Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2600,2,Mod(2001,2600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2600.2001");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2600.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 520) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2001.1 |
|
0 | −3.25249 | 0 | 0 | 0 | − | 1.80854i | 0 | 7.57872 | 0 | |||||||||||||||||||||||||||||||||||||||||
2001.2 | 0 | −3.25249 | 0 | 0 | 0 | 1.80854i | 0 | 7.57872 | 0 | |||||||||||||||||||||||||||||||||||||||||||
2001.3 | 0 | −1.18501 | 0 | 0 | 0 | − | 5.22025i | 0 | −1.59576 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2001.4 | 0 | −1.18501 | 0 | 0 | 0 | 5.22025i | 0 | −1.59576 | 0 | |||||||||||||||||||||||||||||||||||||||||||
2001.5 | 0 | −0.369700 | 0 | 0 | 0 | − | 0.956248i | 0 | −2.86332 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2001.6 | 0 | −0.369700 | 0 | 0 | 0 | 0.956248i | 0 | −2.86332 | 0 | |||||||||||||||||||||||||||||||||||||||||||
2001.7 | 0 | 2.80720 | 0 | 0 | 0 | − | 3.54454i | 0 | 4.88037 | 0 | ||||||||||||||||||||||||||||||||||||||||||
2001.8 | 0 | 2.80720 | 0 | 0 | 0 | 3.54454i | 0 | 4.88037 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2600.2.k.c | 8 | |
5.b | even | 2 | 1 | 520.2.k.b | ✓ | 8 | |
5.c | odd | 4 | 1 | 2600.2.f.e | 8 | ||
5.c | odd | 4 | 1 | 2600.2.f.f | 8 | ||
13.b | even | 2 | 1 | inner | 2600.2.k.c | 8 | |
15.d | odd | 2 | 1 | 4680.2.g.k | 8 | ||
20.d | odd | 2 | 1 | 1040.2.k.e | 8 | ||
65.d | even | 2 | 1 | 520.2.k.b | ✓ | 8 | |
65.g | odd | 4 | 1 | 6760.2.a.bc | 4 | ||
65.g | odd | 4 | 1 | 6760.2.a.bd | 4 | ||
65.h | odd | 4 | 1 | 2600.2.f.e | 8 | ||
65.h | odd | 4 | 1 | 2600.2.f.f | 8 | ||
195.e | odd | 2 | 1 | 4680.2.g.k | 8 | ||
260.g | odd | 2 | 1 | 1040.2.k.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
520.2.k.b | ✓ | 8 | 5.b | even | 2 | 1 | |
520.2.k.b | ✓ | 8 | 65.d | even | 2 | 1 | |
1040.2.k.e | 8 | 20.d | odd | 2 | 1 | ||
1040.2.k.e | 8 | 260.g | odd | 2 | 1 | ||
2600.2.f.e | 8 | 5.c | odd | 4 | 1 | ||
2600.2.f.e | 8 | 65.h | odd | 4 | 1 | ||
2600.2.f.f | 8 | 5.c | odd | 4 | 1 | ||
2600.2.f.f | 8 | 65.h | odd | 4 | 1 | ||
2600.2.k.c | 8 | 1.a | even | 1 | 1 | trivial | |
2600.2.k.c | 8 | 13.b | even | 2 | 1 | inner | |
4680.2.g.k | 8 | 15.d | odd | 2 | 1 | ||
4680.2.g.k | 8 | 195.e | odd | 2 | 1 | ||
6760.2.a.bc | 4 | 65.g | odd | 4 | 1 | ||
6760.2.a.bd | 4 | 65.g | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .