Properties

Label 2640.2.k.c
Level 26402640
Weight 22
Character orbit 2640.k
Analytic conductor 21.08121.081
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1871,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1871");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2640=243511 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2640.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.080506133621.0805061336
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.14786560000.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+43x4+361 x^{8} + 43x^{4} + 361 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 23 2^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β4q3β1q5+β7q7+(β5β42β11)q9q11+(β5β4+β3)q13+(β5+β11)q15+(β72β1)q17++(β5+β4+2β1+1)q99+O(q100) q + \beta_{4} q^{3} - \beta_1 q^{5} + \beta_{7} q^{7} + (\beta_{5} - \beta_{4} - 2 \beta_1 - 1) q^{9} - q^{11} + (\beta_{5} - \beta_{4} + \beta_{3}) q^{13} + (\beta_{5} + \beta_1 - 1) q^{15} + ( - \beta_{7} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{5} + \beta_{4} + 2 \beta_1 + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q38q11+8q134q158q2528q27+4q338q3724q3916q45+8q4732q498q5124q5740q5948q61+8q71+8q73+24q97+O(q100) 8 q - 4 q^{3} - 8 q^{11} + 8 q^{13} - 4 q^{15} - 8 q^{25} - 28 q^{27} + 4 q^{33} - 8 q^{37} - 24 q^{39} - 16 q^{45} + 8 q^{47} - 32 q^{49} - 8 q^{51} - 24 q^{57} - 40 q^{59} - 48 q^{61} + 8 q^{71} + 8 q^{73}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+43x4+361 x^{8} + 43x^{4} + 361 : Copy content Toggle raw display

β1\beta_{1}== (ν6+62ν2)/171 ( \nu^{6} + 62\nu^{2} ) / 171 Copy content Toggle raw display
β2\beta_{2}== (ν7+62ν3+171ν)/171 ( \nu^{7} + 62\nu^{3} + 171\nu ) / 171 Copy content Toggle raw display
β3\beta_{3}== (ν762ν3+171ν)/171 ( -\nu^{7} - 62\nu^{3} + 171\nu ) / 171 Copy content Toggle raw display
β4\beta_{4}== (5ν6+19ν4139ν2+323)/171 ( -5\nu^{6} + 19\nu^{4} - 139\nu^{2} + 323 ) / 171 Copy content Toggle raw display
β5\beta_{5}== (5ν619ν4139ν2323)/171 ( -5\nu^{6} - 19\nu^{4} - 139\nu^{2} - 323 ) / 171 Copy content Toggle raw display
β6\beta_{6}== (5ν7+19ν5139ν3+494ν)/171 ( -5\nu^{7} + 19\nu^{5} - 139\nu^{3} + 494\nu ) / 171 Copy content Toggle raw display
β7\beta_{7}== (5ν719ν5139ν3494ν)/171 ( -5\nu^{7} - 19\nu^{5} - 139\nu^{3} - 494\nu ) / 171 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+β4+10β1)/2 ( \beta_{5} + \beta_{4} + 10\beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β7+β65β3+5β2)/2 ( \beta_{7} + \beta_{6} - 5\beta_{3} + 5\beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (9β5+9β434)/2 ( -9\beta_{5} + 9\beta_{4} - 34 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (9β7+9β626β326β2)/2 ( -9\beta_{7} + 9\beta_{6} - 26\beta_{3} - 26\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 31β531β4139β1 -31\beta_{5} - 31\beta_{4} - 139\beta_1 Copy content Toggle raw display
ν7\nu^{7}== (62β762β6+139β3139β2)/2 ( -62\beta_{7} - 62\beta_{6} + 139\beta_{3} - 139\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2640Z)×\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times.

