Properties

Label 2-2640-12.11-c1-0-49
Degree $2$
Conductor $2640$
Sign $0.356 + 0.934i$
Analytic cond. $21.0805$
Root an. cond. $4.59135$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 + 0.618i)3-s i·5-s + 2.07i·7-s + (2.23 − 2.00i)9-s − 11-s + 6.58·13-s + (0.618 + 1.61i)15-s − 4.07i·17-s − 4.18i·19-s + (−1.28 − 3.35i)21-s − 6.70·23-s − 25-s + (−2.38 + 4.61i)27-s + 2.18i·29-s − 8.70i·31-s + ⋯
L(s)  = 1  + (−0.934 + 0.356i)3-s − 0.447i·5-s + 0.783i·7-s + (0.745 − 0.666i)9-s − 0.301·11-s + 1.82·13-s + (0.159 + 0.417i)15-s − 0.987i·17-s − 0.960i·19-s + (−0.279 − 0.731i)21-s − 1.39·23-s − 0.200·25-s + (−0.458 + 0.888i)27-s + 0.406i·29-s − 1.56i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2640\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 11\)
Sign: $0.356 + 0.934i$
Analytic conductor: \(21.0805\)
Root analytic conductor: \(4.59135\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2640} (1871, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2640,\ (\ :1/2),\ 0.356 + 0.934i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.020556715\)
\(L(\frac12)\) \(\approx\) \(1.020556715\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.61 - 0.618i)T \)
5 \( 1 + iT \)
11 \( 1 + T \)
good7 \( 1 - 2.07iT - 7T^{2} \)
13 \( 1 - 6.58T + 13T^{2} \)
17 \( 1 + 4.07iT - 17T^{2} \)
19 \( 1 + 4.18iT - 19T^{2} \)
23 \( 1 + 6.70T + 23T^{2} \)
29 \( 1 - 2.18iT - 29T^{2} \)
31 \( 1 + 8.70iT - 31T^{2} \)
37 \( 1 + 9.61T + 37T^{2} \)
41 \( 1 - 6.18iT - 41T^{2} \)
43 \( 1 - 11.2iT - 43T^{2} \)
47 \( 1 - 9.94T + 47T^{2} \)
53 \( 1 + 5.94iT - 53T^{2} \)
59 \( 1 + 0.532T + 59T^{2} \)
61 \( 1 - 0.704T + 61T^{2} \)
67 \( 1 + 4.14iT - 67T^{2} \)
71 \( 1 + 5.37T + 71T^{2} \)
73 \( 1 + 4.25T + 73T^{2} \)
79 \( 1 + 11.9iT - 79T^{2} \)
83 \( 1 - 2.25T + 83T^{2} \)
89 \( 1 + 17.5iT - 89T^{2} \)
97 \( 1 - 7.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.863469826626804808370613273407, −8.055826399623313865592286561723, −7.06596119284546989625097657870, −6.06661933895449422408482006575, −5.77851487622195042405480764644, −4.83377905589336601537237264774, −4.11444843170446484315048976354, −3.05856772816147809838929956894, −1.71062457221034350879448793273, −0.43937626299655193506837503797, 1.10872049940344023890306750787, 2.01574884410321890921528670043, 3.79013236488572669552551565728, 3.92185223826073096678460767909, 5.40683158417529336610661200854, 5.94837867081613155903032166984, 6.64840994858648375580463531583, 7.35996597204259991010820254591, 8.158930766430738009907060779383, 8.823902177797321474893150281094

Graph of the $Z$-function along the critical line