Properties

Label 2640.2.k.c
Level $2640$
Weight $2$
Character orbit 2640.k
Analytic conductor $21.081$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1871,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1871");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.14786560000.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 43x^{4} + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} - \beta_1 q^{5} + \beta_{7} q^{7} + (\beta_{5} - \beta_{4} - 2 \beta_1 - 1) q^{9} - q^{11} + (\beta_{5} - \beta_{4} + \beta_{3}) q^{13} + (\beta_{5} + \beta_1 - 1) q^{15} + ( - \beta_{7} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{5} + \beta_{4} + 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{11} + 8 q^{13} - 4 q^{15} - 8 q^{25} - 28 q^{27} + 4 q^{33} - 8 q^{37} - 24 q^{39} - 16 q^{45} + 8 q^{47} - 32 q^{49} - 8 q^{51} - 24 q^{57} - 40 q^{59} - 48 q^{61} + 8 q^{71} + 8 q^{73}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 43x^{4} + 361 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 62\nu^{2} ) / 171 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 62\nu^{3} + 171\nu ) / 171 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 62\nu^{3} + 171\nu ) / 171 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{6} + 19\nu^{4} - 139\nu^{2} + 323 ) / 171 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{6} - 19\nu^{4} - 139\nu^{2} - 323 ) / 171 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -5\nu^{7} + 19\nu^{5} - 139\nu^{3} + 494\nu ) / 171 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} - 19\nu^{5} - 139\nu^{3} - 494\nu ) / 171 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} + 10\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + \beta_{6} - 5\beta_{3} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -9\beta_{5} + 9\beta_{4} - 34 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -9\beta_{7} + 9\beta_{6} - 26\beta_{3} - 26\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -31\beta_{5} - 31\beta_{4} - 139\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -62\beta_{7} - 62\beta_{6} + 139\beta_{3} - 139\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1871.1
1.67601 1.67601i
−1.67601 + 1.67601i
−1.67601 1.67601i
1.67601 + 1.67601i
1.30038 + 1.30038i
−1.30038 1.30038i
−1.30038 + 1.30038i
1.30038 1.30038i
0 −1.61803 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 + 2.00000i 0
1871.2 0 −1.61803 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 + 2.00000i 0
1871.3 0 −1.61803 + 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 2.00000i 0
1871.4 0 −1.61803 + 0.618034i 0 1.00000i 0 2.07167i 0 2.23607 2.00000i 0
1871.5 0 0.618034 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 2.00000i 0
1871.6 0 0.618034 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 2.00000i 0
1871.7 0 0.618034 + 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 + 2.00000i 0
1871.8 0 0.618034 + 1.61803i 0 1.00000i 0 4.20811i 0 −2.23607 + 2.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1871.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.k.c 8
3.b odd 2 1 2640.2.k.e yes 8
4.b odd 2 1 2640.2.k.e yes 8
12.b even 2 1 inner 2640.2.k.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2640.2.k.c 8 1.a even 1 1 trivial
2640.2.k.c 8 12.b even 2 1 inner
2640.2.k.e yes 8 3.b odd 2 1
2640.2.k.e yes 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2640, [\chi])\):

\( T_{7}^{4} + 22T_{7}^{2} + 76 \) Copy content Toggle raw display
\( T_{23}^{4} - 72T_{23}^{2} + 1216 \) Copy content Toggle raw display
\( T_{47}^{4} - 4T_{47}^{3} - 76T_{47}^{2} + 80T_{47} + 880 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 2 T^{3} + 2 T^{2} + \cdots + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 22 T^{2} + 76)^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 4 T^{3} - 22 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 60 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{8} + 88 T^{6} + \cdots + 48400 \) Copy content Toggle raw display
$23$ \( (T^{4} - 72 T^{2} + 1216)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 88 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$31$ \( T^{8} + 160 T^{6} + \cdots + 891136 \) Copy content Toggle raw display
$37$ \( (T^{4} + 4 T^{3} - 132 T^{2} + \cdots - 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + 120 T^{6} + \cdots + 512656 \) Copy content Toggle raw display
$43$ \( T^{8} + 252 T^{6} + \cdots + 8410000 \) Copy content Toggle raw display
$47$ \( (T^{4} - 4 T^{3} + \cdots + 880)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 200 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( (T^{4} + 20 T^{3} + \cdots - 144)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 24 T^{3} + \cdots - 80)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 88 T^{2} + 1216)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 4 T^{3} + \cdots + 944)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 4 T^{3} + \cdots + 1476)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 600 T^{6} + \cdots + 27920656 \) Copy content Toggle raw display
$83$ \( (T^{4} + 12 T^{3} + \cdots + 956)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 1468422400 \) Copy content Toggle raw display
$97$ \( (T^{4} + 12 T^{3} + \cdots - 80)^{2} \) Copy content Toggle raw display
show more
show less