Properties

Label 576.3.q.l.257.8
Level $576$
Weight $3$
Character 576.257
Analytic conductor $15.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,3,Mod(65,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.8
Character \(\chi\) \(=\) 576.257
Dual form 576.3.q.l.65.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.65353 - 2.50317i) q^{3} +(0.721152 + 0.416357i) q^{5} +(-1.26051 - 2.18326i) q^{7} +(-3.53169 - 8.27811i) q^{9} +(9.47693 - 5.47151i) q^{11} +(-4.36453 + 7.55959i) q^{13} +(2.23466 - 1.11671i) q^{15} -20.8637i q^{17} +1.50150 q^{19} +(-7.54935 - 0.454827i) q^{21} +(1.00209 + 0.578558i) q^{23} +(-12.1533 - 21.0501i) q^{25} +(-26.5612 - 4.84769i) q^{27} +(-15.7347 + 9.08444i) q^{29} +(25.6909 - 44.4980i) q^{31} +(1.97428 - 32.7696i) q^{33} -2.09929i q^{35} +7.93951 q^{37} +(11.7060 + 23.4251i) q^{39} +(-21.8881 - 12.6371i) q^{41} +(19.3418 + 33.5010i) q^{43} +(0.899770 - 7.44022i) q^{45} +(-59.6559 + 34.4423i) q^{47} +(21.3222 - 36.9312i) q^{49} +(-52.2254 - 34.4988i) q^{51} -46.5195i q^{53} +9.11241 q^{55} +(2.48278 - 3.75851i) q^{57} +(89.1306 + 51.4596i) q^{59} +(-44.1651 - 76.4962i) q^{61} +(-13.6216 + 18.1452i) q^{63} +(-6.29498 + 3.63441i) q^{65} +(-11.3192 + 19.6054i) q^{67} +(3.10522 - 1.55174i) q^{69} +104.256i q^{71} -75.2115 q^{73} +(-72.7878 - 4.38525i) q^{75} +(-23.8915 - 13.7938i) q^{77} +(-51.8676 - 89.8374i) q^{79} +(-56.0544 + 58.4714i) q^{81} +(53.7499 - 31.0325i) q^{83} +(8.68677 - 15.0459i) q^{85} +(-3.27792 + 54.4080i) q^{87} -1.95722i q^{89} +22.0061 q^{91} +(-68.9052 - 137.887i) q^{93} +(1.08281 + 0.625162i) q^{95} +(59.2171 + 102.567i) q^{97} +(-78.7634 - 59.1275i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{9} - 24 q^{21} + 60 q^{25} - 72 q^{29} + 108 q^{33} + 252 q^{41} - 72 q^{45} - 36 q^{49} + 12 q^{57} + 96 q^{61} - 288 q^{65} + 432 q^{69} + 24 q^{73} + 720 q^{77} - 372 q^{81} - 96 q^{85}+ \cdots - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.65353 2.50317i 0.551176 0.834389i
\(4\) 0 0
\(5\) 0.721152 + 0.416357i 0.144230 + 0.0832715i 0.570379 0.821382i \(-0.306796\pi\)
−0.426148 + 0.904653i \(0.640130\pi\)
\(6\) 0 0
\(7\) −1.26051 2.18326i −0.180072 0.311895i 0.761833 0.647774i \(-0.224300\pi\)
−0.941905 + 0.335879i \(0.890967\pi\)
\(8\) 0 0
\(9\) −3.53169 8.27811i −0.392410 0.919791i
\(10\) 0 0
\(11\) 9.47693 5.47151i 0.861540 0.497410i −0.00298800 0.999996i \(-0.500951\pi\)
0.864528 + 0.502585i \(0.167618\pi\)
\(12\) 0 0
\(13\) −4.36453 + 7.55959i −0.335733 + 0.581507i −0.983625 0.180225i \(-0.942317\pi\)
0.647892 + 0.761732i \(0.275651\pi\)
\(14\) 0 0
\(15\) 2.23466 1.11671i 0.148977 0.0744470i
\(16\) 0 0
\(17\) 20.8637i 1.22728i −0.789586 0.613639i \(-0.789705\pi\)
0.789586 0.613639i \(-0.210295\pi\)
\(18\) 0 0
\(19\) 1.50150 0.0790265 0.0395132 0.999219i \(-0.487419\pi\)
0.0395132 + 0.999219i \(0.487419\pi\)
\(20\) 0 0
\(21\) −7.54935 0.454827i −0.359493 0.0216584i
\(22\) 0 0
\(23\) 1.00209 + 0.578558i 0.0435692 + 0.0251547i 0.521626 0.853174i \(-0.325325\pi\)
−0.478057 + 0.878329i \(0.658659\pi\)
\(24\) 0 0
\(25\) −12.1533 21.0501i −0.486132 0.842005i
\(26\) 0 0
\(27\) −26.5612 4.84769i −0.983750 0.179544i
\(28\) 0 0
\(29\) −15.7347 + 9.08444i −0.542576 + 0.313257i −0.746122 0.665809i \(-0.768087\pi\)
0.203546 + 0.979065i \(0.434753\pi\)
\(30\) 0 0
\(31\) 25.6909 44.4980i 0.828739 1.43542i −0.0702892 0.997527i \(-0.522392\pi\)
0.899028 0.437891i \(-0.144274\pi\)
\(32\) 0 0
\(33\) 1.97428 32.7696i 0.0598266 0.993020i
\(34\) 0 0
\(35\) 2.09929i 0.0599796i
\(36\) 0 0
\(37\) 7.93951 0.214581 0.107291 0.994228i \(-0.465782\pi\)
0.107291 + 0.994228i \(0.465782\pi\)
\(38\) 0 0
\(39\) 11.7060 + 23.4251i 0.300155 + 0.600645i
\(40\) 0 0
\(41\) −21.8881 12.6371i −0.533857 0.308222i 0.208729 0.977974i \(-0.433067\pi\)
−0.742586 + 0.669751i \(0.766401\pi\)
\(42\) 0 0
\(43\) 19.3418 + 33.5010i 0.449810 + 0.779094i 0.998373 0.0570153i \(-0.0181584\pi\)
−0.548563 + 0.836109i \(0.684825\pi\)
\(44\) 0 0
\(45\) 0.899770 7.44022i 0.0199949 0.165338i
\(46\) 0 0
\(47\) −59.6559 + 34.4423i −1.26927 + 0.732815i −0.974851 0.222860i \(-0.928461\pi\)
−0.294423 + 0.955675i \(0.595127\pi\)
\(48\) 0 0
\(49\) 21.3222 36.9312i 0.435148 0.753698i
\(50\) 0 0
\(51\) −52.2254 34.4988i −1.02403 0.676447i
\(52\) 0 0
\(53\) 46.5195i 0.877727i −0.898554 0.438864i \(-0.855381\pi\)
0.898554 0.438864i \(-0.144619\pi\)
\(54\) 0 0
\(55\) 9.11241 0.165680
\(56\) 0 0
\(57\) 2.48278 3.75851i 0.0435575 0.0659388i
\(58\) 0 0
\(59\) 89.1306 + 51.4596i 1.51069 + 0.872196i 0.999922 + 0.0124764i \(0.00397147\pi\)
0.510766 + 0.859720i \(0.329362\pi\)
\(60\) 0 0
\(61\) −44.1651 76.4962i −0.724018 1.25404i −0.959377 0.282127i \(-0.908960\pi\)
0.235359 0.971909i \(-0.424373\pi\)
\(62\) 0 0
\(63\) −13.6216 + 18.1452i −0.216216 + 0.288019i
\(64\) 0 0
\(65\) −6.29498 + 3.63441i −0.0968459 + 0.0559140i
\(66\) 0 0
\(67\) −11.3192 + 19.6054i −0.168943 + 0.292618i −0.938049 0.346504i \(-0.887369\pi\)
0.769105 + 0.639122i \(0.220702\pi\)
\(68\) 0 0
\(69\) 3.10522 1.55174i 0.0450031 0.0224890i
\(70\) 0 0
\(71\) 104.256i 1.46840i 0.678935 + 0.734198i \(0.262442\pi\)
−0.678935 + 0.734198i \(0.737558\pi\)
\(72\) 0 0
\(73\) −75.2115 −1.03030 −0.515148 0.857101i \(-0.672263\pi\)
−0.515148 + 0.857101i \(0.672263\pi\)
\(74\) 0 0
\(75\) −72.7878 4.38525i −0.970504 0.0584701i
\(76\) 0 0
\(77\) −23.8915 13.7938i −0.310279 0.179140i
\(78\) 0 0
