Properties

Label 576.3.q.l
Level $576$
Weight $3$
Character orbit 576.q
Analytic conductor $15.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,3,Mod(65,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 12 q^{9} - 24 q^{21} + 60 q^{25} - 72 q^{29} + 108 q^{33} + 252 q^{41} - 72 q^{45} - 36 q^{49} + 12 q^{57} + 96 q^{61} - 288 q^{65} + 432 q^{69} + 24 q^{73} + 720 q^{77} - 372 q^{81} - 96 q^{85}+ \cdots - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1 0 −2.81202 1.04524i 0 −5.41309 + 3.12525i 0 3.74855 6.49268i 0 6.81493 + 5.87850i 0
65.2 0 −2.74879 + 1.20172i 0 3.57322 2.06300i 0 −5.28363 + 9.15151i 0 6.11174 6.60656i 0
65.3 0 −2.56384 + 1.55780i 0 6.30146 3.63815i 0 4.46892 7.74039i 0 4.14654 7.98788i 0
65.4 0 −1.92817 + 2.29830i 0 −7.02261 + 4.05450i 0 −1.65619 + 2.86860i 0 −1.56434 8.86300i 0
65.5 0 −1.65353 2.50317i 0 0.721152 0.416357i 0 1.26051 2.18326i 0 −3.53169 + 8.27811i 0
65.6 0 −0.106831 2.99810i 0 1.83987 1.06225i 0 −3.42470 + 5.93176i 0 −8.97717 + 0.640577i 0
65.7 0 0.106831 + 2.99810i 0 1.83987 1.06225i 0 3.42470 5.93176i 0 −8.97717 + 0.640577i 0
65.8 0 1.65353 + 2.50317i 0 0.721152 0.416357i 0 −1.26051 + 2.18326i 0 −3.53169 + 8.27811i 0
65.9 0 1.92817 2.29830i 0 −7.02261 + 4.05450i 0 1.65619 2.86860i 0 −1.56434 8.86300i 0
65.10 0 2.56384 1.55780i 0 6.30146 3.63815i 0 −4.46892 + 7.74039i 0 4.14654 7.98788i 0
65.11 0 2.74879 1.20172i 0 3.57322 2.06300i 0 5.28363 9.15151i 0 6.11174 6.60656i 0
65.12 0 2.81202 + 1.04524i 0 −5.41309 + 3.12525i 0 −3.74855 + 6.49268i 0 6.81493 + 5.87850i 0
257.1 0 −2.81202 + 1.04524i 0 −5.41309 3.12525i 0 3.74855 + 6.49268i 0 6.81493 5.87850i 0
257.2 0 −2.74879 1.20172i 0 3.57322 + 2.06300i 0 −5.28363 9.15151i 0 6.11174 + 6.60656i 0
257.3 0 −2.56384 1.55780i 0 6.30146 + 3.63815i 0 4.46892 + 7.74039i 0 4.14654 + 7.98788i 0
257.4 0 −1.92817 2.29830i 0 −7.02261 4.05450i 0 −1.65619 2.86860i 0 −1.56434 + 8.86300i 0
257.5 0 −1.65353 + 2.50317i 0 0.721152 + 0.416357i 0 1.26051 + 2.18326i 0 −3.53169 8.27811i 0
257.6 0 −0.106831 + 2.99810i 0 1.83987 + 1.06225i 0 −3.42470 5.93176i 0 −8.97717 0.640577i 0
257.7 0 0.106831 2.99810i 0 1.83987 + 1.06225i 0 3.42470 + 5.93176i 0 −8.97717 0.640577i 0
257.8 0 1.65353 2.50317i 0 0.721152 + 0.416357i 0 −1.26051 2.18326i 0 −3.53169 8.27811i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 65.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
9.d odd 6 1 inner
36.h even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.3.q.l 24
3.b odd 2 1 1728.3.q.k 24
4.b odd 2 1 inner 576.3.q.l 24
8.b even 2 1 288.3.q.b 24
8.d odd 2 1 288.3.q.b 24
9.c even 3 1 1728.3.q.k 24
9.d odd 6 1 inner 576.3.q.l 24
12.b even 2 1 1728.3.q.k 24
24.f even 2 1 864.3.q.a 24
24.h odd 2 1 864.3.q.a 24
36.f odd 6 1 1728.3.q.k 24
36.h even 6 1 inner 576.3.q.l 24
72.j odd 6 1 288.3.q.b 24
72.j odd 6 1 2592.3.e.i 24
72.l even 6 1 288.3.q.b 24
72.l even 6 1 2592.3.e.i 24
72.n even 6 1 864.3.q.a 24
72.n even 6 1 2592.3.e.i 24
72.p odd 6 1 864.3.q.a 24
72.p odd 6 1 2592.3.e.i 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.3.q.b 24 8.b even 2 1
288.3.q.b 24 8.d odd 2 1
288.3.q.b 24 72.j odd 6 1
288.3.q.b 24 72.l even 6 1
576.3.q.l 24 1.a even 1 1 trivial
576.3.q.l 24 4.b odd 2 1 inner
576.3.q.l 24 9.d odd 6 1 inner
576.3.q.l 24 36.h even 6 1 inner
864.3.q.a 24 24.f even 2 1
864.3.q.a 24 24.h odd 2 1
864.3.q.a 24 72.n even 6 1
864.3.q.a 24 72.p odd 6 1
1728.3.q.k 24 3.b odd 2 1
1728.3.q.k 24 9.c even 3 1
1728.3.q.k 24 12.b even 2 1
1728.3.q.k 24 36.f odd 6 1
2592.3.e.i 24 72.j odd 6 1
2592.3.e.i 24 72.l even 6 1
2592.3.e.i 24 72.n even 6 1
2592.3.e.i 24 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(576, [\chi])\):

\( T_{5}^{12} - 90 T_{5}^{10} + 6291 T_{5}^{8} - 7956 T_{5}^{7} - 157394 T_{5}^{6} + 325620 T_{5}^{5} + \cdots + 7246864 \) Copy content Toggle raw display
\( T_{7}^{24} + 312 T_{7}^{22} + 60858 T_{7}^{20} + 7407504 T_{7}^{18} + 660555243 T_{7}^{16} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display