Properties

Label 2592.3.e.i.161.13
Level 25922592
Weight 33
Character 2592.161
Analytic conductor 70.62770.627
Analytic rank 00
Dimension 2424
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,3,Mod(161,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2592=2534 2592 = 2^{5} \cdot 3^{4}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2592.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 70.626884522270.6268845222
Analytic rank: 00
Dimension: 2424
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 161.13
Character χ\chi == 2592.161
Dual form 2592.3.e.i.161.14

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.832715iq5+2.52101q7+10.9430iq118.72906q13+20.8637iq171.50150q19+1.15712iq23+24.3066q2518.1689iq2951.3818q312.09929iq357.93951q3725.2742iq41+38.6837q43+68.8846iq4742.6445q4946.5195iq53+9.11241q55102.919iq5988.3302q61+7.26882iq6522.6384q67104.256iq7175.2115q73+27.5875iq77+103.735q79+62.0650iq83+17.3735q85+1.95722iq8922.0061q91+1.25032iq95118.434q97+O(q100)q-0.832715i q^{5} +2.52101 q^{7} +10.9430i q^{11} -8.72906 q^{13} +20.8637i q^{17} -1.50150 q^{19} +1.15712i q^{23} +24.3066 q^{25} -18.1689i q^{29} -51.3818 q^{31} -2.09929i q^{35} -7.93951 q^{37} -25.2742i q^{41} +38.6837 q^{43} +68.8846i q^{47} -42.6445 q^{49} -46.5195i q^{53} +9.11241 q^{55} -102.919i q^{59} -88.3302 q^{61} +7.26882i q^{65} -22.6384 q^{67} -104.256i q^{71} -75.2115 q^{73} +27.5875i q^{77} +103.735 q^{79} +62.0650i q^{83} +17.3735 q^{85} +1.95722i q^{89} -22.0061 q^{91} +1.25032i q^{95} -118.434 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q120q25+72q49+192q61+24q73192q85+264q97+O(q100) 24 q - 120 q^{25} + 72 q^{49} + 192 q^{61} + 24 q^{73} - 192 q^{85} + 264 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2592Z)×\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times.

nn 325325 12171217 24312431
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 − 0.832715i − 0.166543i −0.996527 0.0832715i 0.973463π-0.973463\pi
0.996527 0.0832715i 0.0265369π-0.0265369\pi
66 0 0
77 2.52101 0.360145 0.180072 0.983653i 0.442367π-0.442367\pi
0.180072 + 0.983653i 0.442367π0.442367\pi
88 0 0
99 0 0
1010 0 0
1111 10.9430i 0.994820i 0.867516 + 0.497410i 0.165716π0.165716\pi
−0.867516 + 0.497410i 0.834284π0.834284\pi
1212 0 0
1313 −8.72906 −0.671466 −0.335733 0.941957i 0.608984π-0.608984\pi
−0.335733 + 0.941957i 0.608984π0.608984\pi
1414 0 0
1515 0 0
1616 0 0
1717 20.8637i 1.22728i 0.789586 + 0.613639i 0.210295π0.210295\pi
−0.789586 + 0.613639i 0.789705π0.789705\pi
1818 0 0
1919 −1.50150 −0.0790265 −0.0395132 0.999219i 0.512581π-0.512581\pi
−0.0395132 + 0.999219i 0.512581π0.512581\pi
2020 0 0
2121 0 0
2222 0 0
2323 1.15712i 0.0503094i 0.999684 + 0.0251547i 0.00800784π0.00800784\pi
−0.999684 + 0.0251547i 0.991992π0.991992\pi
2424 0 0
2525 24.3066 0.972263
2626 0 0
2727 0 0
2828 0 0
2929 − 18.1689i − 0.626513i −0.949669 0.313257i 0.898580π-0.898580\pi
0.949669 0.313257i 0.101420π-0.101420\pi
3030 0 0
3131 −51.3818 −1.65748 −0.828739 0.559636i 0.810941π-0.810941\pi
−0.828739 + 0.559636i 0.810941π0.810941\pi
3232 0 0
3333 0 0
3434 0 0
3535 − 2.09929i − 0.0599796i
3636 0 0
3737 −7.93951 −0.214581 −0.107291 0.994228i 0.534218π-0.534218\pi
−0.107291 + 0.994228i 0.534218π0.534218\pi
3838 0 0
3939 0 0
4040 0 0
4141 − 25.2742i − 0.616445i −0.951314 0.308222i 0.900266π-0.900266\pi
0.951314 0.308222i 0.0997341π-0.0997341\pi
4242 0 0
4343 38.6837 0.899620 0.449810 0.893124i 0.351492π-0.351492\pi
0.449810 + 0.893124i 0.351492π0.351492\pi
4444 0 0
4545 0 0
4646 0 0
4747 68.8846i 1.46563i 0.680427 + 0.732815i 0.261794π0.261794\pi
−0.680427 + 0.732815i 0.738206π0.738206\pi
4848 0 0
4949 −42.6445 −0.870296
5050 0 0
5151 0 0
5252 0 0
5353 − 46.5195i − 0.877727i −0.898554 0.438864i 0.855381π-0.855381\pi
0.898554 0.438864i 0.144619π-0.144619\pi
5454 0 0
5555 9.11241 0.165680
5656 0 0
5757 0 0
5858 0 0
5959 − 102.919i − 1.74439i −0.489156 0.872196i 0.662695π-0.662695\pi
0.489156 0.872196i 0.337305π-0.337305\pi
6060 0 0
6161 −88.3302 −1.44804 −0.724018 0.689781i 0.757707π-0.757707\pi
−0.724018 + 0.689781i 0.757707π0.757707\pi
6262 0 0
6363 0 0
6464 0 0
6565 7.26882i 0.111828i
6666 0 0