\(79\) −51.8676 89.8374i −0.656552 1.13718i −0.981502 0.191451i \(-0.938681\pi\)
0.324950 0.945731i \(-0.394653\pi\)
\(80\) 0 0
\(81\) −56.0544 + 58.4714i −0.692029 + 0.721870i
\(82\) 0 0
\(83\) 53.7499 31.0325i 0.647589 0.373886i −0.139943 0.990160i \(-0.544692\pi\)
0.787532 + 0.616274i \(0.211359\pi\)
\(84\) 0 0
\(85\) 8.68677 15.0459i 0.102197 0.177011i
\(86\) 0 0
\(87\) −3.27792 + 54.4080i −0.0376773 + 0.625379i
\(88\) 0 0
\(89\) 1.95722i 0.0219912i −0.999940 0.0109956i \(-0.996500\pi\)
0.999940 0.0109956i \(-0.00350008\pi\)
\(90\) 0 0
\(91\) 22.0061 0.241825
\(92\) 0 0
\(93\) −68.9052 137.887i −0.740916 1.48266i
\(94\) 0 0
\(95\) 1.08281 + 0.625162i 0.0113980 + 0.00658065i
\(96\) 0 0
\(97\) 59.2171 + 102.567i 0.610486 + 1.05739i 0.991159 + 0.132682i \(0.0423590\pi\)
−0.380673 + 0.924710i \(0.624308\pi\)
\(98\) 0 0
\(99\) −78.7634 59.1275i −0.795590 0.597247i
\(100\) 0 0
\(101\) 48.2410 27.8519i 0.477633 0.275762i −0.241796 0.970327i \(-0.577737\pi\)
0.719430 + 0.694565i \(0.244403\pi\)
\(102\) 0 0
\(103\) 100.974 174.892i 0.980328 1.69798i 0.319230 0.947677i \(-0.396576\pi\)
0.661098 0.750300i \(-0.270091\pi\)
\(104\) 0 0
\(105\) −5.25486 3.47123i −0.0500463 0.0330593i
\(106\) 0 0
\(107\) 55.1900i 0.515794i 0.966172 + 0.257897i \(0.0830295\pi\)
−0.966172 + 0.257897i \(0.916970\pi\)
\(108\) 0 0
\(109\) 44.6887 0.409988 0.204994 0.978763i \(-0.434283\pi\)
0.204994 + 0.978763i \(0.434283\pi\)
\(110\) 0 0
\(111\) 13.1282 19.8739i 0.118272 0.179044i
\(112\) 0 0
\(113\) 93.6725 + 54.0818i 0.828960 + 0.478600i 0.853497 0.521099i \(-0.174478\pi\)
−0.0245363 + 0.999699i \(0.507811\pi\)
\(114\) 0 0
\(115\) 0.481774 + 0.834457i 0.00418934 + 0.00725615i
\(116\) 0 0
\(117\) 77.9933 + 9.43198i 0.666610 + 0.0806152i
\(118\) 0 0
\(119\) −45.5510 + 26.2989i −0.382782 + 0.220999i
\(120\) 0 0
\(121\) −0.625137 + 1.08277i −0.00516642 + 0.00894850i
\(122\) 0 0
\(123\) −67.8254 + 33.8938i −0.551426 + 0.275559i
\(124\) 0 0
\(125\) 41.0583i 0.328467i
\(126\) 0 0
\(127\) 172.177 1.35573 0.677863 0.735188i \(-0.262906\pi\)
0.677863 + 0.735188i \(0.262906\pi\)
\(128\) 0 0
\(129\) 115.841 + 6.97908i 0.897992 + 0.0541014i
\(130\) 0 0
\(131\) 76.8188 + 44.3514i 0.586403 + 0.338560i 0.763674 0.645602i \(-0.223394\pi\)
−0.177271 + 0.984162i \(0.556727\pi\)
\(132\) 0 0
\(133\) −1.89265 3.27817i −0.0142305 0.0246479i
\(134\) 0 0
\(135\) −17.1363 14.5549i −0.126936 0.107814i
\(136\) 0 0
\(137\) −77.6156 + 44.8114i −0.566537 + 0.327090i −0.755765 0.654843i \(-0.772735\pi\)
0.189228 + 0.981933i \(0.439401\pi\)
\(138\) 0 0
\(139\) 74.7919 129.543i 0.538071 0.931966i −0.460937 0.887433i \(-0.652487\pi\)
0.999008 0.0445333i \(-0.0141801\pi\)
\(140\) 0 0
\(141\) −12.4278 + 206.280i −0.0881402 + 1.46298i
\(142\) 0 0
\(143\) 95.5223i 0.667988i
\(144\) 0 0
\(145\) −15.1295 −0.104341
\(146\) 0 0
\(147\) −57.1880 114.440i −0.389034 0.778503i
\(148\) 0 0
\(149\) 121.312 + 70.0397i 0.814177 + 0.470065i 0.848404 0.529349i \(-0.177564\pi\)
−0.0342275 + 0.999414i \(0.510897\pi\)
\(150\) 0 0
\(151\) −72.5660 125.688i −0.480570 0.832371i 0.519182 0.854664i \(-0.326237\pi\)
−0.999751 + 0.0222926i \(0.992903\pi\)
\(152\) 0 0
\(153\) −172.712 + 73.6842i −1.12884 + 0.481596i
\(154\) 0 0
\(155\) 37.0541 21.3932i 0.239059 0.138021i
\(156\) 0 0
\(157\) −123.540 + 213.977i −0.786876 + 1.36291i 0.140996 + 0.990010i \(0.454970\pi\)
−0.927872 + 0.372899i \(0.878364\pi\)
\(158\) 0 0
\(159\) −116.446 76.9214i −0.732366 0.483782i
\(160\) 0 0
\(161\) 2.91711i 0.0181187i
\(162\) 0 0
\(163\) 189.342 1.16161 0.580805 0.814043i \(-0.302738\pi\)
0.580805 + 0.814043i \(0.302738\pi\)
\(164\) 0 0
\(165\) 15.0676 22.8099i 0.0913190 0.138242i
\(166\) 0 0
\(167\) 200.563 + 115.795i 1.20098 + 0.693384i 0.960772 0.277339i \(-0.0894524\pi\)
0.240204 + 0.970722i \(0.422786\pi\)
\(168\) 0 0
\(169\) 46.4017 + 80.3701i 0.274566 + 0.475563i
\(170\) 0 0
\(171\) −5.30284 12.4296i −0.0310108 0.0726878i
\(172\) 0 0
\(173\) −224.906 + 129.849i −1.30003 + 0.750574i −0.980409 0.196971i \(-0.936890\pi\)
−0.319623 + 0.947545i \(0.603556\pi\)
\(174\) 0 0
\(175\) −30.6386 + 53.0677i −0.175078 + 0.303244i
\(176\) 0 0
\(177\) 276.192 138.019i 1.56041 0.779768i
\(178\) 0 0
\(179\) 220.358i 1.23105i 0.788118 + 0.615524i \(0.211056\pi\)
−0.788118 + 0.615524i \(0.788944\pi\)
\(180\) 0 0
\(181\) 286.189 1.58116 0.790578 0.612362i \(-0.209780\pi\)
0.790578 + 0.612362i \(0.209780\pi\)
\(182\) 0 0
\(183\) −264.511 15.9360i −1.44542 0.0870821i
\(184\) 0 0
\(185\) 5.72560 + 3.30567i 0.0309492 + 0.0178685i
\(186\) 0 0
\(187\) −114.156 197.724i −0.610461 1.05735i
\(188\) 0 0
\(189\) 22.8969 + 64.1007i 0.121147 + 0.339157i
\(190\) 0 0
\(191\) 1.36792 0.789768i 0.00716188 0.00413491i −0.496415 0.868085i \(-0.665350\pi\)
0.503577 + 0.863951i \(0.332017\pi\)
\(192\) 0 0
\(193\) 116.067 201.033i 0.601381 1.04162i −0.391231 0.920293i \(-0.627951\pi\)
0.992612 0.121330i \(-0.0387161\pi\)
\(194\) 0 0
\(195\) −1.31140 + 21.7670i −0.00672512 + 0.111626i
\(196\) 0 0
\(197\) 214.012i 1.08636i 0.839618 + 0.543178i \(0.182779\pi\)
−0.839618 + 0.543178i \(0.817221\pi\)
\(198\) 0 0
\(199\) −25.8912 −0.130106 −0.0650532 0.997882i \(-0.520722\pi\)
−0.0650532 + 0.997882i \(0.520722\pi\)
\(200\) 0 0
\(201\) 30.3590 + 60.7519i 0.151040 + 0.302248i
\(202\) 0 0
\(203\) 39.6674 + 22.9020i 0.195406 + 0.112818i
\(204\) 0 0
\(205\) −10.5231 18.2266i −0.0513322 0.0889100i
\(206\) 0 0
\(207\) 1.25029 10.3387i 0.00604007 0.0499455i
