Properties

Label 1300.2.bb.d.1049.2
Level $1300$
Weight $2$
Character 1300.1049
Analytic conductor $10.381$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1300,2,Mod(549,1300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1300, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1300.549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1300.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3805522628\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1049.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1300.1049
Dual form 1300.2.bb.d.549.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 + 1.00000i) q^{3} +(3.46410 - 2.00000i) q^{7} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(1.73205 + 1.00000i) q^{3} +(3.46410 - 2.00000i) q^{7} +(0.500000 + 0.866025i) q^{9} +(0.866025 - 3.50000i) q^{13} +(-2.59808 + 1.50000i) q^{17} +(1.00000 + 1.73205i) q^{19} +8.00000 q^{21} +(5.19615 + 3.00000i) q^{23} -4.00000i q^{27} +(4.50000 - 7.79423i) q^{29} +2.00000 q^{31} +(-6.06218 - 3.50000i) q^{37} +(5.00000 - 5.19615i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(-3.46410 + 2.00000i) q^{43} +6.00000i q^{47} +(4.50000 - 7.79423i) q^{49} -6.00000 q^{51} +9.00000i q^{53} +4.00000i q^{57} +(-2.50000 - 4.33013i) q^{61} +(3.46410 + 2.00000i) q^{63} +(1.73205 + 1.00000i) q^{67} +(6.00000 + 10.3923i) q^{69} +(3.00000 + 5.19615i) q^{71} -1.00000i q^{73} +4.00000 q^{79} +(5.50000 - 9.52628i) q^{81} +12.0000i q^{83} +(15.5885 - 9.00000i) q^{87} +(3.00000 - 5.19615i) q^{89} +(-4.00000 - 13.8564i) q^{91} +(3.46410 + 2.00000i) q^{93} +(-12.1244 + 7.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{9} + 4 q^{19} + 32 q^{21} + 18 q^{29} + 8 q^{31} + 20 q^{39} - 6 q^{41} + 18 q^{49} - 24 q^{51} - 10 q^{61} + 24 q^{69} + 12 q^{71} + 16 q^{79} + 22 q^{81} + 12 q^{89} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1300\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(651\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 + 1.00000i 1.00000 + 0.577350i 0.908248 0.418432i \(-0.137420\pi\)
0.0917517 + 0.995782i \(0.470753\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 2.00000i 1.30931 0.755929i 0.327327 0.944911i \(-0.393852\pi\)
0.981981 + 0.188982i \(0.0605189\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 0.866025 3.50000i 0.240192 0.970725i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.59808 + 1.50000i −0.630126 + 0.363803i −0.780801 0.624780i \(-0.785189\pi\)
0.150675 + 0.988583i \(0.451855\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 8.00000 1.74574
\(22\) 0 0
\(23\) 5.19615 + 3.00000i 1.08347 + 0.625543i 0.931831 0.362892i \(-0.118211\pi\)
0.151642 + 0.988436i \(0.451544\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 4.50000 7.79423i 0.835629 1.44735i −0.0578882 0.998323i \(-0.518437\pi\)
0.893517 0.449029i \(-0.148230\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.06218 3.50000i −0.996616 0.575396i −0.0893706 0.995998i \(-0.528486\pi\)
−0.907245 + 0.420602i \(0.861819\pi\)
\(38\) 0 0
\(39\) 5.00000 5.19615i 0.800641 0.832050i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) −3.46410 + 2.00000i −0.528271 + 0.304997i −0.740312 0.672264i \(-0.765322\pi\)
0.212041 + 0.977261i \(0.431989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) 4.50000 7.79423i 0.642857 1.11346i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 9.00000i 1.23625i 0.786082 + 0.618123i \(0.212106\pi\)
−0.786082 + 0.618123i \(0.787894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 0 0
\(63\) 3.46410 + 2.00000i 0.436436 + 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.73205 + 1.00000i 0.211604 + 0.122169i 0.602056 0.798454i \(-0.294348\pi\)
−0.390453 + 0.920623i \(0.627682\pi\)
\(68\) 0 0
\(69\) 6.00000 + 10.3923i 0.722315 + 1.25109i
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 1.00000i 0.117041i −0.998286 0.0585206i \(-0.981362\pi\)
0.998286 0.0585206i \(-0.0186383\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 0 0
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 15.5885 9.00000i 1.67126 0.964901i
\(88\) 0 0
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 0 0
\(91\) −4.00000 13.8564i −0.419314 1.45255i
\(92\) 0 0
