Properties

Label 676.2.h.d.361.2
Level $676$
Weight $2$
Character 676.361
Analytic conductor $5.398$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(361,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 676.361
Dual form 676.2.h.d.485.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{3} +3.00000i q^{5} +(3.46410 + 2.00000i) q^{7} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{3} +3.00000i q^{5} +(3.46410 + 2.00000i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-5.19615 + 3.00000i) q^{15} +(1.50000 - 2.59808i) q^{17} +(1.73205 + 1.00000i) q^{19} +8.00000i q^{21} +(-3.00000 - 5.19615i) q^{23} -4.00000 q^{25} +4.00000 q^{27} +(-4.50000 - 7.79423i) q^{29} -2.00000i q^{31} +(-6.00000 + 10.3923i) q^{35} +(-6.06218 + 3.50000i) q^{37} +(-2.59808 + 1.50000i) q^{41} +(-2.00000 + 3.46410i) q^{43} +(-2.59808 - 1.50000i) q^{45} -6.00000i q^{47} +(4.50000 + 7.79423i) q^{49} +6.00000 q^{51} +9.00000 q^{53} +4.00000i q^{57} +(-2.50000 + 4.33013i) q^{61} +(-3.46410 + 2.00000i) q^{63} +(-1.73205 + 1.00000i) q^{67} +(6.00000 - 10.3923i) q^{69} +(-5.19615 - 3.00000i) q^{71} -1.00000i q^{73} +(-4.00000 - 6.92820i) q^{75} -4.00000 q^{79} +(5.50000 + 9.52628i) q^{81} -12.0000i q^{83} +(7.79423 + 4.50000i) q^{85} +(9.00000 - 15.5885i) q^{87} +(5.19615 - 3.00000i) q^{89} +(3.46410 - 2.00000i) q^{93} +(-3.00000 + 5.19615i) q^{95} +(12.1244 + 7.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} - 2 q^{9} + 6 q^{17} - 12 q^{23} - 16 q^{25} + 16 q^{27} - 18 q^{29} - 24 q^{35} - 8 q^{43} + 18 q^{49} + 24 q^{51} + 36 q^{53} - 10 q^{61} + 24 q^{69} - 16 q^{75} - 16 q^{79} + 22 q^{81} + 36 q^{87} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0 0
\(5\) 3.00000i 1.34164i 0.741620 + 0.670820i \(0.234058\pi\)
−0.741620 + 0.670820i \(0.765942\pi\)
\(6\) 0 0
\(7\) 3.46410 + 2.00000i 1.30931 + 0.755929i 0.981981 0.188982i \(-0.0605189\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −5.19615 + 3.00000i −1.34164 + 0.774597i
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 1.73205 + 1.00000i 0.397360 + 0.229416i 0.685344 0.728219i \(-0.259652\pi\)
−0.287984 + 0.957635i \(0.592985\pi\)
\(20\) 0 0
\(21\) 8.00000i 1.74574i
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 + 10.3923i −1.01419 + 1.75662i
\(36\) 0 0
\(37\) −6.06218 + 3.50000i −0.996616 + 0.575396i −0.907245 0.420602i \(-0.861819\pi\)
−0.0893706 + 0.995998i \(0.528486\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.59808 + 1.50000i −0.405751 + 0.234261i −0.688963 0.724797i \(-0.741934\pi\)
0.283211 + 0.959058i \(0.408600\pi\)
\(42\) 0 0
\(43\) −2.00000 + 3.46410i −0.304997 + 0.528271i −0.977261 0.212041i \(-0.931989\pi\)
0.672264 + 0.740312i \(0.265322\pi\)
\(44\) 0 0
\(45\) −2.59808 1.50000i −0.387298 0.223607i
\(46\) 0 0
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 0 0
\(49\) 4.50000 + 7.79423i 0.642857 + 1.11346i
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 0 0
\(63\) −3.46410 + 2.00000i −0.436436 + 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.73205 + 1.00000i −0.211604 + 0.122169i −0.602056 0.798454i \(-0.705652\pi\)
0.390453 + 0.920623i \(0.372318\pi\)
\(68\) 0 0
\(69\) 6.00000 10.3923i 0.722315 1.25109i
\(70\) 0 0
\(71\) −5.19615 3.00000i −0.616670 0.356034i 0.158901 0.987294i \(-0.449205\pi\)
−0.775571 + 0.631260i \(0.782538\pi\)
\(72\) 0 0
\(73\) 1.00000i 0.117041i −0.998286 0.0585206i \(-0.981362\pi\)
0.998286 0.0585206i \(-0.0186383\pi\)
\(74\) 0 0
\(75\) −4.00000 6.92820i −0.461880 0.800000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 12.0000i 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 7.79423 + 4.50000i 0.845403 + 0.488094i
\(86\) 0 0
\(87\) 9.00000 15.5885i 0.964901 1.67126i
\(88\) 0 0
\(89\) 5.19615 3.00000i 0.550791 0.317999i −0.198650 0.980071i \(-0.563656\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.46410 2.00000i 0.359211 0.207390i
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) 12.1244 + 7.00000i 1.23104 + 0.710742i 0.967247 0.253837i \(-0.0816925\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0 0
\(103\) −2.00000 −0.197066 −0.0985329 0.995134i \(-0.531415\pi\)
