.q.l.257.8 24
72.43 odd 6 1728.3.q.k.449.7 24
72.59 even 6 1728.3.q.k.1601.7 24
72.61 even 6 1728.3.q.k.449.8 24
72.67 odd 6 576.3.q.l.65.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.5 24 9.4 even 3
288.3.q.b.65.8 yes 24 36.31 odd 6
288.3.q.b.257.5 yes 24 9.2 odd 6
288.3.q.b.257.8 yes 24 36.11 even 6
576.3.q.l.65.5 24 72.67 odd 6
576.3.q.l.65.8 24 72.13 even 6
576.3.q.l.257.5 24 72.11 even 6
576.3.q.l.257.8 24 72.29 odd 6
864.3.q.a.449.5 24 36.7 odd 6
864.3.q.a.449.6 24 9.7 even 3
864.3.q.a.737.5 24 36.23 even 6
864.3.q.a.737.6 24 9.5 odd 6
1728.3.q.k.449.7 24 72.43 odd 6
1728.3.q.k.449.8 24 72.61 even 6
1728.3.q.k.1601.7 24 72.59 even 6
1728.3.q.k.1601.8 24 72.5 odd 6
2592.3.e.i.161.11 24 4.3 odd 2 inner
2592.3.e.i.161.12 24 12.11 even 2 inner
2592.3.e.i.161.13 24 1.1 even 1 trivial
2592.3.e.i.161.14 24 3.2 odd 2 inner