\(93\) 3.46410 + 2.00000i 0.359211 + 0.207390i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.1244 + 7.00000i −1.23104 + 0.710742i −0.967247 0.253837i \(-0.918307\pi\)
−0.263795 + 0.964579i \(0.584974\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.50000 + 7.79423i −0.447767 + 0.775555i −0.998240 0.0592978i \(-0.981114\pi\)
0.550474 + 0.834853i \(0.314447\pi\)
\(102\) 0 0
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.19615 + 3.00000i 0.502331 + 0.290021i 0.729676 0.683793i \(-0.239671\pi\)
−0.227345 + 0.973814i \(0.573004\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −7.00000 12.1244i −0.664411 1.15079i
\(112\) 0 0
\(113\) −7.79423 + 4.50000i −0.733219 + 0.423324i −0.819599 0.572938i \(-0.805804\pi\)
0.0863794 + 0.996262i \(0.472470\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.46410 1.00000i 0.320256 0.0924500i
\(118\) 0 0
\(119\) −6.00000 + 10.3923i −0.550019 + 0.952661i
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) −5.19615 + 3.00000i −0.468521 + 0.270501i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.66025 5.00000i −0.768473 0.443678i 0.0638564 0.997959i \(-0.479660\pi\)
−0.832330 + 0.554281i \(0.812993\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 6.92820 + 4.00000i 0.600751 + 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.9904 + 7.50000i −1.10984 + 0.640768i −0.938789 0.344493i \(-0.888051\pi\)
−0.171054 + 0.985262i \(0.554717\pi\)
\(138\) 0 0
\(139\) −8.00000 13.8564i −0.678551 1.17529i −0.975417 0.220366i \(-0.929275\pi\)
0.296866 0.954919i \(-0.404058\pi\)
\(140\) 0 0
\(141\) −6.00000 + 10.3923i −0.505291 + 0.875190i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.5885 9.00000i 1.28571 0.742307i
\(148\) 0 0
\(149\) 4.50000 + 7.79423i 0.368654 + 0.638528i 0.989355 0.145519i \(-0.0464853\pi\)
−0.620701 + 0.784047i \(0.713152\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) −2.59808 1.50000i −0.210042 0.121268i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000i 0.558661i 0.960195 + 0.279330i \(0.0901125\pi\)
−0.960195 + 0.279330i \(0.909888\pi\)
\(158\) 0 0
\(159\) −9.00000 + 15.5885i −0.713746 + 1.23625i
\(160\) 0 0
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) 6.92820 4.00000i 0.542659 0.313304i −0.203497 0.979076i \(-0.565231\pi\)
0.746156 + 0.665771i \(0.231897\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.7846 12.0000i −1.60836 0.928588i −0.989737 0.142901i \(-0.954357\pi\)
−0.618624 0.785687i \(-0.712310\pi\)
\(168\) 0 0
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) 0 0
\(171\) −1.00000 + 1.73205i −0.0764719 + 0.132453i
\(172\) 0 0
\(173\) 5.19615 3.00000i 0.395056 0.228086i −0.289292 0.957241i \(-0.593420\pi\)
0.684349 + 0.729155i \(0.260087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 20.7846i 0.896922 1.55351i 0.0655145 0.997852i \(-0.479131\pi\)
0.831408 0.555663i \(-0.187536\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −8.00000 13.8564i −0.581914 1.00791i
\(190\) 0 0
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 0 0
\(193\) −9.52628 5.50000i −0.685717 0.395899i 0.116289 0.993215i \(-0.462900\pi\)
−0.802005 + 0.597317i \(0.796234\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.19615 + 3.00000i 0.370211 + 0.213741i 0.673550 0.739141i \(-0.264768\pi\)
−0.303340 + 0.952882i \(0.598102\pi\)
\(198\) 0 0
\(199\) 13.0000 + 22.5167i 0.921546 + 1.59616i 0.797025 + 0.603947i \(0.206406\pi\)
0.124521 + 0.992217i \(0.460261\pi\)
\(200\) 0 0
\(201\) 2.00000 + 3.46410i 0.141069 + 0.244339i
\(202\) 0 0
\(203\) 36.0000i 2.52670i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 + 1.73205i −0.0688428 + 0.119239i −0.898392 0.439194i \(-0.855264\pi\)
0.829549 + 0.558433i \(0.188597\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6.92820 4.00000i 0.470317 0.271538i
\(218\) 0 0
\(219\) 1.00000 1.73205i 0.0675737 0.117041i
\(220\) 0 0
\(221\) 3.00000 + 10.3923i 0.201802 + 0.699062i
\(222\) 0 0
\(223\) −22.5167 13.0000i −1.50783 0.870544i −0.999959 0.00910984i \(-0.997100\pi\)
−0.507869 0.861435i \(-0.669566\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.19615 + 3.00000i −0.344881 + 0.199117i −0.662428 0.749125i \(-0.730474\pi\)
0.317547 + 0.948242i \(0.397141\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.92820 + 4.00000i 0.450035 + 0.259828i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i \(-0.156413\pi\)