−0.0985329 + 0.995134i \(0.531415\pi\)
\(104\) 0 0
\(105\) −24.0000 −2.34216
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) −12.1244 7.00000i −1.15079 0.664411i
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) 15.5885 9.00000i 1.45363 0.839254i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.3923 6.00000i 0.952661 0.550019i
\(120\) 0 0
\(121\) −5.50000 + 9.52628i −0.500000 + 0.866025i
\(122\) 0 0
\(123\) −5.19615 3.00000i −0.468521 0.270501i
\(124\) 0 0
\(125\) 3.00000i 0.268328i
\(126\) 0 0
\(127\) −5.00000 8.66025i −0.443678 0.768473i 0.554281 0.832330i \(-0.312993\pi\)
−0.997959 + 0.0638564i \(0.979660\pi\)
\(128\) 0 0
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 4.00000 + 6.92820i 0.346844 + 0.600751i
\(134\) 0 0
\(135\) 12.0000i 1.03280i
\(136\) 0 0
\(137\) −12.9904 7.50000i −1.10984 0.640768i −0.171054 0.985262i \(-0.554717\pi\)
−0.938789 + 0.344493i \(0.888051\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 10.3923 6.00000i 0.875190 0.505291i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 23.3827 13.5000i 1.94183 1.12111i
\(146\) 0 0
\(147\) −9.00000 + 15.5885i −0.742307 + 1.28571i
\(148\) 0 0
\(149\) 7.79423 + 4.50000i 0.638528 + 0.368654i 0.784047 0.620701i \(-0.213152\pi\)
−0.145519 + 0.989355i \(0.546485\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) 0 0
\(153\) 1.50000 + 2.59808i 0.121268 + 0.210042i
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 0 0
\(159\) 9.00000 + 15.5885i 0.713746 + 1.23625i
\(160\) 0 0
\(161\) 24.0000i 1.89146i
\(162\) 0 0
\(163\) −6.92820 4.00000i −0.542659 0.313304i 0.203497 0.979076i \(-0.434769\pi\)
−0.746156 + 0.665771i \(0.768103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.7846 + 12.0000i −1.60836 + 0.928588i −0.618624 + 0.785687i \(0.712310\pi\)
−0.989737 + 0.142901i \(0.954357\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −1.73205 + 1.00000i −0.132453 + 0.0764719i
\(172\) 0 0
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −13.8564 8.00000i −1.04745 0.604743i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 + 20.7846i 0.896922 + 1.55351i 0.831408 + 0.555663i \(0.187536\pi\)
0.0655145 + 0.997852i \(0.479131\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) −10.5000 18.1865i −0.771975 1.33710i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.8564 + 8.00000i 1.00791 + 0.581914i
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) 9.52628 5.50000i 0.685717 0.395899i −0.116289 0.993215i \(-0.537100\pi\)
0.802005 + 0.597317i \(0.203766\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.19615 + 3.00000i −0.370211 + 0.213741i −0.673550 0.739141i \(-0.735232\pi\)
0.303340 + 0.952882i \(0.401898\pi\)
\(198\) 0 0
\(199\) 13.0000 22.5167i 0.921546 1.59616i 0.124521 0.992217i \(-0.460261\pi\)
0.797025 0.603947i \(-0.206406\pi\)
\(200\) 0 0
\(201\) −3.46410 2.00000i −0.244339 0.141069i
\(202\) 0 0
\(203\) 36.0000i 2.52670i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.00000 1.73205i −0.0688428 0.119239i 0.829549 0.558433i \(-0.188597\pi\)
−0.898392 + 0.439194i \(0.855264\pi\)
\(212\) 0 0
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) −10.3923 6.00000i −0.708749 0.409197i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) 1.73205 1.00000i 0.117041 0.0675737i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −22.5167 + 13.0000i −1.50783 + 0.870544i −0.507869 + 0.861435i \(0.669566\pi\)
−0.999959 + 0.00910984i \(0.997100\pi\)
\(224\) 0 0
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 0 0
\(227\) 5.19615 + 3.00000i 0.344881 + 0.199117i 0.662428 0.749125i \(-0.269526\pi\)
−0.317547 + 0.948242i \(0.602859\pi\)
\(228\) 0 0
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 18.0000 1.17419
\(236\) 0 0
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) 24.0000i 1.55243i −0.630468 0.776215i \(-0.717137\pi\)
0.630468 0.776215i \(-0.282863\pi\)
\(240\) 0 0
\(241\) 0.866025 + 0.500000i 0.0557856 + 0.0322078i 0.527633 0.849472i \(-0.323079\pi\)
−0.471848 + 0.881680i \(0.656413\pi\)
\(242\) 0 0
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 0 0