\(208\) 0 0
\(209\) 14.2296 8.21549i 0.0680844 0.0393086i
\(210\) 0 0
\(211\) 46.9752 81.3635i 0.222631 0.385609i −0.732975 0.680256i \(-0.761869\pi\)
0.955606 + 0.294647i \(0.0952020\pi\)
\(212\) 0 0
\(213\) 260.971 + 172.391i 1.22521 + 0.809345i
\(214\) 0 0
\(215\) 32.2124i 0.149825i
\(216\) 0 0
\(217\) −129.534 −0.596932
\(218\) 0 0
\(219\) −124.364 + 188.267i −0.567874 + 0.859667i
\(220\) 0 0
\(221\) 157.721 + 91.0604i 0.713671 + 0.412038i
\(222\) 0 0
\(223\) 149.686 + 259.264i 0.671237 + 1.16262i 0.977554 + 0.210687i \(0.0675702\pi\)
−0.306316 + 0.951930i \(0.599096\pi\)
\(224\) 0 0
\(225\) −131.334 + 174.949i −0.583705 + 0.777550i
\(226\) 0 0
\(227\) −315.904 + 182.387i −1.39165 + 0.803467i −0.993498 0.113853i \(-0.963681\pi\)
−0.398149 + 0.917321i \(0.630347\pi\)
\(228\) 0 0
\(229\) −140.979 + 244.183i −0.615629 + 1.06630i 0.374645 + 0.927168i \(0.377764\pi\)
−0.990274 + 0.139132i \(0.955569\pi\)
\(230\) 0 0
\(231\) −74.0333 + 36.9960i −0.320491 + 0.160156i
\(232\) 0 0
\(233\) 208.568i 0.895140i −0.894249 0.447570i \(-0.852290\pi\)
0.894249 0.447570i \(-0.147710\pi\)
\(234\) 0 0
\(235\) −57.3613 −0.244090
\(236\) 0 0
\(237\) −310.643 18.7153i −1.31073 0.0789676i
\(238\) 0 0
\(239\) 25.1232 + 14.5049i 0.105118 + 0.0606899i 0.551637 0.834084i \(-0.314003\pi\)
−0.446519 + 0.894774i \(0.647337\pi\)
\(240\) 0 0
\(241\) 116.456 + 201.707i 0.483218 + 0.836959i 0.999814 0.0192706i \(-0.00613439\pi\)
−0.516596 + 0.856229i \(0.672801\pi\)
\(242\) 0 0
\(243\) 53.6763 + 236.998i 0.220890 + 0.975299i
\(244\) 0 0
\(245\) 30.7532 17.7553i 0.125523 0.0724708i
\(246\) 0 0
\(247\) −6.55336 + 11.3507i −0.0265318 + 0.0459544i
\(248\) 0 0
\(249\) 11.1974 185.858i 0.0449695 0.746418i
\(250\) 0 0
\(251\) 112.869i 0.449676i 0.974396 + 0.224838i \(0.0721853\pi\)
−0.974396 + 0.224838i \(0.927815\pi\)
\(252\) 0 0
\(253\) 12.6624 0.0500488
\(254\) 0 0
\(255\) −23.2986 46.6233i −0.0913672 0.182836i
\(256\) 0 0
\(257\) 292.209 + 168.707i 1.13700 + 0.656448i 0.945686 0.325081i \(-0.105392\pi\)
0.191315 + 0.981529i \(0.438725\pi\)
\(258\) 0 0
\(259\) −10.0078 17.3340i −0.0386402 0.0669268i
\(260\) 0 0
\(261\) 130.772 + 98.1703i 0.501043 + 0.376132i
\(262\) 0 0
\(263\) 437.975 252.865i 1.66530 0.961464i 0.695187 0.718829i \(-0.255321\pi\)
0.970118 0.242635i \(-0.0780119\pi\)
\(264\) 0 0
\(265\) 19.3688 33.5477i 0.0730896 0.126595i
\(266\) 0 0
\(267\) −4.89925 3.23632i −0.0183492 0.0121210i
\(268\) 0 0
\(269\) 337.414i 1.25433i −0.778887 0.627164i \(-0.784216\pi\)
0.778887 0.627164i \(-0.215784\pi\)
\(270\) 0 0
\(271\) 12.0273 0.0443813 0.0221907 0.999754i \(-0.492936\pi\)
0.0221907 + 0.999754i \(0.492936\pi\)
\(272\) 0 0
\(273\) 36.3877 55.0849i 0.133288 0.201776i
\(274\) 0 0
\(275\) −230.352 132.994i −0.837643 0.483614i
\(276\) 0 0
\(277\) −99.9431 173.107i −0.360805 0.624933i 0.627288 0.778787i \(-0.284165\pi\)
−0.988094 + 0.153854i \(0.950832\pi\)
\(278\) 0 0
\(279\) −459.091 55.5194i −1.64549 0.198994i
\(280\) 0 0
\(281\) −290.037 + 167.453i −1.03216 + 0.595918i −0.917603 0.397499i \(-0.869878\pi\)
−0.114557 + 0.993417i \(0.536545\pi\)
\(282\) 0 0
\(283\) 235.076 407.164i 0.830659 1.43874i −0.0668583 0.997762i \(-0.521298\pi\)
0.897517 0.440980i \(-0.145369\pi\)
\(284\) 0 0
\(285\) 3.35534 1.67674i 0.0117731 0.00588328i
\(286\) 0 0
\(287\) 63.7167i 0.222009i
\(288\) 0 0
\(289\) −146.296 −0.506213
\(290\) 0 0
\(291\) 354.660 + 21.3672i 1.21876 + 0.0734269i
\(292\) 0 0
\(293\) 131.252 + 75.7785i 0.447960 + 0.258630i 0.706968 0.707245i \(-0.250062\pi\)
−0.259008 + 0.965875i \(0.583396\pi\)
\(294\) 0 0
\(295\) 42.8511 + 74.2204i 0.145258 + 0.251594i
\(296\) 0 0
\(297\) −278.243 + 99.3889i −0.936847 + 0.334643i
\(298\) 0 0
\(299\) −8.74733 + 5.05027i −0.0292553 + 0.0168905i
\(300\) 0 0
\(301\) 48.7610 84.4566i 0.161997 0.280587i
\(302\) 0 0
\(303\) 10.0498 166.809i 0.0331676 0.550525i
\(304\) 0 0
\(305\) 73.5538i 0.241160i
\(306\) 0 0
\(307\) 123.852 0.403426 0.201713 0.979445i \(-0.435349\pi\)
0.201713 + 0.979445i \(0.435349\pi\)
\(308\) 0 0
\(309\) −270.820 541.942i −0.876440 1.75386i
\(310\) 0 0
\(311\) 83.9131 + 48.4472i 0.269817 + 0.155779i 0.628804 0.777563i \(-0.283545\pi\)
−0.358987 + 0.933342i \(0.616878\pi\)
\(312\) 0 0
\(313\) 48.2500 + 83.5714i 0.154153 + 0.267001i 0.932750 0.360523i \(-0.117402\pi\)
−0.778597 + 0.627524i \(0.784068\pi\)
\(314\) 0 0
\(315\) −17.3781 + 7.41402i −0.0551686 + 0.0235366i
\(316\) 0 0
\(317\) −119.837 + 69.1878i −0.378034 + 0.218258i −0.676963 0.736017i \(-0.736704\pi\)
0.298928 + 0.954276i \(0.403371\pi\)
\(318\) 0 0
\(319\) −99.4112 + 172.185i −0.311634 + 0.539766i
\(320\) 0 0
\(321\) 138.150 + 91.2582i 0.430373 + 0.284293i
\(322\) 0 0
\(323\) 31.3270i 0.0969875i
\(324\) 0 0
\(325\) 212.174 0.652842
\(326\) 0 0
\(327\) 73.8940 111.863i 0.225976 0.342089i
\(328\) 0 0
\(329\) 150.393 + 86.8296i 0.457122 + 0.263920i
\(330\) 0 0
\(331\) −149.493 258.929i −0.451641 0.782264i 0.546848 0.837232i \(-0.315828\pi\)
−0.998488 + 0.0549678i \(0.982494\pi\)
\(332\) 0 0
\(333\) −28.0399 65.7242i −0.0842039 0.197370i
\(334\) 0 0
\(335\) −16.3257 + 9.42565i −0.0487334 + 0.0281363i
\(336\) 0 0
\(337\) 23.8541 41.3165i 0.0707837 0.122601i −0.828461 0.560046i \(-0.810783\pi\)
0.899245 + 0.437445i \(0.144117\pi\)
\(338\) 0 0
\(339\) 290.266 145.052i 0.856242 0.427882i
\(340\) 0 0
\(341\) 562.272i 1.64889i
\(342\) 0 0
\(343\) −231.037 −0.673577
\(344\) 0 0