6767 −22.6384 −0.337886 −0.168943 0.985626i 0.554035π-0.554035\pi
−0.168943 + 0.985626i 0.554035π0.554035\pi
6868 0 0
6969 0 0
7070 0 0
7171 − 104.256i − 1.46840i −0.678935 0.734198i 0.737558π-0.737558\pi
0.678935 0.734198i 0.262442π-0.262442\pi
7272 0 0
7373 −75.2115 −1.03030 −0.515148 0.857101i 0.672263π-0.672263\pi
−0.515148 + 0.857101i 0.672263π0.672263\pi
7474 0 0
7575 0 0
7676 0 0
7777 27.5875i 0.358279i
7878 0 0
7979 103.735 1.31310 0.656552 0.754281i 0.272014π-0.272014\pi
0.656552 + 0.754281i 0.272014π0.272014\pi
8080 0 0
8181 0 0
8282 0 0
8383 62.0650i 0.747772i 0.927475 + 0.373886i 0.121975π0.121975\pi
−0.927475 + 0.373886i 0.878025π0.878025\pi
8484 0 0
8585 17.3735 0.204395
8686 0 0
8787 0 0
8888 0 0
8989 1.95722i 0.0219912i 0.999940 + 0.0109956i 0.00350008π0.00350008\pi
−0.999940 + 0.0109956i 0.996500π0.996500\pi
9090 0 0
9191 −22.0061 −0.241825
9292 0 0
9393 0 0
9494 0 0
9595 1.25032i 0.0131613i
9696 0 0
9797 −118.434 −1.22097 −0.610486 0.792027i 0.709026π-0.709026\pi
−0.610486 + 0.792027i 0.709026π0.709026\pi
9898 0 0
9999 0 0
100100 0 0
101101 55.7039i 0.551524i 0.961226 + 0.275762i 0.0889301π0.0889301\pi
−0.961226 + 0.275762i 0.911070π0.911070\pi
102102 0 0
103103 −201.947 −1.96066 −0.980328 0.197377i 0.936758π-0.936758\pi
−0.980328 + 0.197377i 0.936758π0.936758\pi
104104 0 0
105105 0 0
106106 0 0
107107 55.1900i 0.515794i 0.966172 + 0.257897i 0.0830295π0.0830295\pi
−0.966172 + 0.257897i 0.916970π0.916970\pi
108108 0 0
109109 −44.6887 −0.409988 −0.204994 0.978763i 0.565717π-0.565717\pi
−0.204994 + 0.978763i 0.565717π0.565717\pi
110110 0 0
111111 0 0
112112 0 0
113113 108.164i 0.957201i 0.878033 + 0.478600i 0.158856π0.158856\pi
−0.878033 + 0.478600i 0.841144π0.841144\pi
114114 0 0
115115 0.963548 0.00837868
116116 0 0
117117 0 0
118118 0 0
119119 52.5978i 0.441998i
120120 0 0
121121 1.25027 0.0103328
122122 0 0
123123 0 0
124124 0 0
125125 − 41.0583i − 0.328467i
126126 0 0
127127 172.177 1.35573 0.677863 0.735188i 0.262906π-0.262906\pi
0.677863 + 0.735188i 0.262906π0.262906\pi
128128 0 0
129129 0 0
130130 0 0
131131 − 88.7027i − 0.677120i −0.940945 0.338560i 0.890060π-0.890060\pi
0.940945 0.338560i 0.109940π-0.109940\pi
132132 0 0
133133 −3.78531 −0.0284610
134134 0 0
135135 0 0
136136 0 0
137137 89.6228i 0.654181i 0.944993 + 0.327090i 0.106068π0.106068\pi
−0.944993 + 0.327090i 0.893932π0.893932\pi
138138 0 0
139139 149.584 1.07614 0.538071 0.842900i 0.319153π-0.319153\pi
0.538071 + 0.842900i 0.319153π0.319153\pi
140140 0 0
141141 0 0
142142 0 0
143143 − 95.5223i − 0.667988i
144144 0 0
145145 −15.1295 −0.104341
146146 0 0
147147 0 0
148148 0 0
149149 − 140.079i − 0.940130i −0.882632 0.470065i 0.844230π-0.844230\pi
0.882632 0.470065i 0.155770π-0.155770\pi
150150 0 0
151151 145.132 0.961140 0.480570 0.876956i 0.340430π-0.340430\pi
0.480570 + 0.876956i 0.340430π0.340430\pi
152152 0 0
153153 0 0
154154 0 0
155155 42.7864i 0.276041i
156156 0 0
157157 −247.079 −1.57375 −0.786876 0.617111i 0.788303π-0.788303\pi
−0.786876 + 0.617111i 0.788303π0.788303\pi
158158 0 0
159159 0 0
160160 0 0
161161 2.91711i 0.0181187i
162162 0 0
163163 −189.342 −1.16161 −0.580805 0.814043i 0.697262π-0.697262\pi
−0.580805 + 0.814043i 0.697262π0.697262\pi
164164 0 0
165165 0 0
166166 0 0
167167 231.590i 1.38677i 0.720568 + 0.693384i 0.243881π0.243881\pi
−0.720568 + 0.693384i 0.756119π0.756119\pi
168168 0 0
169169 −92.8035 −0.549133
170170 0 0
171171 0 0
172172 0 0
173173 − 259.699i − 1.50115i −0.660786 0.750574i 0.729777π-0.729777\pi
0.660786 0.750574i 0.270223π-0.270223\pi
174174 0 0
175175 61.2772 0.350156
176176 0 0
177177 0 0
178178 0 0
179179 220.358i 1.23105i 0.788118 + 0.615524i 0.211056π0.211056\pi
−0.788118 + 0.615524i 0.788944π0.788944\pi
180180 0 0
181181 −286.189 −1.58116 −0.790578 0.612362i 0.790220π-0.790220\pi
−0.790578 + 0.612362i 0.790220π0.790220\pi
182182 0 0
183183 0 0
184184 0 0
185185 6.61135i 0.0357370i
186186 0 0
187187 −228.312 −1.22092
188188 0 0
189189 0 0
190190 0 0
191191 − 1.57954i − 0.00826983i −0.999991 0.00413491i 0.998684π-0.998684\pi
0.999991 0.00413491i 0.00131619π-0.00131619\pi
192192 0 0
193193 −232.133 −1.20276 −0.601381 0.798962i 0.705383π-0.705383\pi
