L(s) = 1 | − 3.25·3-s + 1.80i·7-s + 7.57·9-s − 0.556i·11-s + (3.25 + 1.55i)13-s + 2.77·17-s + 7.83i·19-s − 5.88i·21-s − 0.140·23-s − 14.8·27-s + 1.92·29-s − 6.21i·31-s + 1.80i·33-s − 10.3i·37-s + (−10.5 − 5.06i)39-s + ⋯ |
L(s) = 1 | − 1.87·3-s + 0.683i·7-s + 2.52·9-s − 0.167i·11-s + (0.902 + 0.431i)13-s + 0.671·17-s + 1.79i·19-s − 1.28i·21-s − 0.0292·23-s − 2.86·27-s + 0.357·29-s − 1.11i·31-s + 0.314i·33-s − 1.69i·37-s + (−1.69 − 0.810i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.431 - 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.431 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9244339294\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9244339294\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3.25 - 1.55i)T \) |
good | 3 | \( 1 + 3.25T + 3T^{2} \) |
| 7 | \( 1 - 1.80iT - 7T^{2} \) |
| 11 | \( 1 + 0.556iT - 11T^{2} \) |
| 17 | \( 1 - 2.77T + 17T^{2} \) |
| 19 | \( 1 - 7.83iT - 19T^{2} \) |
| 23 | \( 1 + 0.140T + 23T^{2} \) |
| 29 | \( 1 - 1.92T + 29T^{2} \) |
| 31 | \( 1 + 6.21iT - 31T^{2} \) |
| 37 | \( 1 + 10.3iT - 37T^{2} \) |
| 41 | \( 1 - 7.27iT - 41T^{2} \) |
| 43 | \( 1 - 9.13T + 43T^{2} \) |
| 47 | \( 1 + 7.34iT - 47T^{2} \) |
| 53 | \( 1 + 7.27T + 53T^{2} \) |
| 59 | \( 1 + 1.32iT - 59T^{2} \) |
| 61 | \( 1 + 5.97T + 61T^{2} \) |
| 67 | \( 1 - 8.46iT - 67T^{2} \) |
| 71 | \( 1 + 8.09iT - 71T^{2} \) |
| 73 | \( 1 + 4.92iT - 73T^{2} \) |
| 79 | \( 1 - 1.39T + 79T^{2} \) |
| 83 | \( 1 - 16.3iT - 83T^{2} \) |
| 89 | \( 1 - 0.382iT - 89T^{2} \) |
| 97 | \( 1 + 0.607iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.198390419862366097091403522697, −8.098603164096925464684324731801, −7.37991865569970915125471170787, −6.31061498703659246835732753036, −5.91546078000403565218692168030, −5.44101354267493145212745698432, −4.37389140774907849119811283121, −3.64586190411926140752794747279, −1.96085122348417804638863427533, −0.917330278798840938859130618492,
0.57692295739817187578174576463, 1.36381010084453848036887592501, 3.12272426733833935736116131050, 4.30533680498138751487400122699, 4.85806359636118636230933155463, 5.66844230980321908234861909482, 6.39336925953405484458365111681, 7.01508992778077467986169612145, 7.67122580439795105998831661771, 8.820584698734947864655879121958