\(345\) 2.88541 + 0.173838i 0.00836351 + 0.000503878i
\(346\) 0 0
\(347\) 104.774 + 60.4914i 0.301943 + 0.174327i 0.643315 0.765601i \(-0.277558\pi\)
−0.341372 + 0.939928i \(0.610892\pi\)
\(348\) 0 0
\(349\) −193.756 335.595i −0.555175 0.961592i −0.997890 0.0649291i \(-0.979318\pi\)
0.442715 0.896663i \(-0.354015\pi\)
\(350\) 0 0
\(351\) 152.574 179.634i 0.434684 0.511778i
\(352\) 0 0
\(353\) −6.85970 + 3.96045i −0.0194326 + 0.0112194i −0.509685 0.860361i \(-0.670238\pi\)
0.490252 + 0.871581i \(0.336905\pi\)
\(354\) 0 0
\(355\) −43.4078 + 75.1845i −0.122276 + 0.211787i
\(356\) 0 0
\(357\) −9.48939 + 157.508i −0.0265809 + 0.441198i
\(358\) 0 0
\(359\) 210.527i 0.586425i −0.956047 0.293212i \(-0.905276\pi\)
0.956047 0.293212i \(-0.0947243\pi\)
\(360\) 0 0
\(361\) −358.745 −0.993755
\(362\) 0 0
\(363\) 1.67667 + 3.35521i 0.00461892 + 0.00924300i
\(364\) 0 0
\(365\) −54.2390 31.3149i −0.148600 0.0857942i
\(366\) 0 0
\(367\) 171.940 + 297.809i 0.468502 + 0.811469i 0.999352 0.0359967i \(-0.0114606\pi\)
−0.530850 + 0.847466i \(0.678127\pi\)
\(368\) 0 0
\(369\) −27.3095 + 225.823i −0.0740094 + 0.611986i
\(370\) 0 0
\(371\) −101.564 + 58.6382i −0.273758 + 0.158054i
\(372\) 0 0
\(373\) 177.354 307.186i 0.475480 0.823556i −0.524125 0.851641i \(-0.675608\pi\)
0.999606 + 0.0280853i \(0.00894099\pi\)
\(374\) 0 0
\(375\) −102.776 67.8911i −0.274069 0.181043i
\(376\) 0 0
\(377\) 158.597i 0.420682i
\(378\) 0 0
\(379\) −269.497 −0.711073 −0.355536 0.934662i \(-0.615702\pi\)
−0.355536 + 0.934662i \(0.615702\pi\)
\(380\) 0 0
\(381\) 284.700 430.988i 0.747244 1.13120i
\(382\) 0 0
\(383\) −72.6913 41.9684i −0.189795 0.109578i 0.402092 0.915599i \(-0.368283\pi\)
−0.591886 + 0.806021i \(0.701617\pi\)
\(384\) 0 0
\(385\) −11.4863 19.8948i −0.0298344 0.0516748i
\(386\) 0 0
\(387\) 209.016 278.429i 0.540093 0.719455i
\(388\) 0 0
\(389\) −269.017 + 155.317i −0.691559 + 0.399272i −0.804196 0.594364i \(-0.797404\pi\)
0.112637 + 0.993636i \(0.464070\pi\)
\(390\) 0 0
\(391\) 12.0709 20.9074i 0.0308718 0.0534716i
\(392\) 0 0
\(393\) 238.041 118.954i 0.605702 0.302682i
\(394\) 0 0
\(395\) 86.3819i 0.218688i
\(396\) 0 0
\(397\) −436.104 −1.09850 −0.549249 0.835658i \(-0.685086\pi\)
−0.549249 + 0.835658i \(0.685086\pi\)
\(398\) 0 0
\(399\) −11.3354 0.682924i −0.0284095 0.00171159i
\(400\) 0 0
\(401\) −354.774 204.829i −0.884723 0.510795i −0.0125102 0.999922i \(-0.503982\pi\)
−0.872213 + 0.489127i \(0.837316\pi\)
\(402\) 0 0
\(403\) 224.258 + 388.425i 0.556470 + 0.963835i
\(404\) 0 0
\(405\) −64.7687 + 18.8281i −0.159923 + 0.0464892i
\(406\) 0 0
\(407\) 75.2423 43.4411i 0.184870 0.106735i
\(408\) 0 0
\(409\) 211.082 365.604i 0.516092 0.893897i −0.483734 0.875215i \(-0.660720\pi\)
0.999825 0.0186821i \(-0.00594703\pi\)
\(410\) 0 0
\(411\) −16.1692 + 268.382i −0.0393412 + 0.652997i
\(412\) 0 0
\(413\) 259.461i 0.628234i
\(414\) 0 0
\(415\) 51.6825 0.124536
\(416\) 0 0
\(417\) −200.598 401.420i −0.481050 0.962638i
\(418\) 0 0
\(419\) −549.980 317.531i −1.31260 0.757830i −0.330075 0.943955i \(-0.607074\pi\)
−0.982526 + 0.186124i \(0.940407\pi\)
\(420\) 0 0
\(421\) −23.7781 41.1849i −0.0564800 0.0978263i 0.836403 0.548115i \(-0.184654\pi\)
−0.892883 + 0.450289i \(0.851321\pi\)
\(422\) 0 0
\(423\) 495.803 + 372.198i 1.17211 + 0.879902i
\(424\) 0 0
\(425\) −439.184 + 253.563i −1.03337 + 0.596619i
\(426\) 0 0
\(427\) −111.341 + 192.848i −0.260751 + 0.451635i
\(428\) 0 0
\(429\) 239.108 + 157.949i 0.557362 + 0.368179i
\(430\) 0 0
\(431\) 614.503i 1.42576i −0.701286 0.712880i \(-0.747390\pi\)
0.701286 0.712880i \(-0.252610\pi\)
\(432\) 0 0
\(433\) 118.672 0.274070 0.137035 0.990566i \(-0.456243\pi\)
0.137035 + 0.990566i \(0.456243\pi\)
\(434\) 0 0
\(435\) −25.0170 + 37.8716i −0.0575104 + 0.0870612i
\(436\) 0 0
\(437\) 1.50464 + 0.868707i 0.00344312 + 0.00198789i
\(438\) 0 0
\(439\) −245.073 424.479i −0.558254 0.966924i −0.997642 0.0686266i \(-0.978138\pi\)
0.439389 0.898297i \(-0.355195\pi\)
\(440\) 0 0
\(441\) −381.024 46.0785i −0.864001 0.104486i
\(442\) 0 0
\(443\) 167.219 96.5440i 0.377470 0.217932i −0.299247 0.954176i \(-0.596736\pi\)
0.676717 + 0.736243i \(0.263402\pi\)
\(444\) 0 0
\(445\) 0.814903 1.41145i 0.00183124 0.00317180i
\(446\) 0 0
\(447\) 375.914 187.852i 0.840972 0.420251i
\(448\) 0 0
\(449\) 449.191i 1.00043i −0.865902 0.500213i \(-0.833255\pi\)
0.865902 0.500213i \(-0.166745\pi\)
\(450\) 0 0
\(451\) −276.576 −0.613252
\(452\) 0 0
\(453\) −434.608 26.1839i −0.959400 0.0578011i
\(454\) 0 0
\(455\) 15.8697 + 9.16240i 0.0348785 + 0.0201371i
\(456\) 0 0
\(457\) −47.0282 81.4553i −0.102906 0.178239i 0.809975 0.586465i \(-0.199481\pi\)
−0.912881 + 0.408226i \(0.866148\pi\)
\(458\) 0 0
\(459\) −101.141 + 554.167i −0.220351 + 1.20734i
\(460\) 0 0
\(461\) −295.285 + 170.483i −0.640532 + 0.369811i −0.784819 0.619725i \(-0.787244\pi\)
0.144288 + 0.989536i \(0.453911\pi\)
\(462\) 0 0
\(463\) −285.649 + 494.759i −0.616953 + 1.06859i 0.373085 + 0.927797i \(0.378300\pi\)
−0.990038 + 0.140798i \(0.955033\pi\)
\(464\) 0 0
\(465\) 7.71927 128.127i 0.0166006 0.275542i
\(466\) 0 0
\(467\) 421.650i 0.902891i −0.892299 0.451446i \(-0.850909\pi\)
0.892299 0.451446i \(-0.149091\pi\)
\(468\) 0 0
\(469\) 57.0716 0.121688
\(470\) 0 0
\(471\) 331.343 + 663.057i 0.703489 + 1.40776i
\(472\) 0 0
\(473\) 366.602 + 211.658i 0.775058 + 0.447480i
\(474\) 0 0
\(475\) −18.2482 31.6068i −0.0384173 0.0665407i
\(476\) 0 0
