Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [576,3,Mod(65,576)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(576, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("576.65");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.q (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(15.6948632272\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 288) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 | 0 | −2.81202 | − | 1.04524i | 0 | −5.41309 | + | 3.12525i | 0 | 3.74855 | − | 6.49268i | 0 | 6.81493 | + | 5.87850i | 0 | ||||||||||
65.2 | 0 | −2.74879 | + | 1.20172i | 0 | 3.57322 | − | 2.06300i | 0 | −5.28363 | + | 9.15151i | 0 | 6.11174 | − | 6.60656i | 0 | ||||||||||
65.3 | 0 | −2.56384 | + | 1.55780i | 0 | 6.30146 | − | 3.63815i | 0 | 4.46892 | − | 7.74039i | 0 | 4.14654 | − | 7.98788i | 0 | ||||||||||
65.4 | 0 | −1.92817 | + | 2.29830i | 0 | −7.02261 | + | 4.05450i | 0 | −1.65619 | + | 2.86860i | 0 | −1.56434 | − | 8.86300i | 0 | ||||||||||
65.5 | 0 | −1.65353 | − | 2.50317i | 0 | 0.721152 | − | 0.416357i | 0 | 1.26051 | − | 2.18326i | 0 | −3.53169 | + | 8.27811i | 0 | ||||||||||
65.6 | 0 | −0.106831 | − | 2.99810i | 0 | 1.83987 | − | 1.06225i | 0 | −3.42470 | + | 5.93176i | 0 | −8.97717 | + | 0.640577i | 0 | ||||||||||
65.7 | 0 | 0.106831 | + | 2.99810i | 0 | 1.83987 | − | 1.06225i | 0 | 3.42470 | − | 5.93176i | 0 | −8.97717 | + | 0.640577i | 0 | ||||||||||
65.8 | 0 | 1.65353 | + | 2.50317i | 0 | 0.721152 | − | 0.416357i | 0 | −1.26051 | + | 2.18326i | 0 | −3.53169 | + | 8.27811i | 0 | ||||||||||
65.9 | 0 | 1.92817 | − | 2.29830i | 0 | −7.02261 | + | 4.05450i | 0 | 1.65619 | − | 2.86860i | 0 | −1.56434 | − | 8.86300i | 0 | ||||||||||
65.10 | 0 | 2.56384 | − | 1.55780i | 0 | 6.30146 | − | 3.63815i | 0 | −4.46892 | + | 7.74039i | 0 | 4.14654 | − | 7.98788i | 0 | ||||||||||
65.11 | 0 | 2.74879 | − | 1.20172i | 0 | 3.57322 | − | 2.06300i | 0 | 5.28363 | − | 9.15151i | 0 | 6.11174 | − | 6.60656i | 0 | ||||||||||
65.12 | 0 | 2.81202 | + | 1.04524i | 0 | −5.41309 | + | 3.12525i | 0 | −3.74855 | + | 6.49268i | 0 | 6.81493 | + | 5.87850i | 0 | ||||||||||
257.1 | 0 | −2.81202 | + | 1.04524i | 0 | −5.41309 | − | 3.12525i | 0 | 3.74855 | + | 6.49268i | 0 | 6.81493 | − | 5.87850i | 0 | ||||||||||
257.2 | 0 | −2.74879 | − | 1.20172i | 0 | 3.57322 | + | 2.06300i | 0 | −5.28363 | − | 9.15151i | 0 | 6.11174 | + | 6.60656i | 0 | ||||||||||
257.3 | 0 | −2.56384 | − | 1.55780i | 0 | 6.30146 | + | 3.63815i | 0 | 4.46892 | + | 7.74039i | 0 | 4.14654 | + | 7.98788i | 0 | ||||||||||
257.4 | 0 | −1.92817 | − | 2.29830i | 0 | −7.02261 | − | 4.05450i | 0 | −1.65619 | − | 2.86860i | 0 | −1.56434 | + | 8.86300i | 0 | ||||||||||