\(245\) −23.3827 + 13.5000i −1.49387 + 0.862483i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 20.7846 12.0000i 1.31717 0.760469i
\(250\) 0 0
\(251\) −3.00000 + 5.19615i −0.189358 + 0.327978i −0.945036 0.326965i \(-0.893974\pi\)
0.755678 + 0.654943i \(0.227307\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 18.0000i 1.12720i
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) −28.0000 −1.73984
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 27.0000i 1.65860i
\(266\) 0 0
\(267\) 10.3923 + 6.00000i 0.635999 + 0.367194i
\(268\) 0 0
\(269\) −15.0000 + 25.9808i −0.914566 + 1.58408i −0.107031 + 0.994256i \(0.534134\pi\)
−0.807535 + 0.589819i \(0.799199\pi\)
\(270\) 0 0
\(271\) 6.92820 4.00000i 0.420858 0.242983i −0.274586 0.961563i \(-0.588541\pi\)
0.695444 + 0.718580i \(0.255208\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.50000 + 16.4545i −0.570800 + 0.988654i 0.425684 + 0.904872i \(0.360033\pi\)
−0.996484 + 0.0837823i \(0.973300\pi\)
\(278\) 0 0
\(279\) 1.73205 + 1.00000i 0.103695 + 0.0598684i
\(280\) 0 0
\(281\) 3.00000i 0.178965i 0.995988 + 0.0894825i \(0.0285213\pi\)
−0.995988 + 0.0894825i \(0.971479\pi\)
\(282\) 0 0
\(283\) −8.00000 13.8564i −0.475551 0.823678i 0.524057 0.851683i \(-0.324418\pi\)
−0.999608 + 0.0280052i \(0.991084\pi\)
\(284\) 0 0
\(285\) −12.0000 −0.710819
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 28.0000i 1.64139i
\(292\) 0 0
\(293\) −7.79423 4.50000i −0.455344 0.262893i 0.254741 0.967009i \(-0.418010\pi\)
−0.710084 + 0.704117i \(0.751343\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −13.8564 + 8.00000i −0.798670 + 0.461112i
\(302\) 0 0
\(303\) −9.00000 + 15.5885i −0.517036 + 0.895533i
\(304\) 0 0
\(305\) −12.9904 7.50000i −0.743827 0.429449i
\(306\) 0 0
\(307\) 26.0000i 1.48390i 0.670456 + 0.741949i \(0.266098\pi\)
−0.670456 + 0.741949i \(0.733902\pi\)
\(308\) 0 0
\(309\) −2.00000 3.46410i −0.113776 0.197066i
\(310\) 0 0
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) −6.00000 10.3923i −0.338062 0.585540i
\(316\) 0 0
\(317\) 15.0000i 0.842484i 0.906948 + 0.421242i \(0.138406\pi\)
−0.906948 + 0.421242i \(0.861594\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) 5.19615 3.00000i 0.289122 0.166924i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −17.3205 + 10.0000i −0.957826 + 0.553001i
\(328\) 0 0
\(329\) 12.0000 20.7846i 0.661581 1.14589i
\(330\) 0 0
\(331\) 27.7128 + 16.0000i 1.52323 + 0.879440i 0.999622 + 0.0274825i \(0.00874905\pi\)
0.523612 + 0.851957i \(0.324584\pi\)
\(332\) 0 0
\(333\) 7.00000i 0.383598i
\(334\) 0 0
\(335\) −3.00000 5.19615i −0.163908 0.283896i
\(336\) 0 0
\(337\) 25.0000 1.36184 0.680918 0.732359i \(-0.261581\pi\)
0.680918 + 0.732359i \(0.261581\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 31.1769 + 18.0000i 1.67851 + 0.969087i
\(346\) 0 0
\(347\) −9.00000 + 15.5885i −0.483145 + 0.836832i −0.999813 0.0193540i \(-0.993839\pi\)
0.516667 + 0.856186i \(0.327172\pi\)
\(348\) 0 0
\(349\) 12.1244 7.00000i 0.649002 0.374701i −0.139072 0.990282i \(-0.544412\pi\)
0.788074 + 0.615581i \(0.211079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.3827 + 13.5000i −1.24453 + 0.718532i −0.970014 0.243049i \(-0.921853\pi\)
−0.274521 + 0.961581i \(0.588519\pi\)
\(354\) 0 0
\(355\) 9.00000 15.5885i 0.477670 0.827349i
\(356\) 0 0
\(357\) 20.7846 + 12.0000i 1.10004 + 0.635107i
\(358\) 0 0
\(359\) 36.0000i 1.90001i 0.312239 + 0.950004i \(0.398921\pi\)
−0.312239 + 0.950004i \(0.601079\pi\)
\(360\) 0 0
\(361\) −7.50000 12.9904i −0.394737 0.683704i
\(362\) 0 0
\(363\) −22.0000 −1.15470
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) 0 0
\(369\) 3.00000i 0.156174i
\(370\) 0 0
\(371\) 31.1769 + 18.0000i 1.61862 + 0.934513i
\(372\) 0 0
\(373\) 3.50000 6.06218i 0.181223 0.313888i −0.761074 0.648665i \(-0.775328\pi\)
0.942297 + 0.334777i \(0.108661\pi\)
\(374\) 0 0
\(375\) −5.19615 + 3.00000i −0.268328 + 0.154919i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.66025 5.00000i 0.444847 0.256833i −0.260804 0.965392i \(-0.583988\pi\)
0.705652 + 0.708559i \(0.250654\pi\)
\(380\) 0 0
\(381\) 10.0000 17.3205i 0.512316 0.887357i