−0.601381 + 0.798962i 0.705383π0.705383\pi
194194 0 0
195195 0 0
196196 0 0
197197 214.012i 1.08636i 0.839618 + 0.543178i 0.182779π0.182779\pi
−0.839618 + 0.543178i 0.817221π0.817221\pi
198198 0 0
199199 −25.8912 −0.130106 −0.0650532 0.997882i 0.520722π-0.520722\pi
−0.0650532 + 0.997882i 0.520722π0.520722\pi
200200 0 0
201201 0 0
202202 0 0
203203 − 45.8040i − 0.225635i
204204 0 0
205205 −21.0462 −0.102664
206206 0 0
207207 0 0
208208 0 0
209209 − 16.4310i − 0.0786171i
210210 0 0
211211 93.9504 0.445263 0.222631 0.974903i 0.428535π-0.428535\pi
0.222631 + 0.974903i 0.428535π0.428535\pi
212212 0 0
213213 0 0
214214 0 0
215215 − 32.2124i − 0.149825i
216216 0 0
217217 −129.534 −0.596932
218218 0 0
219219 0 0
220220 0 0
221221 − 182.121i − 0.824076i
222222 0 0
223223 −299.372 −1.34247 −0.671237 0.741243i 0.734237π-0.734237\pi
−0.671237 + 0.741243i 0.734237π0.734237\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 364.774i − 1.60693i −0.595349 0.803467i 0.702986π-0.702986\pi
0.595349 0.803467i 0.297014π-0.297014\pi
228228 0 0
229229 −281.958 −1.23126 −0.615629 0.788036i 0.711098π-0.711098\pi
−0.615629 + 0.788036i 0.711098π0.711098\pi
230230 0 0
231231 0 0
232232 0 0
233233 208.568i 0.895140i 0.894249 + 0.447570i 0.147710π0.147710\pi
−0.894249 + 0.447570i 0.852290π0.852290\pi
234234 0 0
235235 57.3613 0.244090
236236 0 0
237237 0 0
238238 0 0
239239 29.0098i 0.121380i 0.998157 + 0.0606899i 0.0193301π0.0193301\pi
−0.998157 + 0.0606899i 0.980670π0.980670\pi
240240 0 0
241241 −232.911 −0.966437 −0.483218 0.875500i 0.660532π-0.660532\pi
−0.483218 + 0.875500i 0.660532π0.660532\pi
242242 0 0
243243 0 0
244244 0 0
245245 35.5107i 0.144942i
246246 0 0
247247 13.1067 0.0530636
248248 0 0
249249 0 0
250250 0 0
251251 112.869i 0.449676i 0.974396 + 0.224838i 0.0721853π0.0721853\pi
−0.974396 + 0.224838i 0.927815π0.927815\pi
252252 0 0
253253 −12.6624 −0.0500488
254254 0 0
255255 0 0
256256 0 0
257257 337.414i 1.31290i 0.754371 + 0.656448i 0.227942π0.227942\pi
−0.754371 + 0.656448i 0.772058π0.772058\pi
258258 0 0
259259 −20.0156 −0.0772804
260260 0 0
261261 0 0
262262 0 0
263263 − 505.730i − 1.92293i −0.274930 0.961464i 0.588655π-0.588655\pi
0.274930 0.961464i 0.411345π-0.411345\pi
264264 0 0
265265 −38.7375 −0.146179
266266 0 0
267267 0 0
268268 0 0
269269 − 337.414i − 1.25433i −0.778887 0.627164i 0.784216π-0.784216\pi
0.778887 0.627164i 0.215784π-0.215784\pi
270270 0 0
271271 12.0273 0.0443813 0.0221907 0.999754i 0.492936π-0.492936\pi
0.0221907 + 0.999754i 0.492936π0.492936\pi
272272 0 0
273273 0 0
274274 0 0
275275 265.988i 0.967227i
276276 0 0
277277 −199.886 −0.721611 −0.360805 0.932641i 0.617498π-0.617498\pi
−0.360805 + 0.932641i 0.617498π0.617498\pi
278278 0 0
279279 0 0
280280 0 0
281281 334.906i 1.19184i 0.803046 + 0.595918i 0.203212π0.203212\pi
−0.803046 + 0.595918i 0.796788π0.796788\pi
282282 0 0
283283 470.153 1.66132 0.830659 0.556782i 0.187964π-0.187964\pi
0.830659 + 0.556782i 0.187964π0.187964\pi
284284 0 0
285285 0 0
286286 0 0
287287 − 63.7167i − 0.222009i
288288 0 0
289289 −146.296 −0.506213
290290 0 0
291291 0 0
292292 0 0
293293 − 151.557i − 0.517259i −0.965977 0.258630i 0.916729π-0.916729\pi
0.965977 0.258630i 0.0832709π-0.0832709\pi
294294 0 0
295295 −85.7023 −0.290516
296296 0 0
297297 0 0
298298 0 0
299299 − 10.1005i − 0.0337811i
300300 0 0
301301 97.5220 0.323994
302302 0 0
303303 0 0
304304 0 0
305305 73.5538i 0.241160i
306306 0 0
307307 −123.852 −0.403426 −0.201713 0.979445i 0.564651π-0.564651\pi
−0.201713 + 0.979445i 0.564651π0.564651\pi
308308 0 0
309309 0 0
310310 0 0
311311 96.8945i 0.311558i 0.987792 + 0.155779i 0.0497887π0.0497887\pi
−0.987792 + 0.155779i 0.950211π0.950211\pi
312312 0 0
313313 −96.4999 −0.308306 −0.154153 0.988047i 0.549265π-0.549265\pi
−0.154153 + 0.988047i 0.549265π0.549265\pi
314314 0 0
315315 0 0
316316 0 0
317317 − 138.376i − 0.436516i −0.975891 0.218258i 0.929963π-0.929963\pi
0.975891 0.218258i 0.0700375π-0.0700375\pi
318318 0 0
319319 198.822 0.623268
320320 0 0
321321 0 0
322322 0 0
323323 − 31.3270i − 0.0969875i
324324 0 0
325325 −212.174 −0.652842
326326 0 0
327327 0 0
328328 0 0
329329 173.659i 0.527839i
330330 0 0
