L(s) = 1 | + (1 + 1.73i)3-s + 3·5-s + (−2 + 3.46i)7-s + (−0.499 + 0.866i)9-s + (3 + 5.19i)15-s + (−1.5 + 2.59i)17-s + (1 − 1.73i)19-s − 7.99·21-s + (3 + 5.19i)23-s + 4·25-s + 4.00·27-s + (−4.5 − 7.79i)29-s − 2·31-s + (−6 + 10.3i)35-s + (−3.5 − 6.06i)37-s + ⋯ |
L(s) = 1 | + (0.577 + 0.999i)3-s + 1.34·5-s + (−0.755 + 1.30i)7-s + (−0.166 + 0.288i)9-s + (0.774 + 1.34i)15-s + (−0.363 + 0.630i)17-s + (0.229 − 0.397i)19-s − 1.74·21-s + (0.625 + 1.08i)23-s + 0.800·25-s + 0.769·27-s + (−0.835 − 1.44i)29-s − 0.359·31-s + (−1.01 + 1.75i)35-s + (−0.575 − 0.996i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47685 + 1.45804i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47685 + 1.45804i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3T + 5T^{2} \) |
| 7 | \( 1 + (2 - 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 + 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + (3.5 + 6.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7 + 12.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35560157465230223194996454498, −9.630453088540719006615741088672, −9.209257756324542347096255573778, −8.631328607182920934063792943016, −7.09528233438551949372320990265, −5.86975554491085492382673460408, −5.53909783371407478066925571533, −4.11263979243731739002034386271, −2.97597831775266201140342160886, −2.07711158243366803850872861099,
1.10678632525517700864777588364, 2.26959389558707272582976937652, 3.36708266486775525465195576908, 4.82725718464144349283243456518, 6.05537491102806553302358037419, 6.96112979680475448652084198151, 7.32374642384608213755406093035, 8.612550988928739262052648196416, 9.406321567730820213202728551975, 10.27101224286537867897798549883