\(382\) 0 0
\(383\) −31.1769 18.0000i −1.59307 0.919757i −0.992777 0.119974i \(-0.961719\pi\)
−0.600289 0.799783i \(-0.704948\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 3.46410i −0.101666 0.176090i
\(388\) 0 0
\(389\) −21.0000 −1.06474 −0.532371 0.846511i \(-0.678699\pi\)
−0.532371 + 0.846511i \(0.678699\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) 12.0000i 0.603786i
\(396\) 0 0
\(397\) 8.66025 + 5.00000i 0.434646 + 0.250943i 0.701324 0.712843i \(-0.252593\pi\)
−0.266678 + 0.963786i \(0.585926\pi\)
\(398\) 0 0
\(399\) −8.00000 + 13.8564i −0.400501 + 0.693688i
\(400\) 0 0
\(401\) −28.5788 + 16.5000i −1.42716 + 0.823971i −0.996896 0.0787327i \(-0.974913\pi\)
−0.430263 + 0.902703i \(0.641579\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −28.5788 + 16.5000i −1.42009 + 0.819892i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −21.6506 12.5000i −1.07056 0.618085i −0.142222 0.989835i \(-0.545425\pi\)
−0.928333 + 0.371750i \(0.878758\pi\)
\(410\) 0 0
\(411\) 30.0000i 1.47979i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 36.0000 1.76717
\(416\) 0 0
\(417\) 32.0000 1.56705
\(418\) 0 0
\(419\) −15.0000 25.9808i −0.732798 1.26924i −0.955683 0.294398i \(-0.904881\pi\)
0.222885 0.974845i \(-0.428453\pi\)
\(420\) 0 0
\(421\) 5.00000i 0.243685i −0.992549 0.121843i \(-0.961120\pi\)
0.992549 0.121843i \(-0.0388803\pi\)
\(422\) 0 0
\(423\) 5.19615 + 3.00000i 0.252646 + 0.145865i
\(424\) 0 0
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) −17.3205 + 10.0000i −0.838198 + 0.483934i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3923 6.00000i 0.500580 0.289010i −0.228373 0.973574i \(-0.573341\pi\)
0.728953 + 0.684564i \(0.240007\pi\)
\(432\) 0 0
\(433\) −0.500000 + 0.866025i −0.0240285 + 0.0416185i −0.877790 0.479046i \(-0.840983\pi\)
0.853761 + 0.520665i \(0.174316\pi\)
\(434\) 0 0
\(435\) 46.7654 + 27.0000i 2.24223 + 1.29455i
\(436\) 0 0
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) 16.0000 + 27.7128i 0.763638 + 1.32266i 0.940963 + 0.338508i \(0.109922\pi\)
−0.177325 + 0.984152i \(0.556744\pi\)
\(440\) 0 0
\(441\) −9.00000 −0.428571
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 + 15.5885i 0.426641 + 0.738964i
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) −25.9808 15.0000i −1.22611 0.707894i −0.259895 0.965637i \(-0.583688\pi\)
−0.966213 + 0.257743i \(0.917021\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 17.3205 10.0000i 0.813788 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.9186 + 11.5000i −0.931752 + 0.537947i −0.887365 0.461067i \(-0.847467\pi\)
−0.0443868 + 0.999014i \(0.514133\pi\)
\(458\) 0 0
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 0 0
\(461\) −33.7750 19.5000i −1.57306 0.908206i −0.995791 0.0916500i \(-0.970786\pi\)
−0.577267 0.816556i \(-0.695881\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i 0.885448 + 0.464739i \(0.153852\pi\)
−0.885448 + 0.464739i \(0.846148\pi\)
\(464\) 0 0
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) −7.00000 12.1244i −0.322543 0.558661i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6.92820 4.00000i −0.317888 0.183533i
\(476\) 0 0
\(477\) −4.50000 + 7.79423i −0.206041 + 0.356873i
\(478\) 0 0
\(479\) 15.5885 9.00000i 0.712255 0.411220i −0.0996406 0.995023i \(-0.531769\pi\)
0.811895 + 0.583803i \(0.198436\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 41.5692 24.0000i 1.89146 1.09204i
\(484\) 0 0
\(485\) −21.0000 + 36.3731i −0.953561 + 1.65162i
\(486\) 0 0
\(487\) −13.8564 8.00000i −0.627894 0.362515i 0.152042 0.988374i \(-0.451415\pi\)
−0.779936 + 0.625859i \(0.784748\pi\)
\(488\) 0 0
\(489\) 16.0000i 0.723545i
\(490\) 0 0
\(491\) −12.0000 20.7846i −0.541552 0.937996i −0.998815 0.0486647i \(-0.984503\pi\)
0.457263 0.889332i \(-0.348830\pi\)
\(492\) 0 0
\(493\) −27.0000 −1.21602
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 20.7846i −0.538274 0.932317i
\(498\) 0 0
\(499\) 14.0000i 0.626726i −0.949633 0.313363i \(-0.898544\pi\)
0.949633 0.313363i \(-0.101456\pi\)
\(500\) 0 0
\(501\) −41.5692 24.0000i −1.85718 1.07224i
\(502\) 0 0
