L(s) = 1 | + (0.193 + 0.846i)2-s + (0.222 − 0.107i)4-s + (−0.623 − 0.781i)5-s + (0.974 + 0.222i)7-s + (0.674 + 0.846i)8-s + (−0.222 + 0.974i)9-s + (0.541 − 0.678i)10-s + (0.222 + 0.974i)11-s + (−0.433 − 1.90i)13-s + 0.867i·14-s + (−0.431 + 0.541i)16-s + (1.40 + 0.678i)17-s − 0.867·18-s + (−0.222 − 0.107i)20-s + (−0.781 + 0.376i)22-s + ⋯ |
L(s) = 1 | + (0.193 + 0.846i)2-s + (0.222 − 0.107i)4-s + (−0.623 − 0.781i)5-s + (0.974 + 0.222i)7-s + (0.674 + 0.846i)8-s + (−0.222 + 0.974i)9-s + (0.541 − 0.678i)10-s + (0.222 + 0.974i)11-s + (−0.433 − 1.90i)13-s + 0.867i·14-s + (−0.431 + 0.541i)16-s + (1.40 + 0.678i)17-s − 0.867·18-s + (−0.222 − 0.107i)20-s + (−0.781 + 0.376i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.462 - 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.462 - 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.605805098\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.605805098\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.623 + 0.781i)T \) |
| 7 | \( 1 + (-0.974 - 0.222i)T \) |
| 11 | \( 1 + (-0.222 - 0.974i)T \) |
good | 2 | \( 1 + (-0.193 - 0.846i)T + (-0.900 + 0.433i)T^{2} \) |
| 3 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (0.433 + 1.90i)T + (-0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 + (-1.40 - 0.678i)T + (0.623 + 0.781i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + 2T + T^{2} \) |
| 37 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (-1.21 + 1.52i)T + (-0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 + (0.277 - 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 61 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-1.62 + 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (0.347 - 1.52i)T + (-0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (0.0990 - 0.433i)T + (-0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.763545937757817608504459275832, −8.063460461137399024774372235727, −7.62897326907777891151978434935, −7.28165533929102627828688190310, −5.62910206702146335522453625094, −5.45642088636639488650001204696, −4.83326143791814100884173319461, −3.78699706385628723020671909674, −2.38180954949052421707082172288, −1.42272115654141410226558327340,
1.15297601978162516498118864847, 2.26872439675699122113991690909, 3.31455803751174280386847312759, 3.80533413011371039449391189102, 4.62472237486082719501214007399, 5.88269617058099557546527992106, 6.77332971620844935882865908826, 7.34079131916835929851508694474, 7.994011890078519224331911732448, 9.112109645667362200632082467548