331331 −298.986 −0.903281 −0.451641 0.892200i 0.649161π-0.649161\pi
−0.451641 + 0.892200i 0.649161π0.649161\pi
332332 0 0
333333 0 0
334334 0 0
335335 18.8513i 0.0562725i
336336 0 0
337337 −47.7082 −0.141567 −0.0707837 0.997492i 0.522550π-0.522550\pi
−0.0707837 + 0.997492i 0.522550π0.522550\pi
338338 0 0
339339 0 0
340340 0 0
341341 − 562.272i − 1.64889i
342342 0 0
343343 −231.037 −0.673577
344344 0 0
345345 0 0
346346 0 0
347347 − 120.983i − 0.348654i −0.984688 0.174327i 0.944225π-0.944225\pi
0.984688 0.174327i 0.0557749π-0.0557749\pi
348348 0 0
349349 −387.512 −1.11035 −0.555175 0.831733i 0.687349π-0.687349\pi
−0.555175 + 0.831733i 0.687349π0.687349\pi
350350 0 0
351351 0 0
352352 0 0
353353 7.92090i 0.0224388i 0.999937 + 0.0112194i 0.00357132π0.00357132\pi
−0.999937 + 0.0112194i 0.996429π0.996429\pi
354354 0 0
355355 −86.8156 −0.244551
356356 0 0
357357 0 0
358358 0 0
359359 210.527i 0.586425i 0.956047 + 0.293212i 0.0947243π0.0947243\pi
−0.956047 + 0.293212i 0.905276π0.905276\pi
360360 0 0
361361 −358.745 −0.993755
362362 0 0
363363 0 0
364364 0 0
365365 62.6298i 0.171588i
366366 0 0
367367 −343.880 −0.937004 −0.468502 0.883462i 0.655206π-0.655206\pi
−0.468502 + 0.883462i 0.655206π0.655206\pi
368368 0 0
369369 0 0
370370 0 0
371371 − 117.276i − 0.316109i
372372 0 0
373373 354.708 0.950960 0.475480 0.879726i 0.342274π-0.342274\pi
0.475480 + 0.879726i 0.342274π0.342274\pi
374374 0 0
375375 0 0
376376 0 0
377377 158.597i 0.420682i
378378 0 0
379379 269.497 0.711073 0.355536 0.934662i 0.384298π-0.384298\pi
0.355536 + 0.934662i 0.384298π0.384298\pi
380380 0 0
381381 0 0
382382 0 0
383383 − 83.9367i − 0.219156i −0.993978 0.109578i 0.965050π-0.965050\pi
0.993978 0.109578i 0.0349499π-0.0349499\pi
384384 0 0
385385 22.9725 0.0596689
386386 0 0
387387 0 0
388388 0 0
389389 − 310.634i − 0.798544i −0.916833 0.399272i 0.869263π-0.869263\pi
0.916833 0.399272i 0.130737π-0.130737\pi
390390 0 0
391391 −24.1418 −0.0617437
392392 0 0
393393 0 0
394394 0 0
395395 − 86.3819i − 0.218688i
396396 0 0
397397 436.104 1.09850 0.549249 0.835658i 0.314914π-0.314914\pi
0.549249 + 0.835658i 0.314914π0.314914\pi
398398 0 0
399399 0 0
400400 0 0
401401 − 409.658i − 1.02159i −0.859703 0.510795i 0.829351π-0.829351\pi
0.859703 0.510795i 0.170649π-0.170649\pi
402402 0 0
403403 448.515 1.11294
404404 0 0
405405 0 0
406406 0 0
407407 − 86.8823i − 0.213470i
408408 0 0
409409 −422.163 −1.03218 −0.516092 0.856533i 0.672614π-0.672614\pi
−0.516092 + 0.856533i 0.672614π0.672614\pi
410410 0 0
411411 0 0
412412 0 0
413413 − 259.461i − 0.628234i
414414 0 0
415415 51.6825 0.124536
416416 0 0
417417 0 0
418418 0 0
419419 635.062i 1.51566i 0.652452 + 0.757830i 0.273741π0.273741\pi
−0.652452 + 0.757830i 0.726259π0.726259\pi
420420 0 0
421421 −47.5562 −0.112960 −0.0564800 0.998404i 0.517988π-0.517988\pi
−0.0564800 + 0.998404i 0.517988π0.517988\pi
422422 0 0
423423 0 0
424424 0 0
425425 507.126i 1.19324i
426426 0 0
427427 −222.682 −0.521503
428428 0 0
429429 0 0
430430 0 0
431431 614.503i 1.42576i 0.701286 + 0.712880i 0.252610π0.252610\pi
−0.701286 + 0.712880i 0.747390π0.747390\pi
432432 0 0
433433 118.672 0.274070 0.137035 0.990566i 0.456243π-0.456243\pi
0.137035 + 0.990566i 0.456243π0.456243\pi
434434 0 0
435435 0 0
436436 0 0
437437 − 1.73741i − 0.00397578i
438438 0 0
439439 490.147 1.11651 0.558254 0.829670i 0.311472π-0.311472\pi
0.558254 + 0.829670i 0.311472π0.311472\pi
440440 0 0
441441 0 0
442442 0 0
443443 193.088i 0.435864i 0.975964 + 0.217932i 0.0699312π0.0699312\pi
−0.975964 + 0.217932i 0.930069π0.930069\pi
444444 0 0
445445 1.62981 0.00366248
446446 0 0
447447 0 0
448448 0 0
449449 449.191i 1.00043i 0.865902 + 0.500213i 0.166745π0.166745\pi
−0.865902 + 0.500213i 0.833255π0.833255\pi
450450 0 0
451451 276.576 0.613252
452452 0 0
453453 0 0
454454 0 0
455455 18.3248i 0.0402743i
456456 0 0
457457 94.0564 0.205813 0.102906 0.994691i 0.467186π-0.467186\pi
0.102906 + 0.994691i 0.467186π0.467186\pi
458458 0 0
459459 0 0
460460 0 0
461461 − 340.966i − 0.739623i −0.929107 0.369811i 0.879422π-0.879422\pi
0.929107 0.369811i 0.120578π-0.120578\pi
462462 0 0
463463 571.299 1.23391 0.616953 0.787000i 0.288367π-0.288367\pi
