Properties

Label 676.2.e.d.653.1
Level $676$
Weight $2$
Character 676.653
Analytic conductor $5.398$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(529,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 653.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 676.653
Dual form 676.2.e.d.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{3} +3.00000 q^{5} +(-2.00000 + 3.46410i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 + 5.19615i) q^{15} +(-1.50000 + 2.59808i) q^{17} +(1.00000 - 1.73205i) q^{19} -8.00000 q^{21} +(3.00000 + 5.19615i) q^{23} +4.00000 q^{25} +4.00000 q^{27} +(-4.50000 - 7.79423i) q^{29} -2.00000 q^{31} +(-6.00000 + 10.3923i) q^{35} +(-3.50000 - 6.06218i) q^{37} +(1.50000 + 2.59808i) q^{41} +(2.00000 - 3.46410i) q^{43} +(-1.50000 + 2.59808i) q^{45} +6.00000 q^{47} +(-4.50000 - 7.79423i) q^{49} -6.00000 q^{51} +9.00000 q^{53} +4.00000 q^{57} +(-2.50000 + 4.33013i) q^{61} +(-2.00000 - 3.46410i) q^{63} +(1.00000 + 1.73205i) q^{67} +(-6.00000 + 10.3923i) q^{69} +(-3.00000 + 5.19615i) q^{71} +1.00000 q^{73} +(4.00000 + 6.92820i) q^{75} -4.00000 q^{79} +(5.50000 + 9.52628i) q^{81} -12.0000 q^{83} +(-4.50000 + 7.79423i) q^{85} +(9.00000 - 15.5885i) q^{87} +(3.00000 + 5.19615i) q^{89} +(-2.00000 - 3.46410i) q^{93} +(3.00000 - 5.19615i) q^{95} +(7.00000 - 12.1244i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 6 q^{5} - 4 q^{7} - q^{9} + 6 q^{15} - 3 q^{17} + 2 q^{19} - 16 q^{21} + 6 q^{23} + 8 q^{25} + 8 q^{27} - 9 q^{29} - 4 q^{31} - 12 q^{35} - 7 q^{37} + 3 q^{41} + 4 q^{43} - 3 q^{45} + 12 q^{47}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 3.00000 + 5.19615i 0.774597 + 1.34164i
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) −8.00000 −1.74574
\(22\) 0 0
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 + 10.3923i −1.01419 + 1.75662i
\(36\) 0 0
\(37\) −3.50000 6.06218i −0.575396 0.996616i −0.995998 0.0893706i \(-0.971514\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 0 0
\(45\) −1.50000 + 2.59808i −0.223607 + 0.387298i
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 0 0
\(63\) −2.00000 3.46410i −0.251976 0.436436i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 0 0
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 0 0
\(71\) −3.00000 + 5.19615i −0.356034 + 0.616670i −0.987294 0.158901i \(-0.949205\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 0 0
\(75\) 4.00000 + 6.92820i 0.461880 + 0.800000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0 0
\(87\) 9.00000 15.5885i 0.964901 1.67126i
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) 7.00000 12.1244i 0.710742 1.23104i −0.253837 0.967247i \(-0.581693\pi\)
0.964579 0.263795i \(-0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) 0 0
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) −24.0000 −2.34216
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 7.00000 12.1244i 0.664411 1.15079i
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) 9.00000 + 15.5885i 0.839254 + 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 10.3923i −0.550019 0.952661i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 5.00000 + 8.66025i 0.443678 + 0.768473i 0.997959 0.0638564i \(-0.0203400\pi\)
−0.554281 + 0.832330i \(0.687007\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 4.00000 + 6.92820i 0.346844 + 0.600751i
\(134\) 0 0
\(135\) 12.0000 1.03280
\(136\) 0 0
\(137\) 7.50000 12.9904i 0.640768 1.10984i −0.344493 0.938789i \(-0.611949\pi\)
0.985262 0.171054i \(-0.0547174\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 6.00000 + 10.3923i 0.505291 + 0.875190i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.5000 23.3827i −1.12111 1.94183i
\(146\) 0 0
\(147\) 9.00000 15.5885i 0.742307 1.28571i
\(148\) 0 0