−0.849472 + 0.527633i \(0.823079\pi\)
\(242\) 0 0
\(243\) 8.66025 5.00000i 0.555556 0.320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.92820 2.00000i 0.440831 0.127257i
\(248\) 0 0
\(249\) −12.0000 + 20.7846i −0.760469 + 1.31717i
\(250\) 0 0
\(251\) 3.00000 + 5.19615i 0.189358 + 0.327978i 0.945036 0.326965i \(-0.106026\pi\)
−0.755678 + 0.654943i \(0.772693\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.59808 + 1.50000i 0.162064 + 0.0935674i 0.578838 0.815442i \(-0.303506\pi\)
−0.416775 + 0.909010i \(0.636840\pi\)
\(258\) 0 0
\(259\) −28.0000 −1.73984
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 10.3923 6.00000i 0.635999 0.367194i
\(268\) 0 0
\(269\) 15.0000 + 25.9808i 0.914566 + 1.58408i 0.807535 + 0.589819i \(0.200801\pi\)
0.107031 + 0.994256i \(0.465866\pi\)
\(270\) 0 0
\(271\) −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i \(-0.911459\pi\)
0.718580 + 0.695444i \(0.244792\pi\)
\(272\) 0 0
\(273\) 6.92820 28.0000i 0.419314 1.69464i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 16.4545 9.50000i 0.988654 0.570800i 0.0837823 0.996484i \(-0.473300\pi\)
0.904872 + 0.425684i \(0.139967\pi\)
\(278\) 0 0
\(279\) 1.00000 + 1.73205i 0.0598684 + 0.103695i
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 0 0
\(283\) 13.8564 + 8.00000i 0.823678 + 0.475551i 0.851683 0.524057i \(-0.175582\pi\)
−0.0280052 + 0.999608i \(0.508916\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000i 0.708338i
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) 0 0
\(291\) −28.0000 −1.64139
\(292\) 0 0
\(293\) 7.79423 4.50000i 0.455344 0.262893i −0.254741 0.967009i \(-0.581990\pi\)
0.710084 + 0.704117i \(0.248657\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.0000 15.5885i 0.867472 0.901504i
\(300\) 0 0
\(301\) −8.00000 + 13.8564i −0.461112 + 0.798670i
\(302\) 0 0
\(303\) −15.5885 + 9.00000i −0.895533 + 0.517036i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 26.0000i 1.48390i −0.670456 0.741949i \(-0.733902\pi\)
0.670456 0.741949i \(-0.266098\pi\)
\(308\) 0 0
\(309\) −2.00000 + 3.46410i −0.113776 + 0.197066i
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i 0.918396 + 0.395663i \(0.129485\pi\)
−0.918396 + 0.395663i \(0.870515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0000i 0.842484i 0.906948 + 0.421242i \(0.138406\pi\)
−0.906948 + 0.421242i \(0.861594\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 + 10.3923i 0.334887 + 0.580042i
\(322\) 0 0
\(323\) −5.19615 3.00000i −0.289122 0.166924i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 17.3205 + 10.0000i 0.957826 + 0.553001i
\(328\) 0 0
\(329\) 12.0000 + 20.7846i 0.661581 + 1.14589i
\(330\) 0 0
\(331\) −16.0000 27.7128i −0.879440 1.52323i −0.851957 0.523612i \(-0.824584\pi\)
−0.0274825 0.999622i \(-0.508749\pi\)
\(332\) 0 0
\(333\) 7.00000i 0.383598i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 25.0000i 1.36184i 0.732359 + 0.680918i \(0.238419\pi\)
−0.732359 + 0.680918i \(0.761581\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.5885 + 9.00000i −0.836832 + 0.483145i −0.856186 0.516667i \(-0.827172\pi\)
0.0193540 + 0.999813i \(0.493839\pi\)
\(348\) 0 0
\(349\) 7.00000 12.1244i 0.374701 0.649002i −0.615581 0.788074i \(-0.711079\pi\)
0.990282 + 0.139072i \(0.0444119\pi\)
\(350\) 0 0
\(351\) −14.0000 3.46410i −0.747265 0.184900i
\(352\) 0 0
\(353\) −23.3827 13.5000i −1.24453 0.718532i −0.274521 0.961581i \(-0.588519\pi\)
−0.970014 + 0.243049i \(0.921853\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −20.7846 + 12.0000i −1.10004 + 0.635107i
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) 22.0000i 1.15470i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −19.0526 11.0000i −0.994535 0.574195i −0.0879086 0.996129i \(-0.528018\pi\)
−0.906627 + 0.421933i \(0.861352\pi\)
\(368\) 0 0
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) 18.0000 + 31.1769i 0.934513 + 1.61862i
\(372\) 0 0
\(373\) −6.06218 + 3.50000i −0.313888 + 0.181223i −0.648665 0.761074i \(-0.724672\pi\)
0.334777 + 0.942297i \(0.391339\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −23.3827 22.5000i −1.20427 1.15881i
\(378\) 0 0
\(379\) −5.00000 + 8.66025i −0.256833 + 0.444847i −0.965392 0.260804i \(-0.916012\pi\)
