Properties

Label 2600.2.k.c
Level 26002600
Weight 22
Character orbit 2600.k
Analytic conductor 20.76120.761
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(2001,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2600=235213 2600 = 2^{3} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2600.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.761104525520.7611045255
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x7+2x6+6x5+36x452x3+50x2+140x+196 x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 36x^{4} - 52x^{3} + 50x^{2} + 140x + 196 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q3+(β5β4β2)q7+(β7+2)q9+β4q11+(β4β3+β2)q13+(β7+β3β1+1)q17++(β6+β5+2β2)q99+O(q100) q + \beta_{3} q^{3} + (\beta_{5} - \beta_{4} - \beta_{2}) q^{7} + (\beta_{7} + 2) q^{9} + \beta_{4} q^{11} + ( - \beta_{4} - \beta_{3} + \beta_{2}) q^{13} + (\beta_{7} + \beta_{3} - \beta_1 + 1) q^{17}+ \cdots + (\beta_{6} + \beta_{5} + \cdots - 2 \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q3+16q9+4q13+4q17+12q234q27+16q2940q39+24q4332q49+16q51+4q53+32q61+56q69+44q7724q79+64q8176q87+32q91+O(q100) 8 q - 4 q^{3} + 16 q^{9} + 4 q^{13} + 4 q^{17} + 12 q^{23} - 4 q^{27} + 16 q^{29} - 40 q^{39} + 24 q^{43} - 32 q^{49} + 16 q^{51} + 4 q^{53} + 32 q^{61} + 56 q^{69} + 44 q^{77} - 24 q^{79} + 64 q^{81} - 76 q^{87}+ \cdots - 32 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x7+2x6+6x5+36x452x3+50x2+140x+196 x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 36x^{4} - 52x^{3} + 50x^{2} + 140x + 196 : Copy content Toggle raw display

β1\beta_{1}== (295ν7+581ν61975ν5+12197ν428834ν3+14811ν2+52682ν+217006)/103451 ( -295\nu^{7} + 581\nu^{6} - 1975\nu^{5} + 12197\nu^{4} - 28834\nu^{3} + 14811\nu^{2} + 52682\nu + 217006 ) / 103451 Copy content Toggle raw display
β2\beta_{2}== (4733ν7+18790ν622920ν515070ν4128766ν3+794160ν2+329546)/1448314 ( - 4733 \nu^{7} + 18790 \nu^{6} - 22920 \nu^{5} - 15070 \nu^{4} - 128766 \nu^{3} + 794160 \nu^{2} + \cdots - 329546 ) / 1448314 Copy content Toggle raw display
β3\beta_{3}== (371ν7380ν61023ν5+15170ν4+10312ν39509ν226978ν+283268)/103451 ( 371\nu^{7} - 380\nu^{6} - 1023\nu^{5} + 15170\nu^{4} + 10312\nu^{3} - 9509\nu^{2} - 26978\nu + 283268 ) / 103451 Copy content Toggle raw display
β4\beta_{4}== (4804ν730853ν6+39176ν5+9329ν416490ν3693923ν2++195258)/724157 ( 4804 \nu^{7} - 30853 \nu^{6} + 39176 \nu^{5} + 9329 \nu^{4} - 16490 \nu^{3} - 693923 \nu^{2} + \cdots + 195258 ) / 724157 Copy content Toggle raw display
β5\beta_{5}== (23665ν793950ν6+114600ν5+75350ν4+643830ν32522486ν2++1647730)/1448314 ( 23665 \nu^{7} - 93950 \nu^{6} + 114600 \nu^{5} + 75350 \nu^{4} + 643830 \nu^{3} - 2522486 \nu^{2} + \cdots + 1647730 ) / 1448314 Copy content Toggle raw display
β6\beta_{6}== (37489ν735610ν6+179096ν5+120284ν4+1042570ν3+42688ν2++2631678)/1448314 ( 37489 \nu^{7} - 35610 \nu^{6} + 179096 \nu^{5} + 120284 \nu^{4} + 1042570 \nu^{3} + 42688 \nu^{2} + \cdots + 2631678 ) / 1448314 Copy content Toggle raw display
β7\beta_{7}== (2968ν73040ν68184ν5+17909ν4+82496ν376072ν2215824ν+93673)/103451 ( 2968\nu^{7} - 3040\nu^{6} - 8184\nu^{5} + 17909\nu^{4} + 82496\nu^{3} - 76072\nu^{2} - 215824\nu + 93673 ) / 103451 Copy content Toggle raw display
ν\nu== (β5β4β3+β2+β1)/2 ( \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β5+5β2 \beta_{5} + 5\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (β7β6+5β55β4+5β3+8β25β13)/2 ( -\beta_{7} - \beta_{6} + 5\beta_{5} - 5\beta_{4} + 5\beta_{3} + 8\beta_{2} - 5\beta _1 - 3 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== β7+8β321 -\beta_{7} + 8\beta_{3} - 21 Copy content Toggle raw display
ν5\nu^{5}== 5β7+5β616β5+13β4+16β329β213β113 -5\beta_{7} + 5\beta_{6} - 16\beta_{5} + 13\beta_{4} + 16\beta_{3} - 29\beta_{2} - 13\beta _1 - 13 Copy content Toggle raw display
ν6\nu^{6}== 13β657β5+β4180β2 13\beta_{6} - 57\beta_{5} + \beta_{4} - 180\beta_{2} Copy content Toggle raw display
ν7\nu^{7}== 41β7+41β6110β5+70β4110β3211β2+70β1+101 41\beta_{7} + 41\beta_{6} - 110\beta_{5} + 70\beta_{4} - 110\beta_{3} - 211\beta_{2} + 70\beta _1 + 101 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2600Z)×\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times.