\(477\) −385.094 + 164.292i −0.807325 + 0.344429i
\(478\) 0 0
\(479\) −700.337 + 404.340i −1.46208 + 0.844133i −0.999108 0.0422395i \(-0.986551\pi\)
−0.462973 + 0.886372i \(0.653217\pi\)
\(480\) 0 0
\(481\) −34.6523 + 60.0195i −0.0720421 + 0.124781i
\(482\) 0 0
\(483\) −7.30201 4.82352i −0.0151180 0.00998658i
\(484\) 0 0
\(485\) 98.6219i 0.203344i
\(486\) 0 0
\(487\) −155.199 −0.318684 −0.159342 0.987223i \(-0.550937\pi\)
−0.159342 + 0.987223i \(0.550937\pi\)
\(488\) 0 0
\(489\) 313.083 473.956i 0.640252 0.969234i
\(490\) 0 0
\(491\) 546.817 + 315.705i 1.11368 + 0.642984i 0.939780 0.341779i \(-0.111030\pi\)
0.173901 + 0.984763i \(0.444363\pi\)
\(492\) 0 0
\(493\) 189.535 + 328.285i 0.384453 + 0.665892i
\(494\) 0 0
\(495\) −32.1822 75.4336i −0.0650145 0.152391i
\(496\) 0 0
\(497\) 227.619 131.416i 0.457985 0.264418i
\(498\) 0 0
\(499\) −445.820 + 772.183i −0.893427 + 1.54746i −0.0576878 + 0.998335i \(0.518373\pi\)
−0.835739 + 0.549126i \(0.814961\pi\)
\(500\) 0 0
\(501\) 621.491 310.572i 1.24050 0.619905i
\(502\) 0 0
\(503\) 281.433i 0.559509i 0.960072 + 0.279754i \(0.0902531\pi\)
−0.960072 + 0.279754i \(0.909747\pi\)
\(504\) 0 0
\(505\) 46.3854 0.0918523
\(506\) 0 0
\(507\) 277.906 + 16.7431i 0.548139 + 0.0330238i
\(508\) 0 0
\(509\) 426.209 + 246.072i 0.837346 + 0.483442i 0.856361 0.516377i \(-0.172720\pi\)
−0.0190149 + 0.999819i \(0.506053\pi\)
\(510\) 0 0
\(511\) 94.8047 + 164.207i 0.185528 + 0.321344i
\(512\) 0 0
\(513\) −39.8818 7.27883i −0.0777423 0.0141887i
\(514\) 0 0
\(515\) 145.635 84.0823i 0.282786 0.163267i
\(516\) 0 0
\(517\) −376.903 + 652.815i −0.729020 + 1.26270i
\(518\) 0 0
\(519\) −46.8533 + 777.686i −0.0902762 + 1.49843i
\(520\) 0 0
\(521\) 633.968i 1.21683i −0.793619 0.608415i \(-0.791806\pi\)
0.793619 0.608415i \(-0.208194\pi\)
\(522\) 0 0
\(523\) −42.6893 −0.0816240 −0.0408120 0.999167i \(-0.512994\pi\)
−0.0408120 + 0.999167i \(0.512994\pi\)
\(524\) 0 0
\(525\) 82.1753 + 164.442i 0.156524 + 0.313224i
\(526\) 0 0
\(527\) −928.394 536.008i −1.76166 1.01709i
\(528\) 0 0
\(529\) −263.831 456.968i −0.498734 0.863833i
\(530\) 0 0
\(531\) 111.207 919.572i 0.209429 1.73177i
\(532\) 0 0
\(533\) 191.063 110.310i 0.358467 0.206961i
\(534\) 0 0
\(535\) −22.9787 + 39.8004i −0.0429509 + 0.0743932i
\(536\) 0 0
\(537\) 551.592 + 364.368i 1.02717 + 0.678525i
\(538\) 0 0
\(539\) 466.660i 0.865788i
\(540\) 0 0
\(541\) 585.520 1.08229 0.541146 0.840929i \(-0.317991\pi\)
0.541146 + 0.840929i \(0.317991\pi\)
\(542\) 0 0
\(543\) 473.222 716.379i 0.871495 1.31930i
\(544\) 0 0
\(545\) 32.2273 + 18.6065i 0.0591327 + 0.0341403i
\(546\) 0 0
\(547\) 429.811 + 744.455i 0.785761 + 1.36098i 0.928544 + 0.371223i \(0.121062\pi\)
−0.142783 + 0.989754i \(0.545605\pi\)
\(548\) 0 0
\(549\) −477.267 + 635.764i −0.869339 + 1.15804i
\(550\) 0 0
\(551\) −23.6257 + 13.6403i −0.0428779 + 0.0247556i
\(552\) 0 0
\(553\) −130.759 + 226.481i −0.236454 + 0.409550i
\(554\) 0 0
\(555\) 17.7421 8.86610i 0.0319677 0.0159749i
\(556\) 0 0
\(557\) 394.616i 0.708467i 0.935157 + 0.354234i \(0.115258\pi\)
−0.935157 + 0.354234i \(0.884742\pi\)
\(558\) 0 0
\(559\) −337.672 −0.604065
\(560\) 0 0
\(561\) −683.697 41.1908i −1.21871 0.0734239i
\(562\) 0 0
\(563\) −375.650 216.882i −0.667229 0.385225i 0.127797 0.991800i \(-0.459209\pi\)
−0.795026 + 0.606576i \(0.792543\pi\)
\(564\) 0 0
\(565\) 45.0347 + 78.0025i 0.0797075 + 0.138057i
\(566\) 0 0
\(567\) 198.315 + 48.6777i 0.349763 + 0.0858514i
\(568\) 0 0
\(569\) 187.251 108.110i 0.329088 0.189999i −0.326348 0.945250i \(-0.605818\pi\)
0.655436 + 0.755250i \(0.272485\pi\)
\(570\) 0 0
\(571\) −525.111 + 909.518i −0.919633 + 1.59285i −0.119661 + 0.992815i \(0.538181\pi\)
−0.799972 + 0.600037i \(0.795152\pi\)
\(572\) 0 0
\(573\) 0.284971 4.73003i 0.000497331 0.00825486i
\(574\) 0 0
\(575\) 28.1256i 0.0489140i
\(576\) 0 0
\(577\) 235.000 0.407279 0.203640 0.979046i \(-0.434723\pi\)
0.203640 + 0.979046i \(0.434723\pi\)
\(578\) 0 0
\(579\) −311.300 622.948i −0.537652 1.07590i
\(580\) 0 0
\(581\) −135.504 78.2334i −0.233226 0.134653i
\(582\) 0 0
\(583\) −254.532 440.863i −0.436590 0.756197i
\(584\) 0 0
\(585\) 52.3180 + 39.2750i 0.0894324 + 0.0671367i
\(586\) 0 0
\(587\) 669.449 386.506i 1.14046 0.658443i 0.193914 0.981019i \(-0.437882\pi\)
0.946544 + 0.322575i \(0.104548\pi\)
\(588\) 0 0
\(589\) 38.5750 66.8138i 0.0654923 0.113436i
\(590\) 0 0
\(591\) 535.708 + 353.875i 0.906443 + 0.598773i
\(592\) 0 0
\(593\) 504.381i 0.850557i 0.905062 + 0.425279i \(0.139824\pi\)
−0.905062 + 0.425279i \(0.860176\pi\)
\(594\) 0 0
\(595\) −43.7989 −0.0736117
\(596\) 0 0
\(597\) −42.8118 + 64.8099i −0.0717115 + 0.108559i
\(598\) 0 0
\(599\) −37.9297 21.8987i −0.0633217 0.0365588i 0.468005 0.883726i \(-0.344973\pi\)
−0.531327 + 0.847167i \(0.678306\pi\)
\(600\) 0 0
\(601\) 4.89587 + 8.47990i 0.00814621 + 0.0141096i 0.870070 0.492929i \(-0.164074\pi\)
−0.861924 + 0.507038i \(0.830740\pi\)
\(602\) 0 0
\(603\) 202.272 + 24.4613i 0.335442 + 0.0405661i
\(604\) 0 0
\(605\) −0.901637 + 0.520561i −0.00149031 + 0.000860431i
\(606\) 0 0
\(607\) 175.724 304.363i 0.289496 0.501421i −0.684194 0.729300i \(-0.739846\pi\)
0.973689 + 0.227879i \(0.0731791\pi\)
\(608\) 0 0
\(609\) 122.919 61.4251i 0.201837 0.100862i
\(610\) 0 0
\(611\) 601.298i 0.984122i
\(612\) 0 0
\(613\) −733.118 −1.19595 −0.597976 0.801514i \(-0.704028\pi\)
−0.597976 + 0.801514i \(0.704028\pi\)
\(614\) 0 0
\(615\) −63.0244 3.79704i −0.102479 0.00617404i