0.708559 + 0.705652i \(0.249346\pi\)
\(380\) 0 0
\(381\) −10.0000 17.3205i −0.512316 0.887357i
\(382\) 0 0
\(383\) −31.1769 + 18.0000i −1.59307 + 0.919757i −0.600289 + 0.799783i \(0.704948\pi\)
−0.992777 + 0.119974i \(0.961719\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.46410 2.00000i −0.176090 0.101666i
\(388\) 0 0
\(389\) −21.0000 −1.06474 −0.532371 0.846511i \(-0.678699\pi\)
−0.532371 + 0.846511i \(0.678699\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 10.3923 + 6.00000i 0.524222 + 0.302660i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.66025 5.00000i 0.434646 0.250943i −0.266678 0.963786i \(-0.585926\pi\)
0.701324 + 0.712843i \(0.252593\pi\)
\(398\) 0 0
\(399\) 8.00000 + 13.8564i 0.400501 + 0.693688i
\(400\) 0 0
\(401\) 16.5000 28.5788i 0.823971 1.42716i −0.0787327 0.996896i \(-0.525087\pi\)
0.902703 0.430263i \(-0.141579\pi\)
\(402\) 0 0
\(403\) 1.73205 7.00000i 0.0862796 0.348695i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i \(-0.954575\pi\)
0.371750 0.928333i \(-0.378758\pi\)
\(410\) 0 0
\(411\) −30.0000 −1.47979
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 32.0000i 1.56705i
\(418\) 0 0
\(419\) 15.0000 25.9808i 0.732798 1.26924i −0.222885 0.974845i \(-0.571547\pi\)
0.955683 0.294398i \(-0.0951193\pi\)
\(420\) 0 0
\(421\) 5.00000 0.243685 0.121843 0.992549i \(-0.461120\pi\)
0.121843 + 0.992549i \(0.461120\pi\)
\(422\) 0 0
\(423\) −5.19615 + 3.00000i −0.252646 + 0.145865i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −17.3205 10.0000i −0.838198 0.483934i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i \(-0.740007\pi\)
0.973574 + 0.228373i \(0.0733406\pi\)
\(432\) 0 0
\(433\) −0.866025 + 0.500000i −0.0416185 + 0.0240285i −0.520665 0.853761i \(-0.674316\pi\)
0.479046 + 0.877790i \(0.340983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) 16.0000 27.7128i 0.763638 1.32266i −0.177325 0.984152i \(-0.556744\pi\)
0.940963 0.338508i \(-0.109922\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) 15.0000 + 25.9808i 0.707894 + 1.22611i 0.965637 + 0.259895i \(0.0836878\pi\)
−0.257743 + 0.966213i \(0.582979\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −17.3205 10.0000i −0.813788 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.9186 + 11.5000i 0.931752 + 0.537947i 0.887365 0.461067i \(-0.152533\pi\)
0.0443868 + 0.999014i \(0.485867\pi\)
\(458\) 0 0
\(459\) 6.00000 + 10.3923i 0.280056 + 0.485071i
\(460\) 0 0
\(461\) 19.5000 + 33.7750i 0.908206 + 1.57306i 0.816556 + 0.577267i \(0.195881\pi\)
0.0916500 + 0.995791i \(0.470786\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i 0.885448 + 0.464739i \(0.153852\pi\)
−0.885448 + 0.464739i \(0.846148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7.79423 + 4.50000i −0.356873 + 0.206041i
\(478\) 0 0
\(479\) 9.00000 15.5885i 0.411220 0.712255i −0.583803 0.811895i \(-0.698436\pi\)
0.995023 + 0.0996406i \(0.0317693\pi\)
\(480\) 0 0
\(481\) −17.5000 + 18.1865i −0.797931 + 0.829235i
\(482\) 0 0
\(483\) 41.5692 + 24.0000i 1.89146 + 1.09204i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13.8564 8.00000i 0.627894 0.362515i −0.152042 0.988374i \(-0.548585\pi\)
0.779936 + 0.625859i \(0.215252\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) 12.0000 20.7846i 0.541552 0.937996i −0.457263 0.889332i \(-0.651170\pi\)
0.998815 0.0486647i \(-0.0154966\pi\)
\(492\) 0 0
\(493\) 27.0000i 1.21602i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20.7846 + 12.0000i 0.932317 + 0.538274i
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −24.0000 41.5692i −1.07224 1.85718i
\(502\) 0 0
\(503\) 10.3923 6.00000i 0.463370 0.267527i −0.250090 0.968223i \(-0.580460\pi\)
0.713460 + 0.700696i \(0.247127\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −13.8564 22.0000i −0.615385 0.977054i
\(508\) 0 0
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 0 0
\(513\) 6.92820 4.00000i 0.305888 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) −17.3205 10.0000i −0.757373 0.437269i 0.0709788 0.997478i \(-0.477388\pi\)
−0.828352 + 0.560208i \(0.810721\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.19615 + 3.00000i −0.226348 + 0.130682i
\(528\) 0 0
