gp: [N,k,chi] = [2640,2,Mod(1871,2640)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2640.1871");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,-4,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 43 x 4 + 361 x^{8} + 43x^{4} + 361 x 8 + 4 3 x 4 + 3 6 1
x^8 + 43*x^4 + 361
:
β 1 \beta_{1} β 1 = = =
( ν 6 + 62 ν 2 ) / 171 ( \nu^{6} + 62\nu^{2} ) / 171 ( ν 6 + 6 2 ν 2 ) / 1 7 1
(v^6 + 62*v^2) / 171
β 2 \beta_{2} β 2 = = =
( ν 7 + 62 ν 3 + 171 ν ) / 171 ( \nu^{7} + 62\nu^{3} + 171\nu ) / 171 ( ν 7 + 6 2 ν 3 + 1 7 1 ν ) / 1 7 1
(v^7 + 62*v^3 + 171*v) / 171
β 3 \beta_{3} β 3 = = =
( − ν 7 − 62 ν 3 + 171 ν ) / 171 ( -\nu^{7} - 62\nu^{3} + 171\nu ) / 171 ( − ν 7 − 6 2 ν 3 + 1 7 1 ν ) / 1 7 1
(-v^7 - 62*v^3 + 171*v) / 171
β 4 \beta_{4} β 4 = = =
( − 5 ν 6 + 19 ν 4 − 139 ν 2 + 323 ) / 171 ( -5\nu^{6} + 19\nu^{4} - 139\nu^{2} + 323 ) / 171 ( − 5 ν 6 + 1 9 ν 4 − 1 3 9 ν 2 + 3 2 3 ) / 1 7 1
(-5*v^6 + 19*v^4 - 139*v^2 + 323) / 171
β 5 \beta_{5} β 5 = = =
( − 5 ν 6 − 19 ν 4 − 139 ν 2 − 323 ) / 171 ( -5\nu^{6} - 19\nu^{4} - 139\nu^{2} - 323 ) / 171 ( − 5 ν 6 − 1 9 ν 4 − 1 3 9 ν 2 − 3 2 3 ) / 1 7 1
(-5*v^6 - 19*v^4 - 139*v^2 - 323) / 171
β 6 \beta_{6} β 6 = = =
( − 5 ν 7 + 19 ν 5 − 139 ν 3 + 494 ν ) / 171 ( -5\nu^{7} + 19\nu^{5} - 139\nu^{3} + 494\nu ) / 171 ( − 5 ν 7 + 1 9 ν 5 − 1 3 9 ν 3 + 4 9 4 ν ) / 1 7 1
(-5*v^7 + 19*v^5 - 139*v^3 + 494*v) / 171
β 7 \beta_{7} β 7 = = =
( − 5 ν 7 − 19 ν 5 − 139 ν 3 − 494 ν ) / 171 ( -5\nu^{7} - 19\nu^{5} - 139\nu^{3} - 494\nu ) / 171 ( − 5 ν 7 − 1 9 ν 5 − 1 3 9 ν 3 − 4 9 4 ν ) / 1 7 1
(-5*v^7 - 19*v^5 - 139*v^3 - 494*v) / 171
ν \nu ν = = =
( β 3 + β 2 ) / 2 ( \beta_{3} + \beta_{2} ) / 2 ( β 3 + β 2 ) / 2
(b3 + b2) / 2
ν 2 \nu^{2} ν 2 = = =
( β 5 + β 4 + 10 β 1 ) / 2 ( \beta_{5} + \beta_{4} + 10\beta_1 ) / 2 ( β 5 + β 4 + 1 0 β 1 ) / 2
(b5 + b4 + 10*b1) / 2
ν 3 \nu^{3} ν 3 = = =
( β 7 + β 6 − 5 β 3 + 5 β 2 ) / 2 ( \beta_{7} + \beta_{6} - 5\beta_{3} + 5\beta_{2} ) / 2 ( β 7 + β 6 − 5 β 3 + 5 β 2 ) / 2
(b7 + b6 - 5*b3 + 5*b2) / 2
ν 4 \nu^{4} ν 4 = = =
( − 9 β 5 + 9 β 4 − 34 ) / 2 ( -9\beta_{5} + 9\beta_{4} - 34 ) / 2 ( − 9 β 5 + 9 β 4 − 3 4 ) / 2
(-9*b5 + 9*b4 - 34) / 2
ν 5 \nu^{5} ν 5 = = =
( − 9 β 7 + 9 β 6 − 26 β 3 − 26 β 2 ) / 2 ( -9\beta_{7} + 9\beta_{6} - 26\beta_{3} - 26\beta_{2} ) / 2 ( − 9 β 7 + 9 β 6 − 2 6 β 3 − 2 6 β 2 ) / 2
(-9*b7 + 9*b6 - 26*b3 - 26*b2) / 2
ν 6 \nu^{6} ν 6 = = =
− 31 β 5 − 31 β 4 − 139 β 1 -31\beta_{5} - 31\beta_{4} - 139\beta_1 − 3 1 β 5 − 3 1 β 4 − 1 3 9 β 1
-31*b5 - 31*b4 - 139*b1
ν 7 \nu^{7} ν 7 = = =
( − 62 β 7 − 62 β 6 + 139 β 3 − 139 β 2 ) / 2 ( -62\beta_{7} - 62\beta_{6} + 139\beta_{3} - 139\beta_{2} ) / 2 ( − 6 2 β 7 − 6 2 β 6 + 1 3 9 β 3 − 1 3 9 β 2 ) / 2
(-62*b7 - 62*b6 + 139*b3 - 139*b2) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 2640 Z ) × \left(\mathbb{Z}/2640\mathbb{Z}\right)^\times ( Z / 2 6 4 0 Z ) × .