\(616\) 0 0
\(617\) 557.311 + 321.764i 0.903260 + 0.521497i 0.878256 0.478190i \(-0.158707\pi\)
0.0250035 + 0.999687i \(0.492040\pi\)
\(618\) 0 0
\(619\) −124.319 215.327i −0.200839 0.347863i 0.747960 0.663744i \(-0.231033\pi\)
−0.948799 + 0.315880i \(0.897700\pi\)
\(620\) 0 0
\(621\) −23.8121 20.2251i −0.0383448 0.0325685i
\(622\) 0 0
\(623\) −4.27312 + 2.46709i −0.00685895 + 0.00396001i
\(624\) 0 0
\(625\) −286.737 + 496.644i −0.458780 + 0.794630i
\(626\) 0 0
\(627\) 2.96438 49.2037i 0.00472788 0.0784748i
\(628\) 0 0
\(629\) 165.648i 0.263351i
\(630\) 0 0
\(631\) 479.055 0.759200 0.379600 0.925151i \(-0.376062\pi\)
0.379600 + 0.925151i \(0.376062\pi\)
\(632\) 0 0
\(633\) −125.991 252.124i −0.199039 0.398300i
\(634\) 0 0
\(635\) 124.166 + 71.6873i 0.195537 + 0.112893i
\(636\) 0 0
\(637\) 186.123 + 322.375i 0.292187 + 0.506083i
\(638\) 0 0
\(639\) 863.044 368.200i 1.35062 0.576213i
\(640\) 0 0
\(641\) −1019.97 + 588.880i −1.59122 + 0.918689i −0.598118 + 0.801408i \(0.704084\pi\)
−0.993099 + 0.117281i \(0.962582\pi\)
\(642\) 0 0
\(643\) −88.0856 + 152.569i −0.136992 + 0.237276i −0.926356 0.376648i \(-0.877077\pi\)
0.789365 + 0.613924i \(0.210410\pi\)
\(644\) 0 0
\(645\) 80.6331 + 53.2642i 0.125013 + 0.0825801i
\(646\) 0 0
\(647\) 317.529i 0.490771i −0.969426 0.245386i \(-0.921085\pi\)
0.969426 0.245386i \(-0.0789146\pi\)
\(648\) 0 0
\(649\) 1126.25 1.73536
\(650\) 0 0
\(651\) −214.189 + 324.246i −0.329015 + 0.498074i
\(652\) 0 0
\(653\) 883.885 + 510.311i 1.35358 + 0.781488i 0.988749 0.149587i \(-0.0477945\pi\)
0.364828 + 0.931075i \(0.381128\pi\)
\(654\) 0 0
\(655\) 36.9320 + 63.9681i 0.0563848 + 0.0976613i
\(656\) 0 0
\(657\) 265.624 + 622.610i 0.404298 + 0.947656i
\(658\) 0 0
\(659\) −127.595 + 73.6669i −0.193619 + 0.111786i −0.593676 0.804704i \(-0.702324\pi\)
0.400057 + 0.916490i \(0.368990\pi\)
\(660\) 0 0
\(661\) 386.978 670.266i 0.585444 1.01402i −0.409376 0.912366i \(-0.634254\pi\)
0.994820 0.101653i \(-0.0324131\pi\)
\(662\) 0 0
\(663\) 488.736 244.232i 0.737159 0.368374i
\(664\) 0 0
\(665\) 3.15208i 0.00473997i
\(666\) 0 0
\(667\) −21.0235 −0.0315195
\(668\) 0 0
\(669\) 896.490 + 54.0109i 1.34004 + 0.0807338i
\(670\) 0 0
\(671\) −837.100 483.300i −1.24754 0.720268i
\(672\) 0 0
\(673\) 62.7363 + 108.663i 0.0932189 + 0.161460i 0.908864 0.417093i \(-0.136951\pi\)
−0.815645 + 0.578553i \(0.803618\pi\)
\(674\) 0 0
\(675\) 220.762 + 618.033i 0.327055 + 0.915604i
\(676\) 0 0
\(677\) −953.760 + 550.654i −1.40880 + 0.813374i −0.995273 0.0971164i \(-0.969038\pi\)
−0.413531 + 0.910490i \(0.635705\pi\)
\(678\) 0 0
\(679\) 149.287 258.573i 0.219863 0.380814i
\(680\) 0 0
\(681\) −65.8105 + 1092.34i −0.0966380 + 1.60403i
\(682\) 0 0
\(683\) 469.992i 0.688128i −0.938946 0.344064i \(-0.888196\pi\)
0.938946 0.344064i \(-0.111804\pi\)
\(684\) 0 0
\(685\) −74.6302 −0.108949
\(686\) 0 0
\(687\) 378.117 + 756.657i 0.550389 + 1.10139i
\(688\) 0 0
\(689\) 351.669 + 203.036i 0.510404 + 0.294682i
\(690\) 0 0
\(691\) 263.870 + 457.036i 0.381866 + 0.661412i 0.991329 0.131403i \(-0.0419482\pi\)
−0.609463 + 0.792815i \(0.708615\pi\)
\(692\) 0 0
\(693\) −29.8090 + 246.492i −0.0430145 + 0.355688i
\(694\) 0 0
\(695\) 107.873 62.2803i 0.155212 0.0896119i
\(696\) 0 0
\(697\) −263.657 + 456.668i −0.378275 + 0.655191i
\(698\) 0 0
\(699\) −522.080 344.873i −0.746895 0.493380i
\(700\) 0 0
\(701\) 1162.38i 1.65818i −0.559116 0.829089i \(-0.688859\pi\)
0.559116 0.829089i \(-0.311141\pi\)
\(702\) 0 0
\(703\) 11.9212 0.0169576
\(704\) 0 0
\(705\) −94.8485 + 143.585i −0.134537 + 0.203666i
\(706\) 0 0
\(707\) −121.616 70.2151i −0.172017 0.0993142i
\(708\) 0 0
\(709\) 100.029 + 173.255i 0.141085 + 0.244366i 0.927905 0.372816i \(-0.121608\pi\)
−0.786821 + 0.617182i \(0.788274\pi\)
\(710\) 0 0
\(711\) −560.504 + 746.644i −0.788332 + 1.05013i
\(712\) 0 0
\(713\) 51.4893 29.7274i 0.0722150 0.0416934i
\(714\) 0 0
\(715\) −39.7714 + 68.8861i −0.0556244 + 0.0963442i
\(716\) 0 0
\(717\) 77.8501 38.9033i 0.108577 0.0542585i
\(718\) 0 0
\(719\) 447.907i 0.622958i −0.950253 0.311479i \(-0.899176\pi\)
0.950253 0.311479i \(-0.100824\pi\)
\(720\) 0 0
\(721\) −509.112 −0.706120
\(722\) 0 0
\(723\) 697.469 + 42.0205i 0.964688 + 0.0581196i
\(724\) 0 0
\(725\) 382.457 + 220.812i 0.527527 + 0.304568i
\(726\) 0 0
\(727\) −253.737 439.486i −0.349020 0.604520i 0.637056 0.770818i \(-0.280152\pi\)
−0.986076 + 0.166298i \(0.946819\pi\)
\(728\) 0 0
\(729\) 682.000 + 257.522i 0.935528 + 0.353253i
\(730\) 0 0
\(731\) 698.957 403.543i 0.956165 0.552042i
\(732\) 0 0
\(733\) 545.542 944.907i 0.744260 1.28910i −0.206280 0.978493i \(-0.566136\pi\)
0.950540 0.310603i \(-0.100531\pi\)
\(734\) 0 0
\(735\) 6.40663 106.339i 0.00871651 0.144679i
\(736\) 0 0
\(737\) 247.732i 0.336136i
\(738\) 0 0
\(739\) −114.753 −0.155281 −0.0776406 0.996981i \(-0.524739\pi\)
−0.0776406 + 0.996981i \(0.524739\pi\)
\(740\) 0 0
\(741\) 17.5766 + 35.1729i 0.0237202 + 0.0474668i
\(742\) 0 0
\(743\) 531.028 + 306.589i 0.714708 + 0.412637i 0.812802 0.582540i \(-0.197941\pi\)
−0.0980939 + 0.995177i \(0.531275\pi\)
\(744\) 0 0
\(745\) 58.3231 + 101.019i 0.0782860 + 0.135595i
\(746\) 0 0
\(747\) −446.719 335.351i −0.598017 0.448930i
\(748\) 0 0
\(749\) 120.494 69.5673i 0.160873 0.0928803i
\(750\) 0 0
\(751\) −193.945 + 335.922i −0.258248 + 0.447299i −0.965773 0.259390i \(-0.916479\pi\)
0.707524 + 0.706689i \(0.249812\pi\)
\(752\) 0 0