nn 13011301 16011601 19511951 19771977
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2001.1
1.90427 1.90427i
1.90427 + 1.90427i
−1.61013 1.61013i
−1.61013 + 1.61013i
1.47812 1.47812i
1.47812 + 1.47812i
−0.772270 0.772270i
−0.772270 + 0.772270i
0 −3.25249 0 0 0 1.80854i 0 7.57872 0
2001.2 0 −3.25249 0 0 0 1.80854i 0 7.57872 0
2001.3 0 −1.18501 0 0 0 5.22025i 0 −1.59576 0
2001.4 0 −1.18501 0 0 0 5.22025i 0 −1.59576 0
2001.5 0 −0.369700 0 0 0 0.956248i 0 −2.86332 0
2001.6 0 −0.369700 0 0 0 0.956248i 0 −2.86332 0
2001.7 0 2.80720 0 0 0 3.54454i 0 4.88037 0
2001.8 0 2.80720 0 0 0 3.54454i 0 4.88037 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2001.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.2.k.c 8
5.b even 2 1 520.2.k.b 8
5.c odd 4 1 2600.2.f.e 8
5.c odd 4 1 2600.2.f.f 8
13.b even 2 1 inner 2600.2.k.c 8
15.d odd 2 1 4680.2.g.k 8
20.d odd 2 1 1040.2.k.e 8
65.d even 2 1 520.2.k.b 8
65.g odd 4 1 6760.2.a.bc 4
65.g odd 4 1 6760.2.a.bd 4
65.h odd 4 1 2600.2.f.e 8
65.h odd 4 1 2600.2.f.f 8
195.e odd 2 1 4680.2.g.k 8
260.g odd 2 1 1040.2.k.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.2.k.b 8 5.b even 2 1
520.2.k.b 8 65.d even 2 1
1040.2.k.e 8 20.d odd 2 1
1040.2.k.e 8 260.g odd 2 1
2600.2.f.e 8 5.c odd 4 1
2600.2.f.e 8 65.h odd 4 1
2600.2.f.f 8 5.c odd 4 1
2600.2.f.f 8 65.h odd 4 1
2600.2.k.c 8 1.a even 1 1 trivial
2600.2.k.c 8 13.b even 2 1 inner
4680.2.g.k 8 15.d odd 2 1
4680.2.g.k 8 195.e odd 2 1
6760.2.a.bc 4 65.g odd 4 1
6760.2.a.bd 4 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+2T338T3214T34 T_{3}^{4} + 2T_{3}^{3} - 8T_{3}^{2} - 14T_{3} - 4 acting on S2new(2600,[χ])S_{2}^{\mathrm{new}}(2600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+2T38T2+4)2 (T^{4} + 2 T^{3} - 8 T^{2} + \cdots - 4)^{2} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+44T6++1024 T^{8} + 44 T^{6} + \cdots + 1024 Copy content Toggle raw display
1111 T8+28T6++64 T^{8} + 28 T^{6} + \cdots + 64 Copy content Toggle raw display
1313 T84T7++28561 T^{8} - 4 T^{7} + \cdots + 28561 Copy content Toggle raw display
1717 (T42T340T2+64)2 (T^{4} - 2 T^{3} - 40 T^{2} + \cdots - 64)^{2} Copy content Toggle raw display
1919 T8+104T6++18496 T^{8} + 104 T^{6} + \cdots + 18496 Copy content Toggle raw display
2323 (T46T364T2++56)2 (T^{4} - 6 T^{3} - 64 T^{2} + \cdots + 56)^{2} Copy content Toggle raw display
2929 (T48T3+664)2 (T^{4} - 8 T^{3} + \cdots - 664)^{2} Copy content Toggle raw display
3131 T8+216T6++6130576 T^{8} + 216 T^{6} + \cdots + 6130576 Copy content Toggle raw display
3737 T8+172T6++53824 T^{8} + 172 T^{6} + \cdots + 53824 Copy content Toggle raw display
4141 T8+124T6++16384 T^{8} + 124 T^{6} + \cdots + 16384 Copy content Toggle raw display
4343 (T412T3+236)2 (T^{4} - 12 T^{3} + \cdots - 236)^{2} Copy content Toggle raw display
4747 T8+284T6++7311616 T^{8} + 284 T^{6} + \cdots + 7311616 Copy content Toggle raw display
5353 (T42T3++128)2 (T^{4} - 2 T^{3} + \cdots + 128)^{2} Copy content Toggle raw display
5959 T8+96T6++50176 T^{8} + 96 T^{6} + \cdots + 50176 Copy content Toggle raw display
6161 (T416T3++2264)2 (T^{4} - 16 T^{3} + \cdots + 2264)^{2} Copy content Toggle raw display
6767 T8+388T6++63744256 T^{8} + 388 T^{6} + \cdots + 63744256 Copy content Toggle raw display
7171 T8+348T6++1430416 T^{8} + 348 T^{6} + \cdots + 1430416 Copy content Toggle raw display
7373 T8+236T6++222784 T^{8} + 236 T^{6} + \cdots + 222784 Copy content Toggle raw display
7979 (T4+12T3++1024)2 (T^{4} + 12 T^{3} + \cdots + 1024)^{2} Copy content Toggle raw display
8383 T8+388T6++891136 T^{8} + 388 T^{6} + \cdots + 891136 Copy content Toggle raw display
8989 T8+336T6++16384 T^{8} + 336 T^{6} + \cdots + 16384 Copy content Toggle raw display
9797 T8+336T6++215296 T^{8} + 336 T^{6} + \cdots + 215296 Copy content Toggle raw display
show more
show less