Properties

Label 2-2600-13.12-c1-0-21
Degree $2$
Conductor $2600$
Sign $0.431 - 0.902i$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.25·3-s + 1.80i·7-s + 7.57·9-s − 0.556i·11-s + (3.25 + 1.55i)13-s + 2.77·17-s + 7.83i·19-s − 5.88i·21-s − 0.140·23-s − 14.8·27-s + 1.92·29-s − 6.21i·31-s + 1.80i·33-s − 10.3i·37-s + (−10.5 − 5.06i)39-s + ⋯
L(s)  = 1  − 1.87·3-s + 0.683i·7-s + 2.52·9-s − 0.167i·11-s + (0.902 + 0.431i)13-s + 0.671·17-s + 1.79i·19-s − 1.28i·21-s − 0.0292·23-s − 2.86·27-s + 0.357·29-s − 1.11i·31-s + 0.314i·33-s − 1.69i·37-s + (−1.69 − 0.810i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.431 - 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.431 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $0.431 - 0.902i$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2600} (2001, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ 0.431 - 0.902i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9244339294\)
\(L(\frac12)\) \(\approx\) \(0.9244339294\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + (-3.25 - 1.55i)T \)
good3 \( 1 + 3.25T + 3T^{2} \)
7 \( 1 - 1.80iT - 7T^{2} \)
11 \( 1 + 0.556iT - 11T^{2} \)
17 \( 1 - 2.77T + 17T^{2} \)
19 \( 1 - 7.83iT - 19T^{2} \)
23 \( 1 + 0.140T + 23T^{2} \)
29 \( 1 - 1.92T + 29T^{2} \)
31 \( 1 + 6.21iT - 31T^{2} \)
37 \( 1 + 10.3iT - 37T^{2} \)
41 \( 1 - 7.27iT - 41T^{2} \)
43 \( 1 - 9.13T + 43T^{2} \)
47 \( 1 + 7.34iT - 47T^{2} \)
53 \( 1 + 7.27T + 53T^{2} \)
59 \( 1 + 1.32iT - 59T^{2} \)
61 \( 1 + 5.97T + 61T^{2} \)
67 \( 1 - 8.46iT - 67T^{2} \)
71 \( 1 + 8.09iT - 71T^{2} \)
73 \( 1 + 4.92iT - 73T^{2} \)
79 \( 1 - 1.39T + 79T^{2} \)
83 \( 1 - 16.3iT - 83T^{2} \)
89 \( 1 - 0.382iT - 89T^{2} \)
97 \( 1 + 0.607iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.198390419862366097091403522697, −8.098603164096925464684324731801, −7.37991865569970915125471170787, −6.31061498703659246835732753036, −5.91546078000403565218692168030, −5.44101354267493145212745698432, −4.37389140774907849119811283121, −3.64586190411926140752794747279, −1.96085122348417804638863427533, −0.917330278798840938859130618492, 0.57692295739817187578174576463, 1.36381010084453848036887592501, 3.12272426733833935736116131050, 4.30533680498138751487400122699, 4.85806359636118636230933155463, 5.66844230980321908234861909482, 6.39336925953405484458365111681, 7.01508992778077467986169612145, 7.67122580439795105998831661771, 8.820584698734947864655879121958

Graph of the $Z$-function along the critical line