L(s) = 1 | + (0.193 + 0.846i)2-s + (0.222 − 0.107i)4-s + (−0.623 − 0.781i)5-s + (0.974 + 0.222i)7-s + (0.674 + 0.846i)8-s + (−0.222 + 0.974i)9-s + (0.541 − 0.678i)10-s + (0.222 + 0.974i)11-s + (−0.433 − 1.90i)13-s + 0.867i·14-s + (−0.431 + 0.541i)16-s + (1.40 + 0.678i)17-s − 0.867·18-s + (−0.222 − 0.107i)20-s + (−0.781 + 0.376i)22-s + ⋯ |
L(s) = 1 | + (0.193 + 0.846i)2-s + (0.222 − 0.107i)4-s + (−0.623 − 0.781i)5-s + (0.974 + 0.222i)7-s + (0.674 + 0.846i)8-s + (−0.222 + 0.974i)9-s + (0.541 − 0.678i)10-s + (0.222 + 0.974i)11-s + (−0.433 − 1.90i)13-s + 0.867i·14-s + (−0.431 + 0.541i)16-s + (1.40 + 0.678i)17-s − 0.867·18-s + (−0.222 − 0.107i)20-s + (−0.781 + 0.376i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.462−0.886i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.462−0.886i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
0.462−0.886i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(2584,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), 0.462−0.886i)
|
Particular Values
L(21) |
≈ |
1.605805098 |
L(21) |
≈ |
1.605805098 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.623+0.781i)T |
| 7 | 1+(−0.974−0.222i)T |
| 11 | 1+(−0.222−0.974i)T |
good | 2 | 1+(−0.193−0.846i)T+(−0.900+0.433i)T2 |
| 3 | 1+(0.222−0.974i)T2 |
| 13 | 1+(0.433+1.90i)T+(−0.900+0.433i)T2 |
| 17 | 1+(−1.40−0.678i)T+(0.623+0.781i)T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.623+0.781i)T2 |
| 29 | 1+(−0.623−0.781i)T2 |
| 31 | 1+2T+T2 |
| 37 | 1+(−0.623−0.781i)T2 |
| 41 | 1+(0.222−0.974i)T2 |
| 43 | 1+(−1.21+1.52i)T+(−0.222−0.974i)T2 |
| 47 | 1+(0.900−0.433i)T2 |
| 53 | 1+(−0.623+0.781i)T2 |
| 59 | 1+(0.277−0.347i)T+(−0.222−0.974i)T2 |
| 61 | 1+(−0.623−0.781i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−1.62+0.781i)T+(0.623−0.781i)T2 |
| 73 | 1+(0.347−1.52i)T+(−0.900−0.433i)T2 |
| 79 | 1−T2 |
| 83 | 1+(−0.900−0.433i)T2 |
| 89 | 1+(0.0990−0.433i)T+(−0.900−0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.763545937757817608504459275832, −8.063460461137399024774372235727, −7.62897326907777891151978434935, −7.28165533929102627828688190310, −5.62910206702146335522453625094, −5.45642088636639488650001204696, −4.83326143791814100884173319461, −3.78699706385628723020671909674, −2.38180954949052421707082172288, −1.42272115654141410226558327340,
1.15297601978162516498118864847, 2.26872439675699122113991690909, 3.31455803751174280386847312759, 3.80533413011371039449391189102, 4.62472237486082719501214007399, 5.88269617058099557546527992106, 6.77332971620844935882865908826, 7.34079131916835929851508694474, 7.994011890078519224331911732448, 9.112109645667362200632082467548