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) −1.50000 2.59808i −0.121268 0.210042i
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 0 0
\(159\) 9.00000 + 15.5885i 0.713746 + 1.23625i
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 4.00000 6.92820i 0.313304 0.542659i −0.665771 0.746156i \(-0.731897\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 20.7846i −0.928588 1.60836i −0.785687 0.618624i \(-0.787690\pi\)
−0.142901 0.989737i \(-0.545643\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) 0 0
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) −8.00000 + 13.8564i −0.604743 + 1.04745i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 20.7846i −0.896922 1.55351i −0.831408 0.555663i \(-0.812464\pi\)
−0.0655145 0.997852i \(-0.520869\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) −10.5000 18.1865i −0.771975 1.33710i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −8.00000 + 13.8564i −0.581914 + 1.00791i
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) 5.50000 + 9.52628i 0.395899 + 0.685717i 0.993215 0.116289i \(-0.0370998\pi\)
−0.597317 + 0.802005i \(0.703766\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000 + 5.19615i 0.213741 + 0.370211i 0.952882 0.303340i \(-0.0981018\pi\)
−0.739141 + 0.673550i \(0.764768\pi\)
\(198\) 0 0
\(199\) −13.0000 + 22.5167i −0.921546 + 1.59616i −0.124521 + 0.992217i \(0.539739\pi\)
−0.797025 + 0.603947i \(0.793594\pi\)
\(200\) 0 0
\(201\) −2.00000 + 3.46410i −0.141069 + 0.244339i
\(202\) 0 0
\(203\) 36.0000 2.52670
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 1.73205i −0.0688428 0.119239i 0.829549 0.558433i \(-0.188597\pi\)
−0.898392 + 0.439194i \(0.855264\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 6.00000 10.3923i 0.409197 0.708749i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) 1.00000 + 1.73205i 0.0675737 + 0.117041i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.0000 + 22.5167i 0.870544 + 1.50783i 0.861435 + 0.507869i \(0.169566\pi\)
0.00910984 + 0.999959i \(0.497100\pi\)
\(224\) 0 0
\(225\) −2.00000 + 3.46410i −0.133333 + 0.230940i
\(226\) 0 0
\(227\) 3.00000 5.19615i 0.199117 0.344881i −0.749125 0.662428i \(-0.769526\pi\)
0.948242 + 0.317547i \(0.102859\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 18.0000 1.17419
\(236\) 0 0
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 0 0
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 0 0
\(245\) −13.5000 23.3827i −0.862483 1.49387i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 20.7846i −0.760469 1.31717i
\(250\) 0 0
\(251\) 3.00000 5.19615i 0.189358 0.327978i −0.755678 0.654943i \(-0.772693\pi\)
0.945036 + 0.326965i \(0.106026\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −18.0000 −1.12720
\(256\) 0 0
\(257\) −1.50000 2.59808i −0.0935674 0.162064i 0.815442 0.578838i \(-0.196494\pi\)
−0.909010 + 0.416775i \(0.863160\pi\)
\(258\) 0 0
\(259\) 28.0000 1.73984
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 27.0000 1.65860
\(266\) 0 0
\(267\) −6.00000 + 10.3923i −0.367194 + 0.635999i
\(268\) 0 0
\(269\) −15.0000 + 25.9808i −0.914566 + 1.58408i −0.107031 + 0.994256i \(0.534134\pi\)
−0.807535 + 0.589819i \(0.799199\pi\)
\(270\) 0 0
\(271\) 4.00000 + 6.92820i 0.242983 + 0.420858i 0.961563 0.274586i \(-0.0885408\pi\)
−0.718580 + 0.695444i \(0.755208\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.50000 16.4545i 0.570800 0.988654i −0.425684 0.904872i \(-0.639967\pi\)
0.996484 0.0837823i \(-0.0267000\pi\)
\(278\) 0 0
\(279\) 1.00000 1.73205i 0.0598684 0.103695i
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) 0 0
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 28.0000 1.64139
\(292\) 0 0
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 + 13.8564i 0.461112 + 0.798670i
\(302\) 0 0