\(503\) −6.00000 + 10.3923i −0.267527 + 0.463370i −0.968223 0.250090i \(-0.919540\pi\)
0.700696 + 0.713460i \(0.252873\pi\)
\(504\) 0 0
\(505\) −23.3827 + 13.5000i −1.04052 + 0.600742i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.9904 7.50000i 0.575789 0.332432i −0.183669 0.982988i \(-0.558798\pi\)
0.759458 + 0.650556i \(0.225464\pi\)
\(510\) 0 0
\(511\) 2.00000 3.46410i 0.0884748 0.153243i
\(512\) 0 0
\(513\) 6.92820 + 4.00000i 0.305888 + 0.176604i
\(514\) 0 0
\(515\) 6.00000i 0.264392i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 0 0
\(525\) 32.0000i 1.39659i
\(526\) 0 0
\(527\) −5.19615 3.00000i −0.226348 0.130682i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 15.5885 9.00000i 0.673948 0.389104i
\(536\) 0 0
\(537\) −24.0000 + 41.5692i −1.03568 + 1.79384i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.0000i 0.816874i −0.912787 0.408437i \(-0.866074\pi\)
0.912787 0.408437i \(-0.133926\pi\)
\(542\) 0 0
\(543\) 7.00000 + 12.1244i 0.300399 + 0.520306i
\(544\) 0 0
\(545\) −30.0000 −1.28506
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 0 0
\(549\) −2.50000 4.33013i −0.106697 0.184805i
\(550\) 0 0
\(551\) 18.0000i 0.766826i
\(552\) 0 0
\(553\) −13.8564 8.00000i −0.589234 0.340195i
\(554\) 0 0
\(555\) 21.0000 36.3731i 0.891400 1.54395i
\(556\) 0 0
\(557\) −2.59808 + 1.50000i −0.110084 + 0.0635570i −0.554031 0.832496i \(-0.686911\pi\)
0.443947 + 0.896053i \(0.353578\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) 0 0
\(565\) 23.3827 + 13.5000i 0.983717 + 0.567949i
\(566\) 0 0
\(567\) 44.0000i 1.84783i
\(568\) 0 0
\(569\) −9.00000 15.5885i −0.377300 0.653502i 0.613369 0.789797i \(-0.289814\pi\)
−0.990668 + 0.136295i \(0.956481\pi\)
\(570\) 0 0
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 12.0000 + 20.7846i 0.500435 + 0.866778i
\(576\) 0 0
\(577\) 11.0000i 0.457936i −0.973434 0.228968i \(-0.926465\pi\)
0.973434 0.228968i \(-0.0735351\pi\)
\(578\) 0 0
\(579\) 19.0526 + 11.0000i 0.791797 + 0.457144i
\(580\) 0 0
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 2.00000 3.46410i 0.0824086 0.142736i
\(590\) 0 0
\(591\) −10.3923 6.00000i −0.427482 0.246807i
\(592\) 0 0
\(593\) 9.00000i 0.369586i −0.982777 0.184793i \(-0.940839\pi\)
0.982777 0.184793i \(-0.0591614\pi\)
\(594\) 0 0
\(595\) 18.0000 + 31.1769i 0.737928 + 1.27813i
\(596\) 0 0
\(597\) 52.0000 2.12822
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 0.500000 + 0.866025i 0.0203954 + 0.0353259i 0.876043 0.482233i \(-0.160174\pi\)
−0.855648 + 0.517559i \(0.826841\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) 0 0
\(605\) −28.5788 16.5000i −1.16190 0.670820i
\(606\) 0 0
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 0 0
\(609\) 62.3538 36.0000i 2.52670 1.45879i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.4545 9.50000i 0.664590 0.383701i −0.129433 0.991588i \(-0.541316\pi\)
0.794024 + 0.607887i \(0.207983\pi\)
\(614\) 0 0
\(615\) 9.00000 15.5885i 0.362915 0.628587i
\(616\) 0 0
\(617\) 23.3827 + 13.5000i 0.941351 + 0.543490i 0.890384 0.455211i \(-0.150436\pi\)
0.0509678 + 0.998700i \(0.483769\pi\)
\(618\) 0 0
\(619\) 40.0000i 1.60774i −0.594808 0.803868i \(-0.702772\pi\)
0.594808 0.803868i \(-0.297228\pi\)
\(620\) 0 0
\(621\) −12.0000 20.7846i −0.481543 0.834058i
\(622\) 0 0
\(623\) 24.0000 0.961540
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.0000i 0.837325i
\(630\) 0 0
\(631\) 24.2487 + 14.0000i 0.965326 + 0.557331i 0.897808 0.440387i \(-0.145159\pi\)
0.0675178 + 0.997718i \(0.478492\pi\)
\(632\) 0 0
\(633\) 2.00000 3.46410i 0.0794929 0.137686i
\(634\) 0 0
\(635\) 25.9808 15.0000i 1.03102 0.595257i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.19615 3.00000i 0.205557 0.118678i
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) −13.8564 8.00000i −0.546443 0.315489i 0.201243 0.979541i \(-0.435502\pi\)
−0.747686 + 0.664052i \(0.768835\pi\)
\(644\) 0 0
\(645\) 24.0000i 0.944999i
\(646\) 0 0
\(647\) 3.00000 + 5.19615i 0.117942 + 0.204282i 0.918952 0.394369i \(-0.129037\pi\)
−0.801010 + 0.598651i \(0.795704\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) 21.0000 + 36.3731i 0.821794 + 1.42339i 0.904345 + 0.426801i \(0.140360\pi\)