\(753\) 282.529 + 186.631i 0.375205 + 0.247851i
\(754\) 0 0
\(755\) 120.854i 0.160071i
\(756\) 0 0
\(757\) −732.340 −0.967424 −0.483712 0.875227i \(-0.660712\pi\)
−0.483712 + 0.875227i \(0.660712\pi\)
\(758\) 0 0
\(759\) 20.9376 31.6960i 0.0275857 0.0417602i
\(760\) 0 0
\(761\) 771.356 + 445.342i 1.01361 + 0.585207i 0.912246 0.409643i \(-0.134347\pi\)
0.101362 + 0.994850i \(0.467680\pi\)
\(762\) 0 0
\(763\) −56.3304 97.5671i −0.0738275 0.127873i
\(764\) 0 0
\(765\) −155.231 18.7726i −0.202916 0.0245393i
\(766\) 0 0
\(767\) −778.027 + 449.194i −1.01438 + 0.585650i
\(768\) 0 0
\(769\) −244.356 + 423.237i −0.317758 + 0.550373i −0.980020 0.198899i \(-0.936263\pi\)
0.662262 + 0.749272i \(0.269597\pi\)
\(770\) 0 0
\(771\) 905.478 452.487i 1.17442 0.586883i
\(772\) 0 0
\(773\) 579.450i 0.749612i 0.927103 + 0.374806i \(0.122291\pi\)
−0.927103 + 0.374806i \(0.877709\pi\)
\(774\) 0 0
\(775\) −1248.92 −1.61150
\(776\) 0 0
\(777\) −59.9382 3.61110i −0.0771405 0.00464750i
\(778\) 0 0
\(779\) −32.8651 18.9747i −0.0421888 0.0243577i
\(780\) 0 0
\(781\) 570.439 + 988.029i 0.730395 + 1.26508i
\(782\) 0 0
\(783\) 461.972 165.017i 0.590003 0.210750i
\(784\) 0 0
\(785\) −178.182 + 102.873i −0.226983 + 0.131049i
\(786\) 0 0
\(787\) −87.9405 + 152.317i −0.111741 + 0.193542i −0.916472 0.400098i \(-0.868976\pi\)
0.804731 + 0.593640i \(0.202310\pi\)
\(788\) 0 0
\(789\) 91.2409 1514.44i 0.115641 1.91945i
\(790\) 0 0
\(791\) 272.682i 0.344731i
\(792\) 0 0
\(793\) 771.040 0.972308
\(794\) 0 0
\(795\) −51.9486 103.955i −0.0653442 0.130761i
\(796\) 0 0
\(797\) −397.577 229.541i −0.498841 0.288006i 0.229394 0.973334i \(-0.426326\pi\)
−0.728235 + 0.685328i \(0.759659\pi\)
\(798\) 0 0
\(799\) 718.596 + 1244.64i 0.899369 + 1.55775i
\(800\) 0 0
\(801\) −16.2021 + 6.91229i −0.0202273 + 0.00862957i
\(802\) 0 0
\(803\) −712.775 + 411.521i −0.887640 + 0.512479i
\(804\) 0 0
\(805\) 1.21456 2.10368i 0.00150877 0.00261326i
\(806\) 0 0
\(807\) −844.604 557.924i −1.04660 0.691355i
\(808\) 0 0
\(809\) 89.1339i 0.110178i −0.998481 0.0550890i \(-0.982456\pi\)
0.998481 0.0550890i \(-0.0175442\pi\)
\(810\) 0 0
\(811\) −625.256 −0.770969 −0.385484 0.922714i \(-0.625966\pi\)
−0.385484 + 0.922714i \(0.625966\pi\)
\(812\) 0 0
\(813\) 19.8875 30.1064i 0.0244619 0.0370313i
\(814\) 0 0
\(815\) 136.545 + 78.8341i 0.167539 + 0.0967290i
\(816\) 0 0
\(817\) 29.0418 + 50.3019i 0.0355469 + 0.0615690i
\(818\) 0 0
\(819\) −77.7186 182.169i −0.0948946 0.222429i
\(820\) 0 0
\(821\) 625.391 361.070i 0.761743 0.439793i −0.0681779 0.997673i \(-0.521719\pi\)
0.829921 + 0.557880i \(0.188385\pi\)
\(822\) 0 0
\(823\) −149.534 + 259.000i −0.181693 + 0.314702i −0.942457 0.334327i \(-0.891491\pi\)
0.760764 + 0.649029i \(0.224824\pi\)
\(824\) 0 0
\(825\) −713.799 + 356.700i −0.865211 + 0.432364i
\(826\) 0 0
\(827\) 1178.17i 1.42463i 0.701858 + 0.712317i \(0.252354\pi\)
−0.701858 + 0.712317i \(0.747646\pi\)
\(828\) 0 0
\(829\) 451.760 0.544946 0.272473 0.962163i \(-0.412159\pi\)
0.272473 + 0.962163i \(0.412159\pi\)
\(830\) 0 0
\(831\) −598.573 36.0623i −0.720305 0.0433963i
\(832\) 0 0
\(833\) −770.523 444.862i −0.924998 0.534048i
\(834\) 0 0
\(835\) 96.4243 + 167.012i 0.115478 + 0.200014i
\(836\) 0 0
\(837\) −898.095 + 1057.38i −1.07299 + 1.26330i
\(838\) 0 0
\(839\) 274.743 158.623i 0.327465 0.189062i −0.327250 0.944938i \(-0.606122\pi\)
0.654715 + 0.755876i \(0.272789\pi\)
\(840\) 0 0
\(841\) −255.446 + 442.445i −0.303741 + 0.526094i
\(842\) 0 0
\(843\) −60.4218 + 1002.90i −0.0716747 + 1.18968i
\(844\) 0 0
\(845\) 77.2788i 0.0914542i
\(846\) 0 0
\(847\) 3.15196 0.00372132
\(848\) 0 0
\(849\) −630.494 1261.69i −0.742632 1.48609i
\(850\) 0 0
\(851\) 7.95613 + 4.59347i 0.00934915 + 0.00539773i
\(852\) 0 0
\(853\) −55.9234 96.8622i −0.0655609 0.113555i 0.831382 0.555702i \(-0.187550\pi\)
−0.896943 + 0.442147i \(0.854217\pi\)
\(854\) 0 0
\(855\) 1.35101 11.1715i 0.00158013 0.0130661i
\(856\) 0 0
\(857\) −522.040 + 301.400i −0.609148 + 0.351692i −0.772632 0.634854i \(-0.781060\pi\)
0.163484 + 0.986546i \(0.447727\pi\)
\(858\) 0 0
\(859\) 649.175 1124.40i 0.755733 1.30897i −0.189276 0.981924i \(-0.560614\pi\)
0.945009 0.327044i \(-0.106053\pi\)
\(860\) 0 0
\(861\) 159.493 + 105.357i 0.185242 + 0.122366i
\(862\) 0 0
\(863\) 1332.38i 1.54390i 0.635685 + 0.771949i \(0.280718\pi\)
−0.635685 + 0.771949i \(0.719282\pi\)
\(864\) 0 0
\(865\) −216.255 −0.250006
\(866\) 0 0
\(867\) −241.904 + 366.202i −0.279012 + 0.422378i
\(868\) 0 0
\(869\) −983.092 567.589i −1.13129 0.653151i
\(870\) 0 0
\(871\) −98.8059 171.137i −0.113440 0.196483i
\(872\) 0 0
\(873\) 639.925 852.441i 0.733019 0.976450i
\(874\) 0 0
\(875\) −89.6411 + 51.7543i −0.102447 + 0.0591478i
\(876\) 0 0
\(877\) −407.412 + 705.658i −0.464551 + 0.804627i −0.999181 0.0404597i \(-0.987118\pi\)
0.534630 + 0.845086i \(0.320451\pi\)
\(878\) 0 0
\(879\) 406.716 203.244i 0.462703 0.231222i
\(880\) 0 0
\(881\) 86.4877i 0.0981700i 0.998795 + 0.0490850i \(0.0156305\pi\)
−0.998795 + 0.0490850i \(0.984369\pi\)
\(882\) 0 0
\(883\) 367.217 0.415875 0.207937 0.978142i \(-0.433325\pi\)
0.207937 + 0.978142i \(0.433325\pi\)
\(884\) 0 0
\(885\) 256.641 + 15.4619i 0.289990 + 0.0174711i
\(886\) 0 0
\(887\) 587.456 + 339.168i 0.662295 + 0.382376i 0.793151 0.609025i \(-0.208439\pi\)
−0.130856 + 0.991401i \(0.541773\pi\)
\(888\) 0 0
\(889\) −217.031 375.908i −0.244129 0.422844i
\(890\) 0 0
\(891\) −211.297 + 860.832i −0.237145 + 0.966141i