\(303\) 9.00000 15.5885i 0.517036 0.895533i
\(304\) 0 0
\(305\) −7.50000 + 12.9904i −0.429449 + 0.743827i
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) 2.00000 + 3.46410i 0.113776 + 0.197066i
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −6.00000 10.3923i −0.338062 0.585540i
\(316\) 0 0
\(317\) 15.0000 0.842484 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) 3.00000 + 5.19615i 0.166924 + 0.289122i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.0000 + 17.3205i 0.553001 + 0.957826i
\(328\) 0 0
\(329\) −12.0000 + 20.7846i −0.661581 + 1.14589i
\(330\) 0 0
\(331\) 16.0000 27.7128i 0.879440 1.52323i 0.0274825 0.999622i \(-0.491251\pi\)
0.851957 0.523612i \(-0.175416\pi\)
\(332\) 0 0
\(333\) 7.00000 0.383598
\(334\) 0 0
\(335\) 3.00000 + 5.19615i 0.163908 + 0.283896i
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) −18.0000 + 31.1769i −0.969087 + 1.67851i
\(346\) 0 0
\(347\) −9.00000 + 15.5885i −0.483145 + 0.836832i −0.999813 0.0193540i \(-0.993839\pi\)
0.516667 + 0.856186i \(0.327172\pi\)
\(348\) 0 0
\(349\) 7.00000 + 12.1244i 0.374701 + 0.649002i 0.990282 0.139072i \(-0.0444119\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.5000 + 23.3827i 0.718532 + 1.24453i 0.961581 + 0.274521i \(0.0885192\pi\)
−0.243049 + 0.970014i \(0.578147\pi\)
\(354\) 0 0
\(355\) −9.00000 + 15.5885i −0.477670 + 0.827349i
\(356\) 0 0
\(357\) 12.0000 20.7846i 0.635107 1.10004i
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) 22.0000 1.15470
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) 0 0
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) −18.0000 + 31.1769i −0.934513 + 1.61862i
\(372\) 0 0
\(373\) 3.50000 6.06218i 0.181223 0.313888i −0.761074 0.648665i \(-0.775328\pi\)
0.942297 + 0.334777i \(0.108661\pi\)
\(374\) 0 0
\(375\) −3.00000 5.19615i −0.154919 0.268328i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.00000 8.66025i −0.256833 0.444847i 0.708559 0.705652i \(-0.249346\pi\)
−0.965392 + 0.260804i \(0.916012\pi\)
\(380\) 0 0
\(381\) −10.0000 + 17.3205i −0.512316 + 0.887357i
\(382\) 0 0
\(383\) −18.0000 + 31.1769i −0.919757 + 1.59307i −0.119974 + 0.992777i \(0.538281\pi\)
−0.799783 + 0.600289i \(0.795052\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000 + 3.46410i 0.101666 + 0.176090i
\(388\) 0 0
\(389\) 21.0000 1.06474 0.532371 0.846511i \(-0.321301\pi\)
0.532371 + 0.846511i \(0.321301\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −5.00000 + 8.66025i −0.250943 + 0.434646i −0.963786 0.266678i \(-0.914074\pi\)
0.712843 + 0.701324i \(0.247407\pi\)
\(398\) 0 0
\(399\) −8.00000 + 13.8564i −0.400501 + 0.693688i
\(400\) 0 0
\(401\) −16.5000 28.5788i −0.823971 1.42716i −0.902703 0.430263i \(-0.858421\pi\)
0.0787327 0.996896i \(-0.474913\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 16.5000 + 28.5788i 0.819892 + 1.42009i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −12.5000 + 21.6506i −0.618085 + 1.07056i 0.371750 + 0.928333i \(0.378758\pi\)
−0.989835 + 0.142222i \(0.954575\pi\)
\(410\) 0 0
\(411\) 30.0000 1.47979
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −36.0000 −1.76717
\(416\) 0 0
\(417\) 32.0000 1.56705
\(418\) 0 0
\(419\) −15.0000 25.9808i −0.732798 1.26924i −0.955683 0.294398i \(-0.904881\pi\)
0.222885 0.974845i \(-0.428453\pi\)
\(420\) 0 0
\(421\) −5.00000 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(422\) 0 0
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) −10.0000 17.3205i −0.483934 0.838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) 0.500000 0.866025i 0.0240285 0.0416185i −0.853761 0.520665i \(-0.825684\pi\)
0.877790 + 0.479046i \(0.159017\pi\)
\(434\) 0 0
\(435\) 27.0000 46.7654i 1.29455 2.24223i
\(436\) 0 0
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) −16.0000 27.7128i −0.763638 1.32266i −0.940963 0.338508i \(-0.890078\pi\)
