L(s) = 1 | + (−1.61 + 0.618i)3-s − i·5-s + 2.07i·7-s + (2.23 − 2.00i)9-s − 11-s + 6.58·13-s + (0.618 + 1.61i)15-s − 4.07i·17-s − 4.18i·19-s + (−1.28 − 3.35i)21-s − 6.70·23-s − 25-s + (−2.38 + 4.61i)27-s + 2.18i·29-s − 8.70i·31-s + ⋯ |
L(s) = 1 | + (−0.934 + 0.356i)3-s − 0.447i·5-s + 0.783i·7-s + (0.745 − 0.666i)9-s − 0.301·11-s + 1.82·13-s + (0.159 + 0.417i)15-s − 0.987i·17-s − 0.960i·19-s + (−0.279 − 0.731i)21-s − 1.39·23-s − 0.200·25-s + (−0.458 + 0.888i)27-s + 0.406i·29-s − 1.56i·31-s + ⋯ |
Λ(s)=(=(2640s/2ΓC(s)L(s)(0.356+0.934i)Λ(2−s)
Λ(s)=(=(2640s/2ΓC(s+1/2)L(s)(0.356+0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
2640
= 24⋅3⋅5⋅11
|
Sign: |
0.356+0.934i
|
Analytic conductor: |
21.0805 |
Root analytic conductor: |
4.59135 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2640(1871,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2640, ( :1/2), 0.356+0.934i)
|
Particular Values
L(1) |
≈ |
1.020556715 |
L(21) |
≈ |
1.020556715 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.61−0.618i)T |
| 5 | 1+iT |
| 11 | 1+T |
good | 7 | 1−2.07iT−7T2 |
| 13 | 1−6.58T+13T2 |
| 17 | 1+4.07iT−17T2 |
| 19 | 1+4.18iT−19T2 |
| 23 | 1+6.70T+23T2 |
| 29 | 1−2.18iT−29T2 |
| 31 | 1+8.70iT−31T2 |
| 37 | 1+9.61T+37T2 |
| 41 | 1−6.18iT−41T2 |
| 43 | 1−11.2iT−43T2 |
| 47 | 1−9.94T+47T2 |
| 53 | 1+5.94iT−53T2 |
| 59 | 1+0.532T+59T2 |
| 61 | 1−0.704T+61T2 |
| 67 | 1+4.14iT−67T2 |
| 71 | 1+5.37T+71T2 |
| 73 | 1+4.25T+73T2 |
| 79 | 1+11.9iT−79T2 |
| 83 | 1−2.25T+83T2 |
| 89 | 1+17.5iT−89T2 |
| 97 | 1−7.85T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.863469826626804808370613273407, −8.055826399623313865592286561723, −7.06596119284546989625097657870, −6.06661933895449422408482006575, −5.77851487622195042405480764644, −4.83377905589336601537237264774, −4.11444843170446484315048976354, −3.05856772816147809838929956894, −1.71062457221034350879448793273, −0.43937626299655193506837503797,
1.10872049940344023890306750787, 2.01574884410321890921528670043, 3.79013236488572669552551565728, 3.92185223826073096678460767909, 5.40683158417529336610661200854, 5.94837867081613155903032166984, 6.64840994858648375580463531583, 7.35996597204259991010820254591, 8.158930766430738009907060779383, 8.823902177797321474893150281094