0.616953 + 0.787000i 0.288367π0.288367\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 421.650i − 0.902891i −0.892299 0.451446i 0.850909π-0.850909\pi
0.892299 0.451446i 0.149091π-0.149091\pi
468468 0 0
469469 −57.0716 −0.121688
470470 0 0
471471 0 0
472472 0 0
473473 423.316i 0.894960i
474474 0 0
475475 −36.4964 −0.0768345
476476 0 0
477477 0 0
478478 0 0
479479 808.679i 1.68827i 0.536134 + 0.844133i 0.319884π0.319884\pi
−0.536134 + 0.844133i 0.680116π0.680116\pi
480480 0 0
481481 69.3045 0.144084
482482 0 0
483483 0 0
484484 0 0
485485 98.6219i 0.203344i
486486 0 0
487487 −155.199 −0.318684 −0.159342 0.987223i 0.550937π-0.550937\pi
−0.159342 + 0.987223i 0.550937π0.550937\pi
488488 0 0
489489 0 0
490490 0 0
491491 − 631.410i − 1.28597i −0.765880 0.642984i 0.777696π-0.777696\pi
0.765880 0.642984i 0.222304π-0.222304\pi
492492 0 0
493493 379.071 0.768906
494494 0 0
495495 0 0
496496 0 0
497497 − 262.831i − 0.528836i
498498 0 0
499499 −891.640 −1.78685 −0.893427 0.449208i 0.851706π-0.851706\pi
−0.893427 + 0.449208i 0.851706π0.851706\pi
500500 0 0
501501 0 0
502502 0 0
503503 − 281.433i − 0.559509i −0.960072 0.279754i 0.909747π-0.909747\pi
0.960072 0.279754i 0.0902531π-0.0902531\pi
504504 0 0
505505 46.3854 0.0918523
506506 0 0
507507 0 0
508508 0 0
509509 − 492.144i − 0.966884i −0.875376 0.483442i 0.839386π-0.839386\pi
0.875376 0.483442i 0.160614π-0.160614\pi
510510 0 0
511511 −189.609 −0.371056
512512 0 0
513513 0 0
514514 0 0
515515 168.165i 0.326533i
516516 0 0
517517 −753.806 −1.45804
518518 0 0
519519 0 0
520520 0 0
521521 633.968i 1.21683i 0.793619 + 0.608415i 0.208194π0.208194\pi
−0.793619 + 0.608415i 0.791806π0.791806\pi
522522 0 0
523523 42.6893 0.0816240 0.0408120 0.999167i 0.487006π-0.487006\pi
0.0408120 + 0.999167i 0.487006π0.487006\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 1072.02i − 2.03419i
528528 0 0
529529 527.661 0.997469
530530 0 0
531531 0 0
532532 0 0
533533 220.620i 0.413922i
534534 0 0
535535 45.9575 0.0859019
536536 0 0
537537 0 0
538538 0 0
539539 − 466.660i − 0.865788i
540540 0 0
541541 −585.520 −1.08229 −0.541146 0.840929i 0.682009π-0.682009\pi
−0.541146 + 0.840929i 0.682009π0.682009\pi
542542 0 0
543543 0 0
544544 0 0
545545 37.2129i 0.0682806i
546546 0 0
547547 859.622 1.57152 0.785761 0.618531i 0.212272π-0.212272\pi
0.785761 + 0.618531i 0.212272π0.212272\pi
548548 0 0
549549 0 0
550550 0 0
551551 27.2806i 0.0495111i
552552 0 0
553553 261.518 0.472908
554554 0 0
555555 0 0
556556 0 0
557557 394.616i 0.708467i 0.935157 + 0.354234i 0.115258π0.115258\pi
−0.935157 + 0.354234i 0.884742π0.884742\pi
558558 0 0
559559 −337.672 −0.604065
560560 0 0
561561 0 0
562562 0 0
563563 433.763i 0.770449i 0.922823 + 0.385225i 0.125876π0.125876\pi
−0.922823 + 0.385225i 0.874124π0.874124\pi
564564 0 0
565565 90.0695 0.159415
566566 0 0
567567 0 0
568568 0 0
569569 − 216.219i − 0.379999i −0.981784 0.189999i 0.939151π-0.939151\pi
0.981784 0.189999i 0.0608486π-0.0608486\pi
570570 0 0
571571 −1050.22 −1.83927 −0.919633 0.392778i 0.871514π-0.871514\pi
−0.919633 + 0.392778i 0.871514π0.871514\pi
572572 0 0
573573 0 0
574574 0 0
575575 28.1256i 0.0489140i
576576 0 0
577577 235.000 0.407279 0.203640 0.979046i 0.434723π-0.434723\pi
0.203640 + 0.979046i 0.434723π0.434723\pi
578578 0 0
579579 0 0
580580 0 0
581581 156.467i 0.269306i
582582 0 0
583583 509.064 0.873181
584584 0 0
585585 0 0
586586 0 0
587587 773.013i 1.31689i 0.752630 + 0.658443i 0.228785π0.228785\pi
−0.752630 + 0.658443i 0.771215π0.771215\pi
588588 0 0
589589 77.1499 0.130985
590590 0 0
591591 0 0
592592 0 0
593593 − 504.381i − 0.850557i −0.905062 0.425279i 0.860176π-0.860176\pi
0.905062 0.425279i 0.139824π-0.139824\pi
594594 0 0
595595 43.7989 0.0736117
596596 0 0
597597 0 0
598598 0 0
599599 − 43.7974i − 0.0731176i −0.999332 0.0365588i 0.988360π-0.988360\pi
0.999332 0.0365588i 0.0116396π-0.0116396\pi
600600 0 0
601601 −9.79174 −0.0162924 −0.00814621 0.999967i 0.502593π-0.502593\pi
−0.00814621 + 0.999967i 0.502593π0.502593\pi
602602 0 0
603603 0 0
604604 0 0
605605 − 1.04112i − 0.00172086i
606606 0 0
607607 −351.448 −0.578991 −0.289496 0.957179i 0.593488π-0.593488\pi
−0.289496 + 0.957179i 0.593488π0.593488\pi
608608 0 0