0.177325 0.984152i \(-0.443256\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 + 15.5885i 0.426641 + 0.738964i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 15.0000 25.9808i 0.707894 1.22611i −0.257743 0.966213i \(-0.582979\pi\)
0.965637 0.259895i \(-0.0836878\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 10.0000 + 17.3205i 0.469841 + 0.813788i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5000 + 19.9186i 0.537947 + 0.931752i 0.999014 + 0.0443868i \(0.0141334\pi\)
−0.461067 + 0.887365i \(0.652533\pi\)
\(458\) 0 0
\(459\) −6.00000 + 10.3923i −0.280056 + 0.485071i
\(460\) 0 0
\(461\) −19.5000 + 33.7750i −0.908206 + 1.57306i −0.0916500 + 0.995791i \(0.529214\pi\)
−0.816556 + 0.577267i \(0.804119\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) −6.00000 10.3923i −0.278243 0.481932i
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) −7.00000 12.1244i −0.322543 0.558661i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.00000 6.92820i 0.183533 0.317888i
\(476\) 0 0
\(477\) −4.50000 + 7.79423i −0.206041 + 0.356873i
\(478\) 0 0
\(479\) 9.00000 + 15.5885i 0.411220 + 0.712255i 0.995023 0.0996406i \(-0.0317693\pi\)
−0.583803 + 0.811895i \(0.698436\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −24.0000 41.5692i −1.09204 1.89146i
\(484\) 0 0
\(485\) 21.0000 36.3731i 0.953561 1.65162i
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 12.0000 + 20.7846i 0.541552 + 0.937996i 0.998815 + 0.0486647i \(0.0154966\pi\)
−0.457263 + 0.889332i \(0.651170\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 20.7846i −0.538274 0.932317i
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) 24.0000 41.5692i 1.07224 1.85718i
\(502\) 0 0
\(503\) −6.00000 + 10.3923i −0.267527 + 0.463370i −0.968223 0.250090i \(-0.919540\pi\)
0.700696 + 0.713460i \(0.252873\pi\)
\(504\) 0 0
\(505\) −13.5000 23.3827i −0.600742 1.04052i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.50000 12.9904i −0.332432 0.575789i 0.650556 0.759458i \(-0.274536\pi\)
−0.982988 + 0.183669i \(0.941202\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 0 0
\(513\) 4.00000 6.92820i 0.176604 0.305888i
\(514\) 0 0
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 0 0
\(525\) −32.0000 −1.39659
\(526\) 0 0
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −9.00000 15.5885i −0.389104 0.673948i
\(536\) 0 0
\(537\) 24.0000 41.5692i 1.03568 1.79384i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.0000 0.816874 0.408437 0.912787i \(-0.366074\pi\)
0.408437 + 0.912787i \(0.366074\pi\)
\(542\) 0 0
\(543\) −7.00000 12.1244i −0.300399 0.520306i
\(544\) 0 0
\(545\) 30.0000 1.28506
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 0 0
\(549\) −2.50000 4.33013i −0.106697 0.184805i
\(550\) 0 0
\(551\) −18.0000 −0.766826
\(552\) 0 0
\(553\) 8.00000 13.8564i 0.340195 0.589234i
\(554\) 0 0
\(555\) 21.0000 36.3731i 0.891400 1.54395i
\(556\) 0 0
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 + 31.1769i −0.758610 + 1.31395i 0.184950 + 0.982748i \(0.440788\pi\)
−0.943560 + 0.331202i \(0.892546\pi\)
\(564\) 0 0
\(565\) 13.5000 23.3827i 0.567949 0.983717i
\(566\) 0 0
\(567\) −44.0000 −1.84783
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 12.0000 + 20.7846i 0.500435 + 0.866778i
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) −11.0000 + 19.0526i −0.457144 + 0.791797i
\(580\) 0 0
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) −6.00000 + 10.3923i −0.246807 + 0.427482i
\(592\) 0 0
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) −18.0000 31.1769i −0.737928 1.27813i
\(596\) 0 0
\(597\) −52.0000 −2.12822
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.0203954 + 0.0353259i 0.876043 0.482233i \(-0.160174\pi\)