−0.0825519 + 0.996587i \(0.526307\pi\)
\(654\) 0 0
\(655\) 18.0000i 0.703318i
\(656\) 0 0
\(657\) 0.866025 + 0.500000i 0.0337869 + 0.0195069i
\(658\) 0 0
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) −6.06218 + 3.50000i −0.235791 + 0.136134i −0.613241 0.789896i \(-0.710135\pi\)
0.377450 + 0.926030i \(0.376801\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.7846 + 12.0000i −0.805993 + 0.465340i
\(666\) 0 0
\(667\) −27.0000 + 46.7654i −1.04544 + 1.81076i
\(668\) 0 0
\(669\) −45.0333 26.0000i −1.74109 1.00522i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −6.50000 11.2583i −0.250557 0.433977i 0.713123 0.701039i \(-0.247280\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) −16.0000 −0.615840
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 28.0000 + 48.4974i 1.07454 + 1.86116i
\(680\) 0 0
\(681\) 12.0000i 0.459841i
\(682\) 0 0
\(683\) 5.19615 + 3.00000i 0.198825 + 0.114792i 0.596107 0.802905i \(-0.296713\pi\)
−0.397282 + 0.917697i \(0.630047\pi\)
\(684\) 0 0
\(685\) 22.5000 38.9711i 0.859681 1.48901i
\(686\) 0 0
\(687\) −24.2487 + 14.0000i −0.925146 + 0.534133i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 34.6410 20.0000i 1.31781 0.760836i 0.334431 0.942420i \(-0.391456\pi\)
0.983375 + 0.181584i \(0.0581226\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 41.5692 + 24.0000i 1.57681 + 0.910372i
\(696\) 0 0
\(697\) 9.00000i 0.340899i
\(698\) 0 0
\(699\) 18.0000 + 31.1769i 0.680823 + 1.17922i
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 18.0000 + 31.1769i 0.677919 + 1.17419i
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) 26.8468 + 15.5000i 1.00825 + 0.582115i 0.910679 0.413114i \(-0.135559\pi\)
0.0975728 + 0.995228i \(0.468892\pi\)
\(710\) 0 0
\(711\) 2.00000 3.46410i 0.0750059 0.129914i
\(712\) 0 0
\(713\) −10.3923 + 6.00000i −0.389195 + 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 41.5692 24.0000i 1.55243 0.896296i
\(718\) 0 0
\(719\) 6.00000 10.3923i 0.223762 0.387568i −0.732185 0.681106i \(-0.761499\pi\)
0.955947 + 0.293538i \(0.0948328\pi\)
\(720\) 0 0
\(721\) −6.92820 4.00000i −0.258020 0.148968i
\(722\) 0 0
\(723\) 2.00000i 0.0743808i
\(724\) 0 0
\(725\) 18.0000 + 31.1769i 0.668503 + 1.15788i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 6.00000 + 10.3923i 0.221918 + 0.384373i
\(732\) 0 0
\(733\) 29.0000i 1.07114i −0.844491 0.535570i \(-0.820097\pi\)
0.844491 0.535570i \(-0.179903\pi\)
\(734\) 0 0
\(735\) −46.7654 27.0000i −1.72497 0.995910i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.3205 10.0000i 0.637145 0.367856i −0.146369 0.989230i \(-0.546759\pi\)
0.783514 + 0.621374i \(0.213425\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.7846 12.0000i 0.762513 0.440237i −0.0676840 0.997707i \(-0.521561\pi\)
0.830197 + 0.557470i \(0.188228\pi\)
\(744\) 0 0
\(745\) −13.5000 + 23.3827i −0.494602 + 0.856675i
\(746\) 0 0
\(747\) 10.3923 + 6.00000i 0.380235 + 0.219529i
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) −2.00000 3.46410i −0.0729810 0.126407i 0.827225 0.561870i \(-0.189918\pi\)
−0.900207 + 0.435463i \(0.856585\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) −19.0000 32.9090i −0.690567 1.19610i −0.971652 0.236414i \(-0.924028\pi\)
0.281086 0.959683i \(-0.409305\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.5885 + 9.00000i 0.565081 + 0.326250i 0.755182 0.655515i \(-0.227548\pi\)
−0.190101 + 0.981764i \(0.560882\pi\)
\(762\) 0 0
\(763\) −20.0000 + 34.6410i −0.724049 + 1.25409i
\(764\) 0 0
\(765\) −7.79423 + 4.50000i −0.281801 + 0.162698i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −12.1244 + 7.00000i −0.437215 + 0.252426i −0.702416 0.711767i \(-0.747895\pi\)
0.265200 + 0.964193i \(0.414562\pi\)
\(770\) 0 0
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) 0 0
\(773\) −5.19615 3.00000i −0.186893 0.107903i 0.403634 0.914920i \(-0.367747\pi\)
−0.590527 + 0.807018i \(0.701080\pi\)
\(774\) 0 0
\(775\) 8.00000i 0.287368i
\(776\) 0 0
\(777\) −28.0000 48.4974i −1.00449 1.73984i
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −18.0000 31.1769i −0.643268 1.11417i