\(529\) 6.50000 + 11.2583i 0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.79423 + 7.50000i 0.337606 + 0.324861i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 41.5692 24.0000i 1.79384 1.03568i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.0000 −0.816874 −0.408437 0.912787i \(-0.633926\pi\)
−0.408437 + 0.912787i \(0.633926\pi\)
\(542\) 0 0
\(543\) −12.1244 7.00000i −0.520306 0.300399i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000i 0.940652i 0.882493 + 0.470326i \(0.155864\pi\)
−0.882493 + 0.470326i \(0.844136\pi\)
\(548\) 0 0
\(549\) 2.50000 4.33013i 0.106697 0.184805i
\(550\) 0 0
\(551\) 18.0000 0.766826
\(552\) 0 0
\(553\) 13.8564 8.00000i 0.589234 0.340195i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.59808 1.50000i −0.110084 0.0635570i 0.443947 0.896053i \(-0.353578\pi\)
−0.554031 + 0.832496i \(0.686911\pi\)
\(558\) 0 0
\(559\) 4.00000 + 13.8564i 0.169182 + 0.586064i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.1769 18.0000i 1.31395 0.758610i 0.331202 0.943560i \(-0.392546\pi\)
0.982748 + 0.184950i \(0.0592124\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 44.0000i 1.84783i
\(568\) 0 0
\(569\) −9.00000 + 15.5885i −0.377300 + 0.653502i −0.990668 0.136295i \(-0.956481\pi\)
0.613369 + 0.789797i \(0.289814\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.0000i 0.457936i −0.973434 0.228968i \(-0.926465\pi\)
0.973434 0.228968i \(-0.0735351\pi\)
\(578\) 0 0
\(579\) −11.0000 19.0526i −0.457144 0.791797i
\(580\) 0 0
\(581\) 24.0000 + 41.5692i 0.995688 + 1.72458i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) 2.00000 + 3.46410i 0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 6.00000 + 10.3923i 0.246807 + 0.427482i
\(592\) 0 0
\(593\) 9.00000i 0.369586i −0.982777 0.184793i \(-0.940839\pi\)
0.982777 0.184793i \(-0.0591614\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 52.0000i 2.12822i
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 0.500000 0.866025i 0.0203954 0.0353259i −0.855648 0.517559i \(-0.826841\pi\)
0.876043 + 0.482233i \(0.160174\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 19.0526 11.0000i 0.773320 0.446476i −0.0607380 0.998154i \(-0.519345\pi\)
0.834058 + 0.551678i \(0.186012\pi\)
\(608\) 0 0
\(609\) 36.0000 62.3538i 1.45879 2.52670i
\(610\) 0 0
\(611\) 21.0000 + 5.19615i 0.849569 + 0.210214i
\(612\) 0 0
\(613\) 16.4545 + 9.50000i 0.664590 + 0.383701i 0.794024 0.607887i \(-0.207983\pi\)
−0.129433 + 0.991588i \(0.541316\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.3827 + 13.5000i −0.941351 + 0.543490i −0.890384 0.455211i \(-0.849564\pi\)
−0.0509678 + 0.998700i \(0.516231\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 12.0000 20.7846i 0.481543 0.834058i
\(622\) 0 0
\(623\) 24.0000i 0.961540i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 14.0000 + 24.2487i 0.557331 + 0.965326i 0.997718 + 0.0675178i \(0.0215080\pi\)
−0.440387 + 0.897808i \(0.645159\pi\)
\(632\) 0 0
\(633\) −3.46410 + 2.00000i −0.137686 + 0.0794929i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −23.3827 22.5000i −0.926456 0.891482i
\(638\) 0 0
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) −7.50000 12.9904i −0.296232 0.513089i 0.679039 0.734103i \(-0.262397\pi\)
−0.975271 + 0.221013i \(0.929064\pi\)
\(642\) 0 0
\(643\) −13.8564 + 8.00000i −0.546443 + 0.315489i −0.747686 0.664052i \(-0.768835\pi\)
0.201243 + 0.979541i \(0.435502\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.19615 + 3.00000i 0.204282 + 0.117942i 0.598651 0.801010i \(-0.295704\pi\)
−0.394369 + 0.918952i \(0.629037\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) 36.3731 + 21.0000i 1.42339 + 0.821794i 0.996587 0.0825519i \(-0.0263070\pi\)
0.426801 + 0.904345i \(0.359640\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.866025 0.500000i 0.0337869 0.0195069i
\(658\) 0 0
\(659\) −6.00000 10.3923i −0.233727 0.404827i 0.725175 0.688565i \(-0.241759\pi\)
−0.958902 + 0.283738i \(0.908425\pi\)
\(660\) 0 0
\(661\) 3.50000 6.06218i 0.136134 0.235791i −0.789896 0.613241i \(-0.789865\pi\)
0.926030 + 0.377450i \(0.123199\pi\)
\(662\) 0 0
\(663\) −5.19615 + 21.0000i −0.201802 + 0.815572i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 46.7654 27.0000i 1.81076 1.04544i
\(668\) 0 0
\(669\) −26.0000 45.0333i −1.00522 1.74109i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 11.2583 + 6.50000i 0.433977 + 0.250557i 0.701039 0.713123i \(-0.252720\pi\)