−0.855648 + 0.517559i \(0.826841\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) 16.5000 28.5788i 0.670820 1.16190i
\(606\) 0 0
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 0 0
\(609\) 36.0000 + 62.3538i 1.45879 + 2.52670i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −9.50000 16.4545i −0.383701 0.664590i 0.607887 0.794024i \(-0.292017\pi\)
−0.991588 + 0.129433i \(0.958684\pi\)
\(614\) 0 0
\(615\) −9.00000 + 15.5885i −0.362915 + 0.628587i
\(616\) 0 0
\(617\) 13.5000 23.3827i 0.543490 0.941351i −0.455211 0.890384i \(-0.650436\pi\)
0.998700 0.0509678i \(-0.0162306\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 12.0000 + 20.7846i 0.481543 + 0.834058i
\(622\) 0 0
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) −14.0000 + 24.2487i −0.557331 + 0.965326i 0.440387 + 0.897808i \(0.354841\pi\)
−0.997718 + 0.0675178i \(0.978492\pi\)
\(632\) 0 0
\(633\) 2.00000 3.46410i 0.0794929 0.137686i
\(634\) 0 0
\(635\) 15.0000 + 25.9808i 0.595257 + 1.03102i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.00000 5.19615i −0.118678 0.205557i
\(640\) 0 0
\(641\) −7.50000 + 12.9904i −0.296232 + 0.513089i −0.975271 0.221013i \(-0.929064\pi\)
0.679039 + 0.734103i \(0.262397\pi\)
\(642\) 0 0
\(643\) −8.00000 + 13.8564i −0.315489 + 0.546443i −0.979541 0.201243i \(-0.935502\pi\)
0.664052 + 0.747686i \(0.268835\pi\)
\(644\) 0 0
\(645\) 24.0000 0.944999
\(646\) 0 0
\(647\) −3.00000 5.19615i −0.117942 0.204282i 0.801010 0.598651i \(-0.204296\pi\)
−0.918952 + 0.394369i \(0.870963\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) 21.0000 + 36.3731i 0.821794 + 1.42339i 0.904345 + 0.426801i \(0.140360\pi\)
−0.0825519 + 0.996587i \(0.526307\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) −0.500000 + 0.866025i −0.0195069 + 0.0337869i
\(658\) 0 0
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) −3.50000 6.06218i −0.136134 0.235791i 0.789896 0.613241i \(-0.210135\pi\)
−0.926030 + 0.377450i \(0.876801\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.0000 + 20.7846i 0.465340 + 0.805993i
\(666\) 0 0
\(667\) 27.0000 46.7654i 1.04544 1.81076i
\(668\) 0 0
\(669\) −26.0000 + 45.0333i −1.00522 + 1.74109i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 6.50000 + 11.2583i 0.250557 + 0.433977i 0.963679 0.267063i \(-0.0860531\pi\)
−0.713123 + 0.701039i \(0.752720\pi\)
\(674\) 0 0
\(675\) 16.0000 0.615840
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 28.0000 + 48.4974i 1.07454 + 1.86116i
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −3.00000 + 5.19615i −0.114792 + 0.198825i −0.917697 0.397282i \(-0.869953\pi\)
0.802905 + 0.596107i \(0.203287\pi\)
\(684\) 0 0
\(685\) 22.5000 38.9711i 0.859681 1.48901i
\(686\) 0 0
\(687\) −14.0000 24.2487i −0.534133 0.925146i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −20.0000 34.6410i −0.760836 1.31781i −0.942420 0.334431i \(-0.891456\pi\)
0.181584 0.983375i \(-0.441877\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 24.0000 41.5692i 0.910372 1.57681i
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) 0 0
\(699\) −18.0000 31.1769i −0.680823 1.17922i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 18.0000 + 31.1769i 0.677919 + 1.17419i
\(706\) 0 0
\(707\) 36.0000 1.35392
\(708\) 0 0
\(709\) −15.5000 + 26.8468i −0.582115 + 1.00825i 0.413114 + 0.910679i \(0.364441\pi\)
−0.995228 + 0.0975728i \(0.968892\pi\)
\(710\) 0 0
\(711\) 2.00000 3.46410i 0.0750059 0.129914i
\(712\) 0 0
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 41.5692i −0.896296 1.55243i
\(718\) 0 0
\(719\) −6.00000 + 10.3923i −0.223762 + 0.387568i −0.955947 0.293538i \(-0.905167\pi\)
0.732185 + 0.681106i \(0.238501\pi\)
\(720\) 0 0
\(721\) −4.00000 + 6.92820i −0.148968 + 0.258020i