609609 0 0
610610 0 0
611611 − 601.298i − 0.984122i
612612 0 0
613613 733.118 1.19595 0.597976 0.801514i 0.295972π-0.295972\pi
0.597976 + 0.801514i 0.295972π0.295972\pi
614614 0 0
615615 0 0
616616 0 0
617617 643.528i 1.04299i 0.853253 + 0.521497i 0.174626π0.174626\pi
−0.853253 + 0.521497i 0.825374π0.825374\pi
618618 0 0
619619 −248.639 −0.401678 −0.200839 0.979624i 0.564367π-0.564367\pi
−0.200839 + 0.979624i 0.564367π0.564367\pi
620620 0 0
621621 0 0
622622 0 0
623623 4.93418i 0.00792003i
624624 0 0
625625 573.475 0.917560
626626 0 0
627627 0 0
628628 0 0
629629 − 165.648i − 0.263351i
630630 0 0
631631 479.055 0.759200 0.379600 0.925151i 0.376062π-0.376062\pi
0.379600 + 0.925151i 0.376062π0.376062\pi
632632 0 0
633633 0 0
634634 0 0
635635 − 143.375i − 0.225787i
636636 0 0
637637 372.246 0.584374
638638 0 0
639639 0 0
640640 0 0
641641 1177.76i 1.83738i 0.394981 + 0.918689i 0.370751π0.370751\pi
−0.394981 + 0.918689i 0.629249π0.629249\pi
642642 0 0
643643 −176.171 −0.273983 −0.136992 0.990572i 0.543743π-0.543743\pi
−0.136992 + 0.990572i 0.543743π0.543743\pi
644644 0 0
645645 0 0
646646 0 0
647647 317.529i 0.490771i 0.969426 + 0.245386i 0.0789146π0.0789146\pi
−0.969426 + 0.245386i 0.921085π0.921085\pi
648648 0 0
649649 1126.25 1.73536
650650 0 0
651651 0 0
652652 0 0
653653 − 1020.62i − 1.56298i −0.623921 0.781488i 0.714461π-0.714461\pi
0.623921 0.781488i 0.285539π-0.285539\pi
654654 0 0
655655 −73.8641 −0.112770
656656 0 0
657657 0 0
658658 0 0
659659 − 147.334i − 0.223572i −0.993732 0.111786i 0.964343π-0.964343\pi
0.993732 0.111786i 0.0356571π-0.0356571\pi
660660 0 0
661661 773.957 1.17089 0.585444 0.810713i 0.300920π-0.300920\pi
0.585444 + 0.810713i 0.300920π0.300920\pi
662662 0 0
663663 0 0
664664 0 0
665665 3.15208i 0.00473997i
666666 0 0
667667 21.0235 0.0315195
668668 0 0
669669 0 0
670670 0 0
671671 − 966.599i − 1.44054i
672672 0 0
673673 −125.473 −0.186438 −0.0932189 0.995646i 0.529716π-0.529716\pi
−0.0932189 + 0.995646i 0.529716π0.529716\pi
674674 0 0
675675 0 0
676676 0 0
677677 − 1101.31i − 1.62675i −0.581742 0.813374i 0.697629π-0.697629\pi
0.581742 0.813374i 0.302371π-0.302371\pi
678678 0 0
679679 −298.574 −0.439726
680680 0 0
681681 0 0
682682 0 0
683683 − 469.992i − 0.688128i −0.938946 0.344064i 0.888196π-0.888196\pi
0.938946 0.344064i 0.111804π-0.111804\pi
684684 0 0
685685 74.6302 0.108949
686686 0 0
687687 0 0
688688 0 0
689689 406.072i 0.589364i
690690 0 0
691691 527.739 0.763733 0.381866 0.924218i 0.375281π-0.375281\pi
0.381866 + 0.924218i 0.375281π0.375281\pi
692692 0 0
693693 0 0
694694 0 0
695695 − 124.561i − 0.179224i
696696 0 0
697697 527.315 0.756549
698698 0 0
699699 0 0
700700 0 0
701701 − 1162.38i − 1.65818i −0.559116 0.829089i 0.688859π-0.688859\pi
0.559116 0.829089i 0.311141π-0.311141\pi
702702 0 0
703703 11.9212 0.0169576
704704 0 0
705705 0 0
706706 0 0
707707 140.430i 0.198628i
708708 0 0
709709 200.058 0.282169 0.141085 0.989998i 0.454941π-0.454941\pi
0.141085 + 0.989998i 0.454941π0.454941\pi
710710 0 0
711711 0 0
712712 0 0
713713 − 59.4547i − 0.0833867i
714714 0 0
715715 −79.5428 −0.111249
716716 0 0
717717 0 0
718718 0 0
719719 447.907i 0.622958i 0.950253 + 0.311479i 0.100824π0.100824\pi
−0.950253 + 0.311479i 0.899176π0.899176\pi
720720 0 0
721721 −509.112 −0.706120
722722 0 0
723723 0 0
724724 0 0
725725 − 441.623i − 0.609136i
726726 0 0
727727 507.475 0.698039 0.349020 0.937115i 0.386515π-0.386515\pi
0.349020 + 0.937115i 0.386515π0.386515\pi
728728 0 0
729729 0 0
730730 0 0
731731 807.086i 1.10408i
732732 0 0
733733 1091.08 1.48852 0.744260 0.667890i 0.232802π-0.232802\pi
0.744260 + 0.667890i 0.232802π0.232802\pi
734734 0 0
735735 0 0
736736 0 0
737737 − 247.732i − 0.336136i
738738 0 0
739739 114.753 0.155281 0.0776406 0.996981i 0.475261π-0.475261\pi
0.0776406 + 0.996981i 0.475261π0.475261\pi
740740 0 0
741741 0 0
742742 0 0
743743 613.178i 0.825273i 0.910896 + 0.412637i 0.135392π0.135392\pi
−0.910896 + 0.412637i 0.864608π0.864608\pi
744744 0 0
745745 −116.646 −0.156572
746746 0 0
747747 0 0
748748 0 0
749749 139.135i 0.185761i
750750 0 0
751751 387.889 0.516497 0.258248 0.966079i 0.416855π-0.416855\pi
0.258248 + 0.966079i 0.416855π0.416855\pi