−0.267063 + 0.963679i \(0.586053\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 0 0
\(679\) −28.0000 + 48.4974i −1.07454 + 1.86116i
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −5.19615 + 3.00000i −0.198825 + 0.114792i −0.596107 0.802905i \(-0.703287\pi\)
0.397282 + 0.917697i \(0.369953\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −24.2487 14.0000i −0.925146 0.534133i
\(688\) 0 0
\(689\) 31.5000 + 7.79423i 1.20005 + 0.296936i
\(690\) 0 0
\(691\) 20.0000 34.6410i 0.760836 1.31781i −0.181584 0.983375i \(-0.558123\pi\)
0.942420 0.334431i \(-0.108544\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.00000i 0.340899i
\(698\) 0 0
\(699\) 18.0000 31.1769i 0.680823 1.17922i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 14.0000i 0.528020i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) −15.5000 26.8468i −0.582115 1.00825i −0.995228 0.0975728i \(-0.968892\pi\)
0.413114 0.910679i \(-0.364441\pi\)
\(710\) 0 0
\(711\) 2.00000 + 3.46410i 0.0750059 + 0.129914i
\(712\) 0 0
\(713\) 10.3923 + 6.00000i 0.389195 + 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −41.5692 24.0000i −1.55243 0.896296i
\(718\) 0 0
\(719\) 6.00000 + 10.3923i 0.223762 + 0.387568i 0.955947 0.293538i \(-0.0948328\pi\)
−0.732185 + 0.681106i \(0.761499\pi\)
\(720\) 0 0
\(721\) 4.00000 + 6.92820i 0.148968 + 0.258020i
\(722\) 0 0
\(723\) 2.00000i 0.0743808i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 32.0000i 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) 29.0000i 1.07114i 0.844491 + 0.535570i \(0.179903\pi\)
−0.844491 + 0.535570i \(0.820097\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 10.0000 17.3205i 0.367856 0.637145i −0.621374 0.783514i \(-0.713425\pi\)
0.989230 + 0.146369i \(0.0467586\pi\)
\(740\) 0 0
\(741\) 14.0000 + 3.46410i 0.514303 + 0.127257i
\(742\) 0 0
\(743\) 20.7846 + 12.0000i 0.762513 + 0.440237i 0.830197 0.557470i \(-0.188228\pi\)
−0.0676840 + 0.997707i \(0.521561\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −10.3923 + 6.00000i −0.380235 + 0.219529i
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 2.00000 3.46410i 0.0729810 0.126407i −0.827225 0.561870i \(-0.810082\pi\)
0.900207 + 0.435463i \(0.143415\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 32.9090 + 19.0000i 1.19610 + 0.690567i 0.959683 0.281086i \(-0.0906945\pi\)
0.236414 + 0.971652i \(0.424028\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 34.6410 20.0000i 1.25409 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 7.00000 12.1244i 0.252426 0.437215i −0.711767 0.702416i \(-0.752105\pi\)
0.964193 + 0.265200i \(0.0854381\pi\)
\(770\) 0 0
\(771\) 3.00000 + 5.19615i 0.108042 + 0.187135i
\(772\) 0 0
\(773\) −5.19615 + 3.00000i −0.186893 + 0.107903i −0.590527 0.807018i \(-0.701080\pi\)
0.403634 + 0.914920i \(0.367747\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −48.4974 28.0000i −1.73984 1.00449i
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −31.1769 18.0000i −1.11417 0.643268i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −32.9090 + 19.0000i −1.17308 + 0.677277i −0.954403 0.298521i \(-0.903507\pi\)
−0.218675 + 0.975798i \(0.570173\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18.0000 + 31.1769i −0.640006 + 1.10852i
\(792\) 0 0
\(793\) −17.3205 + 5.00000i −0.615069 + 0.177555i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.5885 9.00000i 0.552171 0.318796i −0.197826 0.980237i \(-0.563388\pi\)
0.749997 + 0.661441i \(0.230055\pi\)
\(798\) 0 0
\(799\) −9.00000 15.5885i −0.318397 0.551480i
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 60.0000i 2.11210i
\(808\) 0 0
\(809\) 7.50000 12.9904i 0.263686 0.456717i −0.703533 0.710663i \(-0.748395\pi\)
0.967219 + 0.253946i \(0.0817284\pi\)
\(810\) 0 0
\(811\) −10.0000 −0.351147 −0.175574 0.984466i \(-0.556178\pi\)
−0.175574 + 0.984466i \(0.556178\pi\)
\(812\) 0 0
\(813\) −13.8564 + 8.00000i −0.485965 + 0.280572i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.92820 4.00000i −0.242387 0.139942i
\(818\) 0 0
\(819\) 10.0000 10.3923i 0.349428 0.363137i
\(820\) 0 0
\(821\) 9.00000 15.5885i 0.314102 0.544041i −0.665144 0.746715i \(-0.731630\pi\)
0.979246 + 0.202674i \(0.0649632\pi\)
\(822\) 0 0