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) −18.0000 31.1769i −0.668503 1.15788i
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 0 0
\(733\) −29.0000 −1.07114 −0.535570 0.844491i \(-0.679903\pi\)
−0.535570 + 0.844491i \(0.679903\pi\)
\(734\) 0 0
\(735\) 27.0000 46.7654i 0.995910 1.72497i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 10.0000 + 17.3205i 0.367856 + 0.637145i 0.989230 0.146369i \(-0.0467586\pi\)
−0.621374 + 0.783514i \(0.713425\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 20.7846i −0.440237 0.762513i 0.557470 0.830197i \(-0.311772\pi\)
−0.997707 + 0.0676840i \(0.978439\pi\)
\(744\) 0 0
\(745\) 13.5000 23.3827i 0.494602 0.856675i
\(746\) 0 0
\(747\) 6.00000 10.3923i 0.219529 0.380235i
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 2.00000 + 3.46410i 0.0729810 + 0.126407i 0.900207 0.435463i \(-0.143415\pi\)
−0.827225 + 0.561870i \(0.810082\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) −19.0000 32.9090i −0.690567 1.19610i −0.971652 0.236414i \(-0.924028\pi\)
0.281086 0.959683i \(-0.409305\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 + 15.5885i −0.326250 + 0.565081i −0.981764 0.190101i \(-0.939118\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(762\) 0 0
\(763\) −20.0000 + 34.6410i −0.724049 + 1.25409i
\(764\) 0 0
\(765\) −4.50000 7.79423i −0.162698 0.281801i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 7.00000 + 12.1244i 0.252426 + 0.437215i 0.964193 0.265200i \(-0.0854381\pi\)
−0.711767 + 0.702416i \(0.752105\pi\)
\(770\) 0 0
\(771\) 3.00000 5.19615i 0.108042 0.187135i
\(772\) 0 0
\(773\) −3.00000 + 5.19615i −0.107903 + 0.186893i −0.914920 0.403634i \(-0.867747\pi\)
0.807018 + 0.590527i \(0.201080\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 28.0000 + 48.4974i 1.00449 + 1.73984i
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −18.0000 31.1769i −0.643268 1.11417i
\(784\) 0 0
\(785\) −21.0000 −0.749522
\(786\) 0 0
\(787\) 19.0000 32.9090i 0.677277 1.17308i −0.298521 0.954403i \(-0.596493\pi\)
0.975798 0.218675i \(-0.0701734\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.0000 + 31.1769i 0.640006 + 1.10852i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 27.0000 + 46.7654i 0.957591 + 1.65860i
\(796\) 0 0
\(797\) 9.00000 15.5885i 0.318796 0.552171i −0.661441 0.749997i \(-0.730055\pi\)
0.980237 + 0.197826i \(0.0633881\pi\)
\(798\) 0 0
\(799\) −9.00000 + 15.5885i −0.318397 + 0.551480i
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −72.0000 −2.53767
\(806\) 0 0
\(807\) −60.0000 −2.11210
\(808\) 0 0
\(809\) −7.50000 12.9904i −0.263686 0.456717i 0.703533 0.710663i \(-0.251605\pi\)
−0.967219 + 0.253946i \(0.918272\pi\)
\(810\) 0 0
\(811\) 10.0000 0.351147 0.175574 0.984466i \(-0.443822\pi\)
0.175574 + 0.984466i \(0.443822\pi\)
\(812\) 0 0
\(813\) −8.00000 + 13.8564i −0.280572 + 0.485965i
\(814\) 0 0
\(815\) 12.0000 20.7846i 0.420342 0.728053i
\(816\) 0 0
\(817\) −4.00000 6.92820i −0.139942 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.00000 15.5885i −0.314102 0.544041i 0.665144 0.746715i \(-0.268370\pi\)
−0.979246 + 0.202674i \(0.935037\pi\)
\(822\) 0 0
\(823\) −16.0000 + 27.7128i −0.557725 + 0.966008i 0.439961 + 0.898017i \(0.354992\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 9.50000 + 16.4545i 0.329949 + 0.571488i 0.982501 0.186256i \(-0.0596352\pi\)
−0.652553 + 0.757743i \(0.726302\pi\)
\(830\) 0 0
\(831\) 38.0000 1.31821
\(832\) 0 0
\(833\) 27.0000 0.935495
\(834\) 0 0
\(835\) −36.0000 62.3538i −1.24583 2.15784i
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) 21.0000 36.3731i 0.725001 1.25574i −0.233973 0.972243i \(-0.575173\pi\)
0.958974 0.283495i \(-0.0914938\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) −3.00000 5.19615i −0.103325 0.178965i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 22.0000 + 38.1051i 0.755929 + 1.30931i
