L(s) = 1 | + (1.07 − 0.332i)2-s + (0.222 − 0.151i)4-s + (0.988 + 0.149i)5-s + (−0.974 + 0.222i)7-s + (−0.513 + 0.643i)8-s + (−0.733 + 0.680i)9-s + (1.11 − 0.167i)10-s + (0.733 + 0.680i)11-s + (−0.302 + 1.32i)13-s + (−0.975 + 0.563i)14-s + (−0.437 + 1.11i)16-s + (0.116 − 1.55i)17-s + (−0.563 + 0.975i)18-s + (0.242 − 0.116i)20-s + (1.01 + 0.488i)22-s + ⋯ |
L(s) = 1 | + (1.07 − 0.332i)2-s + (0.222 − 0.151i)4-s + (0.988 + 0.149i)5-s + (−0.974 + 0.222i)7-s + (−0.513 + 0.643i)8-s + (−0.733 + 0.680i)9-s + (1.11 − 0.167i)10-s + (0.733 + 0.680i)11-s + (−0.302 + 1.32i)13-s + (−0.975 + 0.563i)14-s + (−0.437 + 1.11i)16-s + (0.116 − 1.55i)17-s + (−0.563 + 0.975i)18-s + (0.242 − 0.116i)20-s + (1.01 + 0.488i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.536−0.843i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.536−0.843i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
0.536−0.843i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(2034,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), 0.536−0.843i)
|
Particular Values
L(21) |
≈ |
1.876125906 |
L(21) |
≈ |
1.876125906 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.988−0.149i)T |
| 7 | 1+(0.974−0.222i)T |
| 11 | 1+(−0.733−0.680i)T |
good | 2 | 1+(−1.07+0.332i)T+(0.826−0.563i)T2 |
| 3 | 1+(0.733−0.680i)T2 |
| 13 | 1+(0.302−1.32i)T+(−0.900−0.433i)T2 |
| 17 | 1+(−0.116+1.55i)T+(−0.988−0.149i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.988−0.149i)T2 |
| 29 | 1+(−0.623+0.781i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.365−0.930i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(−0.367−0.460i)T+(−0.222+0.974i)T2 |
| 47 | 1+(−0.826+0.563i)T2 |
| 53 | 1+(−0.365+0.930i)T2 |
| 59 | 1+(−1.44+0.218i)T+(0.955−0.294i)T2 |
| 61 | 1+(−0.365−0.930i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(1.48+0.716i)T+(0.623+0.781i)T2 |
| 73 | 1+(−1.77−0.548i)T+(0.826+0.563i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(0.385+1.68i)T+(−0.900+0.433i)T2 |
| 89 | 1+(−1.40+1.29i)T+(0.0747−0.997i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.217751581804927843489273624937, −8.730321827998392522905369059341, −7.29633280743959052512943954319, −6.65382429122140804355185750449, −5.92176009082171256121099503409, −5.13019259890071532171057064473, −4.55342673004683964403700181148, −3.42987868208756827651263061956, −2.63527753926669738862162628560, −1.96329888386127398743874775533,
0.838596591906768165555204935712, 2.59143991588587596621714608358, 3.47944362583311279447212326701, 3.96727883701053603398769965666, 5.33195958692667344134438734336, 5.84882364156568518280994526160, 6.22886640986566064487790026573, 6.93908371099383626938663536189, 8.223121128574608197223042529396, 8.996653016515818986809688953897