\(784\) 0 0
\(785\) 21.0000i 0.749522i
\(786\) 0 0
\(787\) −32.9090 19.0000i −1.17308 0.677277i −0.218675 0.975798i \(-0.570173\pi\)
−0.954403 + 0.298521i \(0.903507\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 31.1769 18.0000i 1.10852 0.640006i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −46.7654 + 27.0000i −1.65860 + 0.957591i
\(796\) 0 0
\(797\) −9.00000 + 15.5885i −0.318796 + 0.552171i −0.980237 0.197826i \(-0.936612\pi\)
0.661441 + 0.749997i \(0.269945\pi\)
\(798\) 0 0
\(799\) −15.5885 9.00000i −0.551480 0.318397i
\(800\) 0 0
\(801\) 6.00000i 0.212000i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 72.0000 2.53767
\(806\) 0 0
\(807\) −60.0000 −2.11210
\(808\) 0 0
\(809\) −7.50000 12.9904i −0.263686 0.456717i 0.703533 0.710663i \(-0.251605\pi\)
−0.967219 + 0.253946i \(0.918272\pi\)
\(810\) 0 0
\(811\) 10.0000i 0.351147i 0.984466 + 0.175574i \(0.0561780\pi\)
−0.984466 + 0.175574i \(0.943822\pi\)
\(812\) 0 0
\(813\) 13.8564 + 8.00000i 0.485965 + 0.280572i
\(814\) 0 0
\(815\) 12.0000 20.7846i 0.420342 0.728053i
\(816\) 0 0
\(817\) −6.92820 + 4.00000i −0.242387 + 0.139942i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.5885 9.00000i 0.544041 0.314102i −0.202674 0.979246i \(-0.564963\pi\)
0.746715 + 0.665144i \(0.231630\pi\)
\(822\) 0 0
\(823\) 16.0000 27.7128i 0.557725 0.966008i −0.439961 0.898017i \(-0.645008\pi\)
0.997686 0.0679910i \(-0.0216589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) −9.50000 16.4545i −0.329949 0.571488i 0.652553 0.757743i \(-0.273698\pi\)
−0.982501 + 0.186256i \(0.940365\pi\)
\(830\) 0 0
\(831\) −38.0000 −1.31821
\(832\) 0 0
\(833\) 27.0000 0.935495
\(834\) 0 0
\(835\) −36.0000 62.3538i −1.24583 2.15784i
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) −36.3731 21.0000i −1.25574 0.725001i −0.283495 0.958974i \(-0.591494\pi\)
−0.972243 + 0.233973i \(0.924827\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) −5.19615 + 3.00000i −0.178965 + 0.103325i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −38.1051 + 22.0000i −1.30931 + 0.755929i
\(848\) 0 0
\(849\) 16.0000 27.7128i 0.549119 0.951101i
\(850\) 0 0
\(851\) 36.3731 + 21.0000i 1.24685 + 0.719871i
\(852\) 0 0
\(853\) 5.00000i 0.171197i 0.996330 + 0.0855984i \(0.0272802\pi\)
−0.996330 + 0.0855984i \(0.972720\pi\)
\(854\) 0 0
\(855\) −3.00000 5.19615i −0.102598 0.177705i
\(856\) 0 0
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 0 0
\(859\) 2.00000 0.0682391 0.0341196 0.999418i \(-0.489137\pi\)
0.0341196 + 0.999418i \(0.489137\pi\)
\(860\) 0 0
\(861\) −12.0000 20.7846i −0.408959 0.708338i
\(862\) 0 0
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) 0 0
\(865\) 15.5885 + 9.00000i 0.530023 + 0.306009i
\(866\) 0 0
\(867\) −8.00000 + 13.8564i −0.271694 + 0.470588i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −12.1244 + 7.00000i −0.410347 + 0.236914i
\(874\) 0 0
\(875\) −6.00000 + 10.3923i −0.202837 + 0.351324i
\(876\) 0 0
\(877\) 4.33013 + 2.50000i 0.146218 + 0.0844190i 0.571324 0.820724i \(-0.306430\pi\)
−0.425106 + 0.905143i \(0.639763\pi\)
\(878\) 0 0
\(879\) 18.0000i 0.607125i
\(880\) 0 0
\(881\) 25.5000 + 44.1673i 0.859117 + 1.48803i 0.872772 + 0.488127i \(0.162320\pi\)
−0.0136556 + 0.999907i \(0.504347\pi\)
\(882\) 0 0
\(883\) −26.0000 −0.874970 −0.437485 0.899226i \(-0.644131\pi\)
−0.437485 + 0.899226i \(0.644131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.00000 10.3923i −0.201460 0.348939i 0.747539 0.664218i \(-0.231235\pi\)
−0.948999 + 0.315279i \(0.897902\pi\)
\(888\) 0 0
\(889\) 40.0000i 1.34156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.00000 10.3923i 0.200782 0.347765i
\(894\) 0 0
\(895\) −62.3538 + 36.0000i −2.08426 + 1.20335i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.5885 + 9.00000i −0.519904 + 0.300167i
\(900\) 0 0
\(901\) 13.5000 23.3827i 0.449750 0.778990i
\(902\) 0 0
\(903\) −27.7128 16.0000i −0.922225 0.532447i
\(904\) 0 0
\(905\) 21.0000i 0.698064i
\(906\) 0 0
\(907\) 4.00000 + 6.92820i 0.132818 + 0.230047i 0.924762 0.380547i \(-0.124264\pi\)
−0.791944 + 0.610594i \(0.790931\pi\)