\(848\) 0 0
\(849\) −16.0000 + 27.7128i −0.549119 + 0.951101i
\(850\) 0 0
\(851\) 21.0000 36.3731i 0.719871 1.24685i
\(852\) 0 0
\(853\) −5.00000 −0.171197 −0.0855984 0.996330i \(-0.527280\pi\)
−0.0855984 + 0.996330i \(0.527280\pi\)
\(854\) 0 0
\(855\) 3.00000 + 5.19615i 0.102598 + 0.177705i
\(856\) 0 0
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) 2.00000 0.0682391 0.0341196 0.999418i \(-0.489137\pi\)
0.0341196 + 0.999418i \(0.489137\pi\)
\(860\) 0 0
\(861\) −12.0000 20.7846i −0.408959 0.708338i
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) −9.00000 + 15.5885i −0.306009 + 0.530023i
\(866\) 0 0
\(867\) −8.00000 + 13.8564i −0.271694 + 0.470588i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 7.00000 + 12.1244i 0.236914 + 0.410347i
\(874\) 0 0
\(875\) 6.00000 10.3923i 0.202837 0.351324i
\(876\) 0 0
\(877\) 2.50000 4.33013i 0.0844190 0.146218i −0.820724 0.571324i \(-0.806430\pi\)
0.905143 + 0.425106i \(0.139763\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) −25.5000 44.1673i −0.859117 1.48803i −0.872772 0.488127i \(-0.837680\pi\)
0.0136556 0.999907i \(-0.495653\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.00000 10.3923i −0.201460 0.348939i 0.747539 0.664218i \(-0.231235\pi\)
−0.948999 + 0.315279i \(0.897902\pi\)
\(888\) 0 0
\(889\) −40.0000 −1.34156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.00000 10.3923i 0.200782 0.347765i
\(894\) 0 0
\(895\) −36.0000 62.3538i −1.20335 2.08426i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.00000 + 15.5885i 0.300167 + 0.519904i
\(900\) 0 0
\(901\) −13.5000 + 23.3827i −0.449750 + 0.778990i
\(902\) 0 0
\(903\) −16.0000 + 27.7128i −0.532447 + 0.922225i
\(904\) 0 0
\(905\) −21.0000 −0.698064
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 0 0
\(909\) 9.00000 0.298511
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −30.0000 −0.991769
\(916\) 0 0
\(917\) −12.0000 + 20.7846i −0.396275 + 0.686368i
\(918\) 0 0
\(919\) −19.0000 + 32.9090i −0.626752 + 1.08557i 0.361447 + 0.932393i \(0.382283\pi\)
−0.988199 + 0.153174i \(0.951051\pi\)
\(920\) 0 0
\(921\) −26.0000 45.0333i −0.856729 1.48390i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −14.0000 24.2487i −0.460317 0.797293i
\(926\) 0 0
\(927\) −1.00000 + 1.73205i −0.0328443 + 0.0568880i
\(928\) 0 0
\(929\) −10.5000 + 18.1865i −0.344494 + 0.596681i −0.985262 0.171054i \(-0.945283\pi\)
0.640768 + 0.767735i \(0.278616\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 6.00000 + 10.3923i 0.196431 + 0.340229i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) 14.0000 + 24.2487i 0.456873 + 0.791327i
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −9.00000 + 15.5885i −0.293080 + 0.507630i
\(944\) 0 0
\(945\) −24.0000 + 41.5692i −0.780720 + 1.35225i
\(946\) 0 0
\(947\) −9.00000 15.5885i −0.292461 0.506557i 0.681930 0.731417i \(-0.261141\pi\)
−0.974391 + 0.224860i \(0.927807\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 15.0000 + 25.9808i 0.486408 + 0.842484i
\(952\) 0 0
\(953\) 3.00000 5.19615i 0.0971795 0.168320i −0.813337 0.581793i \(-0.802351\pi\)
0.910516 + 0.413473i \(0.135685\pi\)
\(954\) 0 0
\(955\) −9.00000 + 15.5885i −0.291233 + 0.504431i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 30.0000 + 51.9615i 0.968751 + 1.67793i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) 16.5000 + 28.5788i 0.531154 + 0.919985i
\(966\) 0 0
\(967\) 58.0000 1.86515 0.932577 0.360971i \(-0.117555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) 0 0
\(969\) −6.00000 + 10.3923i −0.192748 + 0.333849i
\(970\) 0 0
\(971\) −15.0000 + 25.9808i −0.481373 + 0.833762i −0.999771 0.0213768i \(-0.993195\pi\)
0.518399 + 0.855139i \(0.326528\pi\)
\(972\) 0 0
