L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (−0.669 − 0.743i)6-s − 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (−0.913 + 1.58i)11-s + (−0.978 + 0.207i)12-s + (0.669 + 1.15i)13-s + (−1.58 + 0.336i)15-s + (−0.5 + 0.866i)16-s + (−0.913 + 0.406i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 − 0.866i)4-s + (−0.809 − 1.40i)5-s + (−0.669 − 0.743i)6-s − 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (−0.913 + 1.58i)11-s + (−0.978 + 0.207i)12-s + (0.669 + 1.15i)13-s + (−1.58 + 0.336i)15-s + (−0.5 + 0.866i)16-s + (−0.913 + 0.406i)18-s + (−0.809 + 1.40i)20-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.241−0.970i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.241−0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
−0.241−0.970i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1627,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), −0.241−0.970i)
|
Particular Values
L(21) |
≈ |
0.7888018577 |
L(21) |
≈ |
0.7888018577 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(−0.309+0.951i)T |
| 37 | 1+T |
good | 5 | 1+(0.809+1.40i)T+(−0.5+0.866i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.913−1.58i)T+(−0.5−0.866i)T2 |
| 13 | 1+(−0.669−1.15i)T+(−0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(0.978+1.69i)T+(−0.5+0.866i)T2 |
| 29 | 1+(−0.669+1.15i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.809+1.40i)T+(−0.5+0.866i)T2 |
| 41 | 1+(0.309+0.535i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.104−0.181i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.104−0.181i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−1.82T+T2 |
| 79 | 1+(−0.309+0.535i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.459016431585272066021486676050, −7.982972352271876918909242930813, −6.97740991569410954629234607208, −6.11791515852700168797391088651, −5.09381692415180741114686832077, −4.38782484501888655221490899415, −3.81785914986847178306566245125, −2.30143497232256746131695889117, −1.80507181127681388245733816366, −0.39576928961515880116085136204,
2.88816479287078064655101284575, 3.40973716538525059663136265987, 3.66022866521009936981407825682, 5.11517829568424293859302910867, 5.60955074570844839637840420935, 6.43899358511676640123495676495, 7.39720221201616405688051831075, 8.156127548937910287890925064483, 8.364967484440016063297594058068, 9.445710686037320084298626352794