257.5 | 0 | −1.65353 | + | 2.50317i | 0 | 0.721152 | + | 0.416357i | 0 | 1.26051 | + | 2.18326i | 0 | −3.53169 | − | 8.27811i | 0 | ||||||||||
257.6 | 0 | −0.106831 | + | 2.99810i | 0 | 1.83987 | + | 1.06225i | 0 | −3.42470 | − | 5.93176i | 0 | −8.97717 | − | 0.640577i | 0 | ||||||||||
257.7 | 0 | 0.106831 | − | 2.99810i | 0 | 1.83987 | + | 1.06225i | 0 | 3.42470 | + | 5.93176i | 0 | −8.97717 | − | 0.640577i | 0 | ||||||||||
257.8 | 0 | 1.65353 | − | 2.50317i | 0 | 0.721152 | + | 0.416357i | 0 | −1.26051 | − | 2.18326i | 0 | −3.53169 | − | 8.27811i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
36.h | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.3.q.l | 24 | |
3.b | odd | 2 | 1 | 1728.3.q.k | 24 | ||
4.b | odd | 2 | 1 | inner | 576.3.q.l | 24 | |
8.b | even | 2 | 1 | 288.3.q.b | ✓ | 24 | |
8.d | odd | 2 | 1 | 288.3.q.b | ✓ | 24 | |
9.c | even | 3 | 1 | 1728.3.q.k | 24 | ||
9.d | odd | 6 | 1 | inner | 576.3.q.l | 24 | |
12.b | even | 2 | 1 | 1728.3.q.k | 24 | ||
24.f | even | 2 | 1 | 864.3.q.a | 24 | ||
24.h | odd | 2 | 1 | 864.3.q.a | 24 | ||
36.f | odd | 6 | 1 | 1728.3.q.k | 24 | ||
36.h | even | 6 | 1 | inner | 576.3.q.l | 24 | |
72.j | odd | 6 | 1 | 288.3.q.b | ✓ | 24 | |
72.j | odd | 6 | 1 | 2592.3.e.i | 24 | ||
72.l | even | 6 | 1 | 288.3.q.b | ✓ | 24 | |
72.l | even | 6 | 1 | 2592.3.e.i | 24 | ||
72.n | even | 6 | 1 | 864.3.q.a | 24 | ||
72.n | even | 6 | 1 | 2592.3.e.i | 24 | ||
72.p | odd | 6 | 1 | 864.3.q.a | 24 | ||
72.p | odd | 6 | 1 | 2592.3.e.i | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
288.3.q.b | ✓ | 24 | 8.b | even | 2 | 1 | |
288.3.q.b | ✓ | 24 | 8.d | odd | 2 | 1 | |
288.3.q.b | ✓ | 24 | 72.j | odd | 6 | 1 | |
288.3.q.b | ✓ | 24 | 72.l | even | 6 | 1 | |
576.3.q.l | 24 | 1.a | even | 1 | 1 | trivial | |
576.3.q.l | 24 | 4.b | odd | 2 | 1 | inner | |
576.3.q.l | 24 | 9.d | odd | 6 | 1 | inner | |
576.3.q.l | 24 | 36.h | even | 6 | 1 | inner | |
864.3.q.a | 24 | 24.f | even | 2 | 1 | ||
864.3.q.a | 24 | 24.h | odd | 2 | 1 | ||
864.3.q.a | 24 | 72.n | even | 6 | 1 | ||
864.3.q.a | 24 | 72.p | odd | 6 | 1 | ||
1728.3.q.k | 24 | 3.b | odd | 2 | 1 | ||
1728.3.q.k | 24 | 9.c | even | 3 | 1 | ||
1728.3.q.k | 24 | 12.b | even | 2 | 1 | ||
1728.3.q.k | 24 | 36.f | odd | 6 | 1 | ||
2592.3.e.i | 24 | 72.j | odd | 6 | 1 | ||
2592.3.e.i | 24 | 72.l | even | 6 | 1 | ||
2592.3.e.i | 24 | 72.n | even | 6 | 1 | ||
2592.3.e.i | 24 | 72.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(576, [\chi])\):
\( T_{5}^{12} - 90 T_{5}^{10} + 6291 T_{5}^{8} - 7956 T_{5}^{7} - 157394 T_{5}^{6} + 325620 T_{5}^{5} + \cdots + 7246864 \) |
\( T_{7}^{24} + 312 T_{7}^{22} + 60858 T_{7}^{20} + 7407504 T_{7}^{18} + 660555243 T_{7}^{16} + \cdots + 26\!\cdots\!00 \) |