\(973\) 32.0000 + 55.4256i 1.02587 + 1.77686i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.5000 + 33.7750i 0.623860 + 1.08056i 0.988760 + 0.149511i \(0.0477699\pi\)
−0.364900 + 0.931047i \(0.618897\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5.00000 + 8.66025i −0.159638 + 0.276501i
\(982\) 0 0
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) 0 0
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) 0 0
\(987\) −48.0000 −1.52786
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 0 0
\(993\) 64.0000 2.03098
\(994\) 0 0
\(995\) −39.0000 + 67.5500i −1.23638 + 2.14148i
\(996\) 0 0
\(997\) −2.50000 + 4.33013i −0.0791758 + 0.137136i −0.902895 0.429862i \(-0.858562\pi\)
0.823719 + 0.566999i \(0.191896\pi\)
\(998\) 0 0
\(999\) −14.0000 24.2487i −0.442940 0.767195i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.e.d.653.1 2
13.2 odd 12 676.2.d.a.337.1 2
13.3 even 3 676.2.a.b.1.1 1
13.4 even 6 52.2.e.b.9.1 2
13.5 odd 4 676.2.h.d.361.1 4
13.6 odd 12 676.2.h.d.485.1 4
13.7 odd 12 676.2.h.d.485.2 4
13.8 odd 4 676.2.h.d.361.2 4
13.9 even 3 inner 676.2.e.d.529.1 2
13.10 even 6 676.2.a.a.1.1 1
13.11 odd 12 676.2.d.a.337.2 2
13.12 even 2 52.2.e.b.29.1 yes 2
39.2 even 12 6084.2.b.k.4393.2 2
39.11 even 12 6084.2.b.k.4393.1 2
39.17 odd 6 468.2.l.d.217.1 2
39.23 odd 6 6084.2.a.o.1.1 1
39.29 odd 6 6084.2.a.c.1.1 1
39.38 odd 2 468.2.l.d.289.1 2
52.3 odd 6 2704.2.a.m.1.1 1
52.11 even 12 2704.2.f.i.337.2 2
52.15 even 12 2704.2.f.i.337.1 2
52.23 odd 6 2704.2.a.l.1.1 1
52.43 odd 6 208.2.i.a.113.1 2
52.51 odd 2 208.2.i.a.81.1 2
65.4 even 6 1300.2.i.b.1101.1 2
65.12 odd 4 1300.2.bb.d.549.2 4
65.17 odd 12 1300.2.bb.d.1049.1 4
65.38 odd 4 1300.2.bb.d.549.1 4
65.43 odd 12 1300.2.bb.d.1049.2 4
65.64 even 2 1300.2.i.b.601.1 2
91.4 even 6 2548.2.l.b.373.1 2
91.12 odd 6 2548.2.l.g.1537.1 2
91.17 odd 6 2548.2.l.g.373.1 2
91.25 even 6 2548.2.i.g.1745.1 2
91.30 even 6 2548.2.i.g.165.1 2
91.38 odd 6 2548.2.i.b.1745.1 2
91.51 even 6 2548.2.l.b.1537.1 2
91.69 odd 6 2548.2.k.a.1569.1 2
91.82 odd 6 2548.2.i.b.165.1 2
91.90 odd 2 2548.2.k.a.393.1 2
104.43 odd 6 832.2.i.i.321.1 2
104.51 odd 2 832.2.i.i.705.1 2
104.69 even 6 832.2.i.c.321.1 2
104.77 even 2 832.2.i.c.705.1 2
156.95 even 6 1872.2.t.m.1153.1 2
156.155 even 2 1872.2.t.m.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.b.9.1 2 13.4 even 6
52.2.e.b.29.1 yes 2 13.12 even 2
208.2.i.a.81.1 2 52.51 odd 2
208.2.i.a.113.1 2 52.43 odd 6
468.2.l.d.217.1 2 39.17 odd 6
468.2.l.d.289.1 2 39.38 odd 2
676.2.a.a.1.1 1 13.10 even 6
676.2.a.b.1.1 1 13.3 even 3
676.2.d.a.337.1 2 13.2 odd 12
676.2.d.a.337.2 2 13.11 odd 12
676.2.e.d.529.1 2 13.9 even 3 inner
676.2.e.d.653.1 2 1.1 even 1 trivial
676.2.h.d.361.1 4 13.5 odd 4
676.2.h.d.361.2 4 13.8 odd 4
676.2.h.d.485.1 4 13.6 odd 12
676.2.h.d.485.2 4 13.7 odd 12
832.2.i.c.321.1 2 104.69 even 6
832.2.i.c.705.1 2 104.77 even 2
832.2.i.i.321.1 2 104.43 odd 6
832.2.i.i.705.1 2 104.51 odd 2
1300.2.i.b.601.1 2 65.64 even 2
1300.2.i.b.1101.1 2 65.4 even 6
1300.2.bb.d.549.1 4 65.38 odd 4
1300.2.bb.d.549.2 4 65.12 odd 4
1300.2.bb.d.1049.1 4 65.17 odd 12
1300.2.bb.d.1049.2 4 65.43 odd 12
1872.2.t.m.289.1 2 156.155 even 2
1872.2.t.m.1153.1 2 156.95 even 6
2548.2.i.b.165.1 2 91.82 odd 6
2548.2.i.b.1745.1 2 91.38 odd 6
2548.2.i.g.165.1 2 91.30 even 6
2548.2.i.g.1745.1 2 91.25 even 6
2548.2.k.a.393.1 2 91.90 odd 2
2548.2.k.a.1569.1 2 91.69 odd 6
2548.2.l.b.373.1 2 91.4 even 6
2548.2.l.b.1537.1 2 91.51 even 6
2548.2.l.g.373.1 2 91.17 odd 6
2548.2.l.g.1537.1 2 91.12 odd 6
2704.2.a.l.1.1 1 52.23 odd 6
2704.2.a.m.1.1 1 52.3 odd 6
2704.2.f.i.337.1 2 52.15 even 12
2704.2.f.i.337.2 2 52.11 even 12
6084.2.a.c.1.1 1 39.29 odd 6
6084.2.a.o.1.1 1 39.23 odd 6
6084.2.b.k.4393.1 2 39.11 even 12
6084.2.b.k.4393.2 2 39.2 even 12