752752 0 0
753753 0 0
754754 0 0
755755 − 120.854i − 0.160071i
756756 0 0
757757 732.340 0.967424 0.483712 0.875227i 0.339288π-0.339288\pi
0.483712 + 0.875227i 0.339288π0.339288\pi
758758 0 0
759759 0 0
760760 0 0
761761 890.685i 1.17041i 0.810884 + 0.585207i 0.198987π0.198987\pi
−0.810884 + 0.585207i 0.801013π0.801013\pi
762762 0 0
763763 −112.661 −0.147655
764764 0 0
765765 0 0
766766 0 0
767767 898.388i 1.17130i
768768 0 0
769769 488.712 0.635516 0.317758 0.948172i 0.397070π-0.397070\pi
0.317758 + 0.948172i 0.397070π0.397070\pi
770770 0 0
771771 0 0
772772 0 0
773773 579.450i 0.749612i 0.927103 + 0.374806i 0.122291π0.122291\pi
−0.927103 + 0.374806i 0.877709π0.877709\pi
774774 0 0
775775 −1248.92 −1.61150
776776 0 0
777777 0 0
778778 0 0
779779 37.9493i 0.0487154i
780780 0 0
781781 1140.88 1.46079
782782 0 0
783783 0 0
784784 0 0
785785 205.746i 0.262097i
786786 0 0
787787 −175.881 −0.223483 −0.111741 0.993737i 0.535643π-0.535643\pi
−0.111741 + 0.993737i 0.535643π0.535643\pi
788788 0 0
789789 0 0
790790 0 0
791791 272.682i 0.344731i
792792 0 0
793793 771.040 0.972308
794794 0 0
795795 0 0
796796 0 0
797797 459.082i 0.576012i 0.957629 + 0.288006i 0.0929924π0.0929924\pi
−0.957629 + 0.288006i 0.907008π0.907008\pi
798798 0 0
799799 −1437.19 −1.79874
800800 0 0
801801 0 0
802802 0 0
803803 − 823.042i − 1.02496i
804804 0 0
805805 2.42912 0.00301754
806806 0 0
807807 0 0
808808 0 0
809809 89.1339i 0.110178i 0.998481 + 0.0550890i 0.0175442π0.0175442\pi
−0.998481 + 0.0550890i 0.982456π0.982456\pi
810810 0 0
811811 625.256 0.770969 0.385484 0.922714i 0.374034π-0.374034\pi
0.385484 + 0.922714i 0.374034π0.374034\pi
812812 0 0
813813 0 0
814814 0 0
815815 157.668i 0.193458i
816816 0 0
817817 −58.0836 −0.0710938
818818 0 0
819819 0 0
820820 0 0
821821 722.140i 0.879586i 0.898099 + 0.439793i 0.144948π0.144948\pi
−0.898099 + 0.439793i 0.855052π0.855052\pi
822822 0 0
823823 299.067 0.363386 0.181693 0.983355i 0.441842π-0.441842\pi
0.181693 + 0.983355i 0.441842π0.441842\pi
824824 0 0
825825 0 0
826826 0 0
827827 1178.17i 1.42463i 0.701858 + 0.712317i 0.252354π0.252354\pi
−0.701858 + 0.712317i 0.747646π0.747646\pi
828828 0 0
829829 −451.760 −0.544946 −0.272473 0.962163i 0.587841π-0.587841\pi
−0.272473 + 0.962163i 0.587841π0.587841\pi
830830 0 0
831831 0 0
832832 0 0
833833 − 889.723i − 1.06810i
834834 0 0
835835 192.849 0.230956
836836 0 0
837837 0 0
838838 0 0
839839 − 317.246i − 0.378124i −0.981965 0.189062i 0.939455π-0.939455\pi
0.981965 0.189062i 0.0605448π-0.0605448\pi
840840 0 0
841841 510.892 0.607481
842842 0 0
843843 0 0
844844 0 0
845845 77.2788i 0.0914542i
846846 0 0
847847 3.15196 0.00372132
848848 0 0
849849 0 0
850850 0 0
851851 − 9.18694i − 0.0107955i
852852 0 0
853853 −111.847 −0.131122 −0.0655609 0.997849i 0.520884π-0.520884\pi
−0.0655609 + 0.997849i 0.520884π0.520884\pi
854854 0 0
855855 0 0
856856 0 0
857857 602.799i 0.703383i 0.936116 + 0.351692i 0.114393π0.114393\pi
−0.936116 + 0.351692i 0.885607π0.885607\pi
858858 0 0
859859 1298.35 1.51147 0.755733 0.654880i 0.227281π-0.227281\pi
0.755733 + 0.654880i 0.227281π0.227281\pi
860860 0 0
861861 0 0
862862 0 0
863863 − 1332.38i − 1.54390i −0.635685 0.771949i 0.719282π-0.719282\pi
0.635685 0.771949i 0.280718π-0.280718\pi
864864 0 0
865865 −216.255 −0.250006
866866 0 0
867867 0 0
868868 0 0
869869 1135.18i 1.30630i
870870 0 0
871871 197.612 0.226879
872872 0 0
873873 0 0
874874 0 0
875875 − 103.509i − 0.118296i
876876 0 0
877877 −814.823 −0.929103 −0.464551 0.885546i 0.653784π-0.653784\pi
−0.464551 + 0.885546i 0.653784π0.653784\pi
878878 0 0
879879 0 0
880880 0 0
881881 − 86.4877i − 0.0981700i −0.998795 0.0490850i 0.984369π-0.984369\pi
0.998795 0.0490850i 0.0156305π-0.0156305\pi
882882 0 0
883883 −367.217 −0.415875 −0.207937 0.978142i 0.566675π-0.566675\pi
−0.207937 + 0.978142i 0.566675π0.566675\pi
884884 0 0
885885 0 0
886886 0 0
887887 678.335i 0.764752i 0.924007 + 0.382376i 0.124894π0.124894\pi
−0.924007 + 0.382376i 0.875106π0.875106\pi
888888 0 0
889889 434.061 0.488258
890890 0 0
891891 0 0
892892 0 0
893893 − 103.430i − 0.115824i
894894 0 0
895895 183.495 0.205022
896896 0 0
897897 0 0
898898 0 0