nn 661661 881881 991991 10571057 12011201
χ(n)\chi(n) 11 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1871.1
1.67601 1.67601i
−1.67601 + 1.67601i
−1.67601 1.67601i
1.67601 + 1.67601i
1.30038 + 1.30038i
−1.30038 1.30038i
−1.30038 + 1.30038i
1.30038 1.30038i
0 −1.61803 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 + 2.00000i 0
1871.2 0 −1.61803 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 + 2.00000i 0
1871.3 0 −1.61803 + 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 2.00000i 0
1871.4 0 −1.61803 + 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 2.00000i 0
1871.5 0 0.618034 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 2.00000i 0
1871.6 0 0.618034 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 2.00000i 0
1871.7 0 0.618034 + 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 + 2.00000i 0
1871.8 0 0.618034 + 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 + 2.00000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1871.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.k.c 8
3.b odd 2 1 2640.2.k.e yes 8
4.b odd 2 1 2640.2.k.e yes 8
12.b even 2 1 inner 2640.2.k.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2640.2.k.c 8 1.a even 1 1 trivial
2640.2.k.c 8 12.b even 2 1 inner
2640.2.k.e yes 8 3.b odd 2 1
2640.2.k.e yes 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2640,[χ])S_{2}^{\mathrm{new}}(2640, [\chi]):

T74+22T72+76 T_{7}^{4} + 22T_{7}^{2} + 76 Copy content Toggle raw display
T23472T232+1216 T_{23}^{4} - 72T_{23}^{2} + 1216 Copy content Toggle raw display
T4744T47376T472+80T47+880 T_{47}^{4} - 4T_{47}^{3} - 76T_{47}^{2} + 80T_{47} + 880 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+2T3+2T2++9)2 (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 9)^{2} Copy content Toggle raw display
55 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
77 (T4+22T2+76)2 (T^{4} + 22 T^{2} + 76)^{2} Copy content Toggle raw display
1111 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
1313 (T44T322T2++4)2 (T^{4} - 4 T^{3} - 22 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
1717 T8+60T6++16 T^{8} + 60 T^{6} + \cdots + 16 Copy content Toggle raw display
1919 T8+88T6++48400 T^{8} + 88 T^{6} + \cdots + 48400 Copy content Toggle raw display
2323 (T472T2+1216)2 (T^{4} - 72 T^{2} + 1216)^{2} Copy content Toggle raw display
2929 T8+88T6++400 T^{8} + 88 T^{6} + \cdots + 400 Copy content Toggle raw display
3131 T8+160T6++891136 T^{8} + 160 T^{6} + \cdots + 891136 Copy content Toggle raw display
3737 (T4+4T3132T2+16)2 (T^{4} + 4 T^{3} - 132 T^{2} + \cdots - 16)^{2} Copy content Toggle raw display
4141 T8+120T6++512656 T^{8} + 120 T^{6} + \cdots + 512656 Copy content Toggle raw display
4343 T8+252T6++8410000 T^{8} + 252 T^{6} + \cdots + 8410000 Copy content Toggle raw display
4747 (T44T3++880)2 (T^{4} - 4 T^{3} + \cdots + 880)^{2} Copy content Toggle raw display
5353 T8+200T6++256 T^{8} + 200 T^{6} + \cdots + 256 Copy content Toggle raw display
5959 (T4+20T3+144)2 (T^{4} + 20 T^{3} + \cdots - 144)^{2} Copy content Toggle raw display
6161 (T4+24T3+80)2 (T^{4} + 24 T^{3} + \cdots - 80)^{2} Copy content Toggle raw display
6767 (T4+88T2+1216)2 (T^{4} + 88 T^{2} + 1216)^{2} Copy content Toggle raw display
7171 (T44T3++944)2 (T^{4} - 4 T^{3} + \cdots + 944)^{2} Copy content Toggle raw display
7373 (T44T3++1476)2 (T^{4} - 4 T^{3} + \cdots + 1476)^{2} Copy content Toggle raw display
7979 T8+600T6++27920656 T^{8} + 600 T^{6} + \cdots + 27920656 Copy content Toggle raw display
8383 (T4+12T3++956)2 (T^{4} + 12 T^{3} + \cdots + 956)^{2} Copy content Toggle raw display
8989 T8++1468422400 T^{8} + \cdots + 1468422400 Copy content Toggle raw display
9797 (T4+12T3+80)2 (T^{4} + 12 T^{3} + \cdots - 80)^{2} Copy content Toggle raw display
show more
show less