n n n
661 661 6 6 1
881 881 8 8 1
991 991 9 9 1
1057 1057 1 0 5 7
1201 1201 1 2 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2640 , [ χ ] ) S_{2}^{\mathrm{new}}(2640, [\chi]) S 2 n e w ( 2 6 4 0 , [ χ ] ) :
T 7 4 + 22 T 7 2 + 76 T_{7}^{4} + 22T_{7}^{2} + 76 T 7 4 + 2 2 T 7 2 + 7 6
T7^4 + 22*T7^2 + 76
T 23 4 − 72 T 23 2 + 1216 T_{23}^{4} - 72T_{23}^{2} + 1216 T 2 3 4 − 7 2 T 2 3 2 + 1 2 1 6
T23^4 - 72*T23^2 + 1216
T 47 4 − 4 T 47 3 − 76 T 47 2 + 80 T 47 + 880 T_{47}^{4} - 4T_{47}^{3} - 76T_{47}^{2} + 80T_{47} + 880 T 4 7 4 − 4 T 4 7 3 − 7 6 T 4 7 2 + 8 0 T 4 7 + 8 8 0
T47^4 - 4*T47^3 - 76*T47^2 + 80*T47 + 880
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 4 + 2 T 3 + 2 T 2 + ⋯ + 9 ) 2 (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 9)^{2} ( T 4 + 2 T 3 + 2 T 2 + ⋯ + 9 ) 2
(T^4 + 2*T^3 + 2*T^2 + 6*T + 9)^2
5 5 5
( T 2 + 1 ) 4 (T^{2} + 1)^{4} ( T 2 + 1 ) 4
(T^2 + 1)^4
7 7 7
( T 4 + 22 T 2 + 76 ) 2 (T^{4} + 22 T^{2} + 76)^{2} ( T 4 + 2 2 T 2 + 7 6 ) 2
(T^4 + 22*T^2 + 76)^2
11 11 1 1
( T + 1 ) 8 (T + 1)^{8} ( T + 1 ) 8
(T + 1)^8
13 13 1 3
( T 4 − 4 T 3 − 22 T 2 + ⋯ + 4 ) 2 (T^{4} - 4 T^{3} - 22 T^{2} + \cdots + 4)^{2} ( T 4 − 4 T 3 − 2 2 T 2 + ⋯ + 4 ) 2
(T^4 - 4*T^3 - 22*T^2 + 32*T + 4)^2
17 17 1 7
T 8 + 60 T 6 + ⋯ + 16 T^{8} + 60 T^{6} + \cdots + 16 T 8 + 6 0 T 6 + ⋯ + 1 6
T^8 + 60*T^6 + 908*T^4 + 3120*T^2 + 16
19 19 1 9
T 8 + 88 T 6 + ⋯ + 48400 T^{8} + 88 T^{6} + \cdots + 48400 T 8 + 8 8 T 6 + ⋯ + 4 8 4 0 0
T^8 + 88*T^6 + 2456*T^4 + 24160*T^2 + 48400
23 23 2 3
( T 4 − 72 T 2 + 1216 ) 2 (T^{4} - 72 T^{2} + 1216)^{2} ( T 4 − 7 2 T 2 + 1 2 1 6 ) 2
(T^4 - 72*T^2 + 1216)^2
29 29 2 9
T 8 + 88 T 6 + ⋯ + 400 T^{8} + 88 T^{6} + \cdots + 400 T 8 + 8 8 T 6 + ⋯ + 4 0 0
T^8 + 88*T^6 + 1016*T^4 + 3040*T^2 + 400
31 31 3 1
T 8 + 160 T 6 + ⋯ + 891136 T^{8} + 160 T^{6} + \cdots + 891136 T 8 + 1 6 0 T 6 + ⋯ + 8 9 1 1 3 6
T^8 + 160*T^6 + 8288*T^4 + 156160*T^2 + 891136
37 37 3 7
( T 4 + 4 T 3 − 132 T 2 + ⋯ − 16 ) 2 (T^{4} + 4 T^{3} - 132 T^{2} + \cdots - 16)^{2} ( T 4 + 4 T 3 − 1 3 2 T 2 + ⋯ − 1 6 ) 2