899899 933.550i 1.03843i
900900 0 0
901901 970.571 1.07722
902902 0 0
903903 0 0
904904 0 0
905905 238.314i 0.263330i
906906 0 0
907907 −862.742 −0.951204 −0.475602 0.879661i 0.657770π-0.657770\pi
−0.475602 + 0.879661i 0.657770π0.657770\pi
908908 0 0
909909 0 0
910910 0 0
911911 − 1163.44i − 1.27710i −0.769581 0.638549i 0.779535π-0.779535\pi
0.769581 0.638549i 0.220465π-0.220465\pi
912912 0 0
913913 −679.179 −0.743898
914914 0 0
915915 0 0
916916 0 0
917917 − 223.621i − 0.243861i
918918 0 0
919919 832.360 0.905724 0.452862 0.891581i 0.350403π-0.350403\pi
0.452862 + 0.891581i 0.350403π0.350403\pi
920920 0 0
921921 0 0
922922 0 0
923923 910.059i 0.985979i
924924 0 0
925925 −192.982 −0.208630
926926 0 0
927927 0 0
928928 0 0
929929 − 1778.36i − 1.91427i −0.289643 0.957135i 0.593536π-0.593536\pi
0.289643 0.957135i 0.406464π-0.406464\pi
930930 0 0
931931 64.0308 0.0687764
932932 0 0
933933 0 0
934934 0 0
935935 190.119i 0.203336i
936936 0 0
937937 432.361 0.461431 0.230715 0.973021i 0.425893π-0.425893\pi
0.230715 + 0.973021i 0.425893π0.425893\pi
938938 0 0
939939 0 0
940940 0 0
941941 − 1756.76i − 1.86690i −0.358703 0.933452i 0.616781π-0.616781\pi
0.358703 0.933452i 0.383219π-0.383219\pi
942942 0 0
943943 29.2452 0.0310130
944944 0 0
945945 0 0
946946 0 0
947947 − 1132.48i − 1.19586i −0.801549 0.597929i 0.795990π-0.795990\pi
0.801549 0.597929i 0.204010π-0.204010\pi
948948 0 0
949949 656.526 0.691809
950950 0 0
951951 0 0
952952 0 0
953953 1509.90i 1.58436i 0.610286 + 0.792181i 0.291055π0.291055\pi
−0.610286 + 0.792181i 0.708945π0.708945\pi
954954 0 0
955955 −1.31530 −0.00137728
956956 0 0
957957 0 0
958958 0 0
959959 225.940i 0.235600i
960960 0 0
961961 1679.09 1.74723
962962 0 0
963963 0 0
964964 0 0
965965 193.301i 0.200312i
966966 0 0
967967 −489.980 −0.506701 −0.253350 0.967375i 0.581533π-0.581533\pi
−0.253350 + 0.967375i 0.581533π0.581533\pi
968968 0 0
969969 0 0
970970 0 0
971971 253.051i 0.260608i 0.991474 + 0.130304i 0.0415954π0.0415954\pi
−0.991474 + 0.130304i 0.958405π0.958405\pi
972972 0 0
973973 377.103 0.387567
974974 0 0
975975 0 0
976976 0 0
977977 − 1625.27i − 1.66353i −0.555127 0.831765i 0.687330π-0.687330\pi
0.555127 0.831765i 0.312670π-0.312670\pi
978978 0 0
979979 −21.4179 −0.0218773
980980 0 0
981981 0 0
982982 0 0
983983 − 1162.97i − 1.18308i −0.806276 0.591540i 0.798520π-0.798520\pi
0.806276 0.591540i 0.201480π-0.201480\pi
984984 0 0
985985 178.211 0.180925
986986 0 0
987987 0 0
988988 0 0
989989 44.7615i 0.0452594i
990990 0 0
991991 1411.24 1.42405 0.712027 0.702152i 0.247777π-0.247777\pi
0.712027 + 0.702152i 0.247777π0.247777\pi
992992 0 0
993993 0 0
994994 0 0
995995 21.5599i 0.0216683i
996996 0 0
997997 1123.23 1.12661 0.563304 0.826250i 0.309530π-0.309530\pi
0.563304 + 0.826250i 0.309530π0.309530\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.3.e.i.161.13 24
3.2 odd 2 inner 2592.3.e.i.161.14 24
4.3 odd 2 inner 2592.3.e.i.161.11 24
9.2 odd 6 288.3.q.b.257.5 yes 24
9.4 even 3 288.3.q.b.65.5 24
9.5 odd 6 864.3.q.a.737.6 24
9.7 even 3 864.3.q.a.449.6 24
12.11 even 2 inner 2592.3.e.i.161.12 24
36.7 odd 6 864.3.q.a.449.5 24
36.11 even 6 288.3.q.b.257.8 yes 24
36.23 even 6 864.3.q.a.737.5 24
36.31 odd 6 288.3.q.b.65.8 yes 24
72.5 odd 6 1728.3.q.k.1601.8 24
72.11 even 6 576.3.q.l.257.5 24
72.13 even 6 576.3.q.l.65.8 24
72.29 odd 6 576.3.q.l.257.8 24
72.43 odd 6 1728.3.q.k.449.7 24
72.59 even 6 1728.3.q.k.1601.7 24
72.61 even 6 1728.3.q.k.449.8 24
72.67 odd 6 576.3.q.l.65.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.5 24 9.4 even 3
288.3.q.b.65.8 yes 24 36.31 odd 6
288.3.q.b.257.5 yes 24 9.2 odd 6
288.3.q.b.257.8 yes 24 36.11 even 6
576.3.q.l.65.5 24 72.67 odd 6
576.3.q.l.65.8 24 72.13 even 6
576.3.q.l.257.5 24 72.11 even 6
576.3.q.l.257.8 24 72.29 odd 6
864.3.q.a.449.5 24 36.7 odd 6
864.3.q.a.449.6 24 9.7 even 3
864.3.q.a.737.5 24 36.23 even 6
864.3.q.a.737.6 24 9.5 odd 6
1728.3.q.k.449.7 24 72.43 odd 6
1728.3.q.k.449.8 24 72.61 even 6
1728.3.q.k.1601.7 24 72.59 even 6
1728.3.q.k.1601.8 24 72.5 odd 6
2592.3.e.i.161.11 24 4.3 odd 2 inner
2592.3.e.i.161.12 24 12.11 even 2 inner
2592.3.e.i.161.13 24 1.1 even 1 trivial
2592.3.e.i.161.14 24 3.2 odd 2 inner