\(823\) 27.7128 16.0000i 0.966008 0.557725i 0.0679910 0.997686i \(-0.478341\pi\)
0.898017 + 0.439961i \(0.145008\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) −9.50000 + 16.4545i −0.329949 + 0.571488i −0.982501 0.186256i \(-0.940365\pi\)
0.652553 + 0.757743i \(0.273698\pi\)
\(830\) 0 0
\(831\) 38.0000 1.31821
\(832\) 0 0
\(833\) 27.0000i 0.935495i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) 21.0000 + 36.3731i 0.725001 + 1.25574i 0.958974 + 0.283495i \(0.0914938\pi\)
−0.233973 + 0.972243i \(0.575173\pi\)
\(840\) 0 0
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) 0 0
\(843\) 5.19615 + 3.00000i 0.178965 + 0.103325i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 38.1051 + 22.0000i 1.30931 + 0.755929i
\(848\) 0 0
\(849\) 16.0000 + 27.7128i 0.549119 + 0.951101i
\(850\) 0 0
\(851\) −21.0000 36.3731i −0.719871 1.24685i
\(852\) 0 0
\(853\) 5.00000i 0.171197i 0.996330 + 0.0855984i \(0.0272802\pi\)
−0.996330 + 0.0855984i \(0.972720\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.00000i 0.102478i −0.998686 0.0512390i \(-0.983683\pi\)
0.998686 0.0512390i \(-0.0163170\pi\)
\(858\) 0 0
\(859\) −2.00000 −0.0682391 −0.0341196 0.999418i \(-0.510863\pi\)
−0.0341196 + 0.999418i \(0.510863\pi\)
\(860\) 0 0
\(861\) −12.0000 + 20.7846i −0.408959 + 0.708338i
\(862\) 0 0
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.8564 + 8.00000i −0.470588 + 0.271694i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 5.00000 5.19615i 0.169419 0.176065i
\(872\) 0 0
\(873\) −12.1244 7.00000i −0.410347 0.236914i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.33013 + 2.50000i −0.146218 + 0.0844190i −0.571324 0.820724i \(-0.693570\pi\)
0.425106 + 0.905143i \(0.360237\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) −25.5000 + 44.1673i −0.859117 + 1.48803i 0.0136556 + 0.999907i \(0.495653\pi\)
−0.872772 + 0.488127i \(0.837680\pi\)
\(882\) 0 0
\(883\) 26.0000i 0.874970i 0.899226 + 0.437485i \(0.144131\pi\)
−0.899226 + 0.437485i \(0.855869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.3923 + 6.00000i 0.348939 + 0.201460i 0.664218 0.747539i \(-0.268765\pi\)
−0.315279 + 0.948999i \(0.602098\pi\)
\(888\) 0 0
\(889\) −40.0000 −1.34156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.3923 + 6.00000i −0.347765 + 0.200782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 41.5692 12.0000i 1.38796 0.400668i
\(898\) 0 0
\(899\) 9.00000 15.5885i 0.300167 0.519904i
\(900\) 0 0
\(901\) −13.5000 23.3827i −0.449750 0.778990i
\(902\) 0 0
\(903\) −27.7128 + 16.0000i −0.922225 + 0.532447i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 6.92820 + 4.00000i 0.230047 + 0.132818i 0.610594 0.791944i \(-0.290931\pi\)
−0.380547 + 0.924762i \(0.624264\pi\)
\(908\) 0 0
\(909\) −9.00000 −0.298511
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.7846 12.0000i 0.686368 0.396275i
\(918\) 0 0
\(919\) 19.0000 + 32.9090i 0.626752 + 1.08557i 0.988199 + 0.153174i \(0.0489495\pi\)
−0.361447 + 0.932393i \(0.617717\pi\)
\(920\) 0 0
\(921\) 26.0000 45.0333i 0.856729 1.48390i
\(922\) 0 0
\(923\) 20.7846 6.00000i 0.684134 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.73205 + 1.00000i −0.0568880 + 0.0328443i
\(928\) 0 0
\(929\) −10.5000 18.1865i −0.344494 0.596681i 0.640768 0.767735i \(-0.278616\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 10.3923 + 6.00000i 0.340229 + 0.196431i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.0000i 1.53542i −0.640796 0.767712i \(-0.721395\pi\)
0.640796 0.767712i \(-0.278605\pi\)
\(938\) 0 0
\(939\) −14.0000 + 24.2487i −0.456873 + 0.791327i
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) −15.5885 + 9.00000i −0.507630 + 0.293080i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.5885 9.00000i −0.506557 0.292461i 0.224860 0.974391i \(-0.427807\pi\)
−0.731417 + 0.681930i \(0.761141\pi\)
\(948\) 0 0
\(949\) −3.50000 0.866025i −0.113615 0.0281124i
\(950\) 0 0
\(951\) −15.0000 + 25.9808i −0.486408 + 0.842484i
\(952\) 0 0
\(953\) −5.19615 + 3.00000i −0.168320 + 0.0971795i −0.581793 0.813337i \(-0.697649\pi\)
0.413473 + 0.910516i \(0.364315\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −30.0000 + 51.9615i −0.968751 + 1.67793i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 58.0000i 1.86515i 0.360971 + 0.932577i \(0.382445\pi\)