\(892\) 0 0
\(893\) −89.5734 + 51.7152i −0.100306 + 0.0579118i
\(894\) 0 0
\(895\) −91.7475 + 158.911i −0.102511 + 0.177555i
\(896\) 0 0
\(897\) −1.82228 + 30.2468i −0.00203153 + 0.0337199i
\(898\) 0 0
\(899\) 933.550i 1.03843i
\(900\) 0 0
\(901\) −970.571 −1.07722
\(902\) 0 0
\(903\) −130.781 261.708i −0.144830 0.289821i
\(904\) 0 0
\(905\) 206.386 + 119.157i 0.228051 + 0.131665i
\(906\) 0 0
\(907\) −431.371 747.156i −0.475602 0.823767i 0.524007 0.851714i \(-0.324436\pi\)
−0.999609 + 0.0279469i \(0.991103\pi\)
\(908\) 0 0
\(909\) −400.934 300.980i −0.441071 0.331111i
\(910\) 0 0
\(911\) 1007.57 581.718i 1.10600 0.638549i 0.168209 0.985751i \(-0.446202\pi\)
0.937790 + 0.347202i \(0.112868\pi\)
\(912\) 0 0
\(913\) 339.590 588.186i 0.371949 0.644235i
\(914\) 0 0
\(915\) −184.118 121.623i −0.201221 0.132922i
\(916\) 0 0
\(917\) 223.621i 0.243861i
\(918\) 0 0
\(919\) 832.360 0.905724 0.452862 0.891581i \(-0.350403\pi\)
0.452862 + 0.891581i \(0.350403\pi\)
\(920\) 0 0
\(921\) 204.792 310.021i 0.222359 0.336614i
\(922\) 0 0
\(923\) −788.134 455.029i −0.853883 0.492990i
\(924\) 0 0
\(925\) −96.4912 167.128i −0.104315 0.180679i
\(926\) 0 0
\(927\) −1804.38 218.210i −1.94647 0.235393i
\(928\) 0 0
\(929\) 1540.10 889.178i 1.65781 0.957135i 0.684082 0.729405i \(-0.260203\pi\)
0.973724 0.227730i \(-0.0731302\pi\)
\(930\) 0 0
\(931\) 32.0154 55.4523i 0.0343882 0.0595621i
\(932\) 0 0
\(933\) 260.024 129.940i 0.278697 0.139271i
\(934\) 0 0
\(935\) 190.119i 0.203336i
\(936\) 0 0
\(937\) 432.361 0.461431 0.230715 0.973021i \(-0.425893\pi\)
0.230715 + 0.973021i \(0.425893\pi\)
\(938\) 0 0
\(939\) 288.976 + 17.4100i 0.307748 + 0.0185410i
\(940\) 0 0
\(941\) 1521.40 + 878.378i 1.61679 + 0.933452i 0.987744 + 0.156080i \(0.0498857\pi\)
0.629041 + 0.777372i \(0.283448\pi\)
\(942\) 0 0
\(943\) −14.6226 25.3271i −0.0155065 0.0268580i
\(944\) 0 0
\(945\) −10.1767 + 55.7596i −0.0107690 + 0.0590049i
\(946\) 0 0
\(947\) −980.755 + 566.239i −1.03564 + 0.597929i −0.918596 0.395197i \(-0.870676\pi\)
−0.117048 + 0.993126i \(0.537343\pi\)
\(948\) 0 0
\(949\) 328.263 568.568i 0.345904 0.599124i
\(950\) 0 0
\(951\) −24.9649 + 414.376i −0.0262512 + 0.435726i
\(952\) 0 0
\(953\) 1509.90i 1.58436i −0.610286 0.792181i \(-0.708945\pi\)
0.610286 0.792181i \(-0.291055\pi\)
\(954\) 0 0
\(955\) 1.31530 0.00137728
\(956\) 0 0
\(957\) 266.629 + 533.556i 0.278609 + 0.557530i
\(958\) 0 0
\(959\) 195.670 + 112.970i 0.204035 + 0.117800i
\(960\) 0 0
\(961\) −839.545 1454.13i −0.873616 1.51315i
\(962\) 0 0
\(963\) 456.869 194.914i 0.474423 0.202403i
\(964\) 0 0
\(965\) 167.403 96.6503i 0.173475 0.100156i
\(966\) 0 0
\(967\) 244.990 424.335i 0.253350 0.438816i −0.711096 0.703095i \(-0.751801\pi\)
0.964446 + 0.264279i \(0.0851341\pi\)
\(968\) 0 0
\(969\) −78.4166 51.8000i −0.0809253 0.0534572i
\(970\) 0 0
\(971\) 253.051i 0.260608i 0.991474 + 0.130304i \(0.0415954\pi\)
−0.991474 + 0.130304i \(0.958405\pi\)
\(972\) 0 0
\(973\) −377.103 −0.387567
\(974\) 0 0
\(975\) 350.835 531.106i 0.359831 0.544724i
\(976\) 0 0
\(977\) −1407.52 812.635i −1.44066 0.831765i −0.442766 0.896637i \(-0.646003\pi\)
−0.997894 + 0.0648717i \(0.979336\pi\)
\(978\) 0 0
\(979\) −10.7089 18.5484i −0.0109387 0.0189463i
\(980\) 0 0
\(981\) −157.826 369.938i −0.160883 0.377103i
\(982\) 0 0
\(983\) 1007.16 581.483i 1.02458 0.591540i 0.109150 0.994025i \(-0.465187\pi\)
0.915426 + 0.402486i \(0.131854\pi\)
\(984\) 0 0
\(985\) −89.1055 + 154.335i −0.0904624 + 0.156686i
\(986\) 0 0
\(987\) 466.028 232.884i 0.472167 0.235952i
\(988\) 0 0
\(989\) 44.7615i 0.0452594i
\(990\) 0 0
\(991\) 1411.24 1.42405 0.712027 0.702152i \(-0.247777\pi\)
0.712027 + 0.702152i \(0.247777\pi\)
\(992\) 0 0
\(993\) −895.335 53.9413i −0.901646 0.0543216i
\(994\) 0 0
\(995\) −18.6715 10.7800i −0.0187653 0.0108341i
\(996\) 0 0
\(997\) 561.614 + 972.744i 0.563304 + 0.975671i 0.997205 + 0.0747104i \(0.0238032\pi\)
−0.433902 + 0.900960i \(0.642863\pi\)
\(998\) 0 0
\(999\) −210.883 38.4883i −0.211095 0.0385269i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.q.l.257.8 24
3.2 odd 2 1728.3.q.k.449.8 24
4.3 odd 2 inner 576.3.q.l.257.5 24
8.3 odd 2 288.3.q.b.257.8 yes 24
8.5 even 2 288.3.q.b.257.5 yes 24
9.2 odd 6 inner 576.3.q.l.65.8 24
9.7 even 3 1728.3.q.k.1601.8 24
12.11 even 2 1728.3.q.k.449.7 24
24.5 odd 2 864.3.q.a.449.6 24
24.11 even 2 864.3.q.a.449.5 24
36.7 odd 6 1728.3.q.k.1601.7 24
36.11 even 6 inner 576.3.q.l.65.5 24
72.5 odd 6 2592.3.e.i.161.13 24
72.11 even 6 288.3.q.b.65.8 yes 24
72.13 even 6 2592.3.e.i.161.14 24
72.29 odd 6 288.3.q.b.65.5 24
72.43 odd 6 864.3.q.a.737.5 24
72.59 even 6 2592.3.e.i.161.11 24
72.61 even 6 864.3.q.a.737.6 24
72.67 odd 6 2592.3.e.i.161.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.5 24 72.29 odd 6
288.3.q.b.65.8 yes 24 72.11 even 6
288.3.q.b.257.5 yes 24 8.5 even 2
288.3.q.b.257.8 yes 24 8.3 odd 2
576.3.q.l.65.5 24 36.11 even 6 inner
576.3.q.l.65.8 24 9.2 odd 6 inner
576.3.q.l.257.5 24 4.3 odd 2 inner
576.3.q.l.257.8 24 1.1 even 1 trivial
864.3.q.a.449.5 24 24.11 even 2
864.3.q.a.449.6 24 24.5 odd 2
864.3.q.a.737.5 24 72.43 odd 6
864.3.q.a.737.6 24 72.61 even 6
1728.3.q.k.449.7 24 12.11 even 2
1728.3.q.k.449.8 24 3.2 odd 2
1728.3.q.k.1601.7 24 36.7 odd 6
1728.3.q.k.1601.8 24 9.7 even 3
2592.3.e.i.161.11 24 72.59 even 6
2592.3.e.i.161.12 24 72.67 odd 6
2592.3.e.i.161.13 24 72.5 odd 6
2592.3.e.i.161.14 24 72.13 even 6