(T^4 + 4*T^3 - 132*T^2 - 752*T - 16)^2
41 41 4 1
T 8 + 120 T 6 + ⋯ + 512656 T^{8} + 120 T^{6} + \cdots + 512656 T 8 + 1 2 0 T 6 + ⋯ + 5 1 2 6 5 6
T^8 + 120*T^6 + 5048*T^4 + 86880*T^2 + 512656
43 43 4 3
T 8 + 252 T 6 + ⋯ + 8410000 T^{8} + 252 T^{6} + \cdots + 8410000 T 8 + 2 5 2 T 6 + ⋯ + 8 4 1 0 0 0 0
T^8 + 252*T^6 + 20956*T^4 + 709200*T^2 + 8410000
47 47 4 7
( T 4 − 4 T 3 + ⋯ + 880 ) 2 (T^{4} - 4 T^{3} + \cdots + 880)^{2} ( T 4 − 4 T 3 + ⋯ + 8 8 0 ) 2
(T^4 - 4*T^3 - 76*T^2 + 80*T + 880)^2
53 53 5 3
T 8 + 200 T 6 + ⋯ + 256 T^{8} + 200 T^{6} + \cdots + 256 T 8 + 2 0 0 T 6 + ⋯ + 2 5 6
T^8 + 200*T^6 + 11888*T^4 + 214400*T^2 + 256
59 59 5 9
( T 4 + 20 T 3 + ⋯ − 144 ) 2 (T^{4} + 20 T^{3} + \cdots - 144)^{2} ( T 4 + 2 0 T 3 + ⋯ − 1 4 4 ) 2
(T^4 + 20*T^3 + 68*T^2 - 240*T - 144)^2
61 61 6 1
( T 4 + 24 T 3 + ⋯ − 80 ) 2 (T^{4} + 24 T^{3} + \cdots - 80)^{2} ( T 4 + 2 4 T 3 + ⋯ − 8 0 ) 2
(T^4 + 24*T^3 + 144*T^2 - 80)^2
67 67 6 7
( T 4 + 88 T 2 + 1216 ) 2 (T^{4} + 88 T^{2} + 1216)^{2} ( T 4 + 8 8 T 2 + 1 2 1 6 ) 2
(T^4 + 88*T^2 + 1216)^2
71 71 7 1
( T 4 − 4 T 3 + ⋯ + 944 ) 2 (T^{4} - 4 T^{3} + \cdots + 944)^{2} ( T 4 − 4 T 3 + ⋯ + 9 4 4 ) 2
(T^4 - 4*T^3 - 92*T^2 - 48*T + 944)^2
73 73 7 3
( T 4 − 4 T 3 + ⋯ + 1476 ) 2 (T^{4} - 4 T^{3} + \cdots + 1476)^{2} ( T 4 − 4 T 3 + ⋯ + 1 4 7 6 ) 2
(T^4 - 4*T^3 - 94*T^2 + 96*T + 1476)^2
79 79 7 9
T 8 + 600 T 6 + ⋯ + 27920656 T^{8} + 600 T^{6} + \cdots + 27920656 T 8 + 6 0 0 T 6 + ⋯ + 2 7 9 2 0 6 5 6
T^8 + 600*T^6 + 118168*T^4 + 7747680*T^2 + 27920656
83 83 8 3
( T 4 + 12 T 3 + ⋯ + 956 ) 2 (T^{4} + 12 T^{3} + \cdots + 956)^{2} ( T 4 + 1 2 T 3 + ⋯ + 9 5 6 ) 2
(T^4 + 12*T^3 - 46*T^2 - 392*T + 956)^2
89 89 8 9
T 8 + ⋯ + 1468422400 T^{8} + \cdots + 1468422400 T 8 + ⋯ + 1 4 6 8 4 2 2 4 0 0
T^8 + 848*T^6 + 256736*T^4 + 32610560*T^2 + 1468422400
97 97 9 7
( T 4 + 12 T 3 + ⋯ − 80 ) 2 (T^{4} + 12 T^{3} + \cdots - 80)^{2} ( T 4 + 1 2 T 3 + ⋯ − 8 0 ) 2
(T^4 + 12*T^3 - 124*T^2 - 240*T - 80)^2
show more
show less