−0.360971 + 0.932577i \(0.617555\pi\)
\(968\) 0 0
\(969\) −6.00000 10.3923i −0.192748 0.333849i
\(970\) 0 0
\(971\) −15.0000 25.9808i −0.481373 0.833762i 0.518399 0.855139i \(-0.326528\pi\)
−0.999771 + 0.0213768i \(0.993195\pi\)
\(972\) 0 0
\(973\) −55.4256 32.0000i −1.77686 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33.7750 + 19.5000i 1.08056 + 0.623860i 0.931047 0.364900i \(-0.118897\pi\)
0.149511 + 0.988760i \(0.452230\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.00000 + 8.66025i 0.159638 + 0.276501i
\(982\) 0 0
\(983\) 6.00000i 0.191370i −0.995412 0.0956851i \(-0.969496\pi\)
0.995412 0.0956851i \(-0.0305042\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 48.0000i 1.52786i
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −1.00000 + 1.73205i −0.0317660 + 0.0550204i −0.881471 0.472237i \(-0.843446\pi\)
0.849705 + 0.527258i \(0.176780\pi\)
\(992\) 0 0
\(993\) 64.0000i 2.03098i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −4.33013 + 2.50000i −0.137136 + 0.0791758i −0.566999 0.823719i \(-0.691896\pi\)
0.429862 + 0.902895i \(0.358562\pi\)
\(998\) 0 0
\(999\) −14.0000 + 24.2487i −0.442940 + 0.767195i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1300.2.bb.d.1049.2 4
5.2 odd 4 52.2.e.b.9.1 2
5.3 odd 4 1300.2.i.b.1101.1 2
5.4 even 2 inner 1300.2.bb.d.1049.1 4
13.3 even 3 inner 1300.2.bb.d.549.1 4
15.2 even 4 468.2.l.d.217.1 2
20.7 even 4 208.2.i.a.113.1 2
35.2 odd 12 2548.2.i.g.165.1 2
35.12 even 12 2548.2.i.b.165.1 2
35.17 even 12 2548.2.l.g.373.1 2
35.27 even 4 2548.2.k.a.1569.1 2
35.32 odd 12 2548.2.l.b.373.1 2
40.27 even 4 832.2.i.i.321.1 2
40.37 odd 4 832.2.i.c.321.1 2
60.47 odd 4 1872.2.t.m.1153.1 2
65.2 even 12 676.2.h.d.361.2 4
65.3 odd 12 1300.2.i.b.601.1 2
65.7 even 12 676.2.d.a.337.1 2
65.12 odd 4 676.2.e.d.529.1 2
65.17 odd 12 676.2.a.b.1.1 1
65.22 odd 12 676.2.a.a.1.1 1
65.29 even 6 inner 1300.2.bb.d.549.2 4
65.32 even 12 676.2.d.a.337.2 2
65.37 even 12 676.2.h.d.361.1 4
65.42 odd 12 52.2.e.b.29.1 yes 2
65.47 even 4 676.2.h.d.485.1 4
65.57 even 4 676.2.h.d.485.2 4
65.62 odd 12 676.2.e.d.653.1 2
195.17 even 12 6084.2.a.c.1.1 1
195.32 odd 12 6084.2.b.k.4393.1 2
195.107 even 12 468.2.l.d.289.1 2
195.137 odd 12 6084.2.b.k.4393.2 2
195.152 even 12 6084.2.a.o.1.1 1
260.7 odd 12 2704.2.f.i.337.1 2
260.87 even 12 2704.2.a.l.1.1 1
260.107 even 12 208.2.i.a.81.1 2
260.147 even 12 2704.2.a.m.1.1 1
260.227 odd 12 2704.2.f.i.337.2 2
455.107 odd 12 2548.2.l.b.1537.1 2
455.172 odd 12 2548.2.i.g.1745.1 2
455.237 even 12 2548.2.k.a.393.1 2
455.367 even 12 2548.2.i.b.1745.1 2
455.432 even 12 2548.2.l.g.1537.1 2
520.107 even 12 832.2.i.i.705.1 2
520.237 odd 12 832.2.i.c.705.1 2
780.107 odd 12 1872.2.t.m.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.b.9.1 2 5.2 odd 4
52.2.e.b.29.1 yes 2 65.42 odd 12
208.2.i.a.81.1 2 260.107 even 12
208.2.i.a.113.1 2 20.7 even 4
468.2.l.d.217.1 2 15.2 even 4
468.2.l.d.289.1 2 195.107 even 12
676.2.a.a.1.1 1 65.22 odd 12
676.2.a.b.1.1 1 65.17 odd 12
676.2.d.a.337.1 2 65.7 even 12
676.2.d.a.337.2 2 65.32 even 12
676.2.e.d.529.1 2 65.12 odd 4
676.2.e.d.653.1 2 65.62 odd 12
676.2.h.d.361.1 4 65.37 even 12
676.2.h.d.361.2 4 65.2 even 12
676.2.h.d.485.1 4 65.47 even 4
676.2.h.d.485.2 4 65.57 even 4
832.2.i.c.321.1 2 40.37 odd 4
832.2.i.c.705.1 2 520.237 odd 12
832.2.i.i.321.1 2 40.27 even 4
832.2.i.i.705.1 2 520.107 even 12
1300.2.i.b.601.1 2 65.3 odd 12
1300.2.i.b.1101.1 2 5.3 odd 4
1300.2.bb.d.549.1 4 13.3 even 3 inner
1300.2.bb.d.549.2 4 65.29 even 6 inner
1300.2.bb.d.1049.1 4 5.4 even 2 inner
1300.2.bb.d.1049.2 4 1.1 even 1 trivial
1872.2.t.m.289.1 2 780.107 odd 12
1872.2.t.m.1153.1 2 60.47 odd 4
2548.2.i.b.165.1 2 35.12 even 12
2548.2.i.b.1745.1 2 455.367 even 12
2548.2.i.g.165.1 2 35.2 odd 12
2548.2.i.g.1745.1 2 455.172 odd 12
2548.2.k.a.393.1 2 455.237 even 12
2548.2.k.a.1569.1 2 35.27 even 4
2548.2.l.b.373.1 2 35.32 odd 12
2548.2.l.b.1537.1 2 455.107 odd 12
2548.2.l.g.373.1 2 35.17 even 12
2548.2.l.g.1537.1 2 455.432 even 12
2704.2.a.l.1.1 1 260.87 even 12
2704.2.a.m.1.1 1 260.147 even 12
2704.2.f.i.337.1 2 260.7 odd 12
2704.2.f.i.337.2 2 260.227 odd 12
6084.2.a.c.1.1 1 195.17 even 12
6084.2.a.o.1.1 1 195.152 even 12
6084.2.b.k.4393.1 2 195.32 odd 12
6084.2.b.k.4393.2 2 195.137 odd 12