\(908\) 0 0
\(909\) −9.00000 −0.298511
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 30.0000i 0.991769i
\(916\) 0 0
\(917\) 20.7846 + 12.0000i 0.686368 + 0.396275i
\(918\) 0 0
\(919\) −19.0000 + 32.9090i −0.626752 + 1.08557i 0.361447 + 0.932393i \(0.382283\pi\)
−0.988199 + 0.153174i \(0.951051\pi\)
\(920\) 0 0
\(921\) −45.0333 + 26.0000i −1.48390 + 0.856729i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.2487 14.0000i 0.797293 0.460317i
\(926\) 0 0
\(927\) 1.00000 1.73205i 0.0328443 0.0568880i
\(928\) 0 0
\(929\) −18.1865 10.5000i −0.596681 0.344494i 0.171054 0.985262i \(-0.445283\pi\)
−0.767735 + 0.640768i \(0.778616\pi\)
\(930\) 0 0
\(931\) 18.0000i 0.589926i
\(932\) 0 0
\(933\) −6.00000 10.3923i −0.196431 0.340229i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) 14.0000 + 24.2487i 0.456873 + 0.791327i
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) 15.5885 + 9.00000i 0.507630 + 0.293080i
\(944\) 0 0
\(945\) −24.0000 + 41.5692i −0.780720 + 1.35225i
\(946\) 0 0
\(947\) −15.5885 + 9.00000i −0.506557 + 0.292461i −0.731417 0.681930i \(-0.761141\pi\)
0.224860 + 0.974391i \(0.427807\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −25.9808 + 15.0000i −0.842484 + 0.486408i
\(952\) 0 0
\(953\) −3.00000 + 5.19615i −0.0971795 + 0.168320i −0.910516 0.413473i \(-0.864315\pi\)
0.813337 + 0.581793i \(0.197649\pi\)
\(954\) 0 0
\(955\) −15.5885 9.00000i −0.504431 0.291233i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −30.0000 51.9615i −0.968751 1.67793i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) 16.5000 + 28.5788i 0.531154 + 0.919985i
\(966\) 0 0
\(967\) 58.0000i 1.86515i 0.360971 + 0.932577i \(0.382445\pi\)
−0.360971 + 0.932577i \(0.617555\pi\)
\(968\) 0 0
\(969\) 10.3923 + 6.00000i 0.333849 + 0.192748i
\(970\) 0 0
\(971\) −15.0000 + 25.9808i −0.481373 + 0.833762i −0.999771 0.0213768i \(-0.993195\pi\)
0.518399 + 0.855139i \(0.326528\pi\)
\(972\) 0 0
\(973\) 55.4256 32.0000i 1.77686 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.7750 + 19.5000i −1.08056 + 0.623860i −0.931047 0.364900i \(-0.881103\pi\)
−0.149511 + 0.988760i \(0.547770\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −8.66025 5.00000i −0.276501 0.159638i
\(982\) 0 0
\(983\) 6.00000i 0.191370i −0.995412 0.0956851i \(-0.969496\pi\)
0.995412 0.0956851i \(-0.0305042\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) 48.0000 1.52786
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 0 0
\(993\) 64.0000i 2.03098i
\(994\) 0 0
\(995\) 67.5500 + 39.0000i 2.14148 + 1.23638i
\(996\) 0 0
\(997\) −2.50000 + 4.33013i −0.0791758 + 0.137136i −0.902895 0.429862i \(-0.858562\pi\)
0.823719 + 0.566999i \(0.191896\pi\)
\(998\) 0 0
\(999\) −24.2487 + 14.0000i −0.767195 + 0.442940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.h.d.361.2 4
13.2 odd 12 676.2.a.b.1.1 1
13.3 even 3 676.2.d.a.337.2 2
13.4 even 6 inner 676.2.h.d.485.1 4
13.5 odd 4 676.2.e.d.653.1 2
13.6 odd 12 676.2.e.d.529.1 2
13.7 odd 12 52.2.e.b.9.1 2
13.8 odd 4 52.2.e.b.29.1 yes 2
13.9 even 3 inner 676.2.h.d.485.2 4
13.10 even 6 676.2.d.a.337.1 2
13.11 odd 12 676.2.a.a.1.1 1
13.12 even 2 inner 676.2.h.d.361.1 4
39.2 even 12 6084.2.a.c.1.1 1
39.8 even 4 468.2.l.d.289.1 2
39.11 even 12 6084.2.a.o.1.1 1
39.20 even 12 468.2.l.d.217.1 2
39.23 odd 6 6084.2.b.k.4393.2 2
39.29 odd 6 6084.2.b.k.4393.1 2
52.3 odd 6 2704.2.f.i.337.2 2
52.7 even 12 208.2.i.a.113.1 2
52.11 even 12 2704.2.a.l.1.1 1
52.15 even 12 2704.2.a.m.1.1 1
52.23 odd 6 2704.2.f.i.337.1 2
52.47 even 4 208.2.i.a.81.1 2
65.7 even 12 1300.2.bb.d.1049.1 4
65.8 even 4 1300.2.bb.d.549.1 4
65.33 even 12 1300.2.bb.d.1049.2 4
65.34 odd 4 1300.2.i.b.601.1 2
65.47 even 4 1300.2.bb.d.549.2 4
65.59 odd 12 1300.2.i.b.1101.1 2
91.20 even 12 2548.2.k.a.1569.1 2
91.33 even 12 2548.2.i.b.165.1 2
91.34 even 4 2548.2.k.a.393.1 2
91.46 odd 12 2548.2.l.b.373.1 2
91.47 even 12 2548.2.l.g.1537.1 2
91.59 even 12 2548.2.l.g.373.1 2
91.60 odd 12 2548.2.i.g.1745.1 2
91.72 odd 12 2548.2.i.g.165.1 2
91.73 even 12 2548.2.i.b.1745.1 2
91.86 odd 12 2548.2.l.b.1537.1 2
104.21 odd 4 832.2.i.c.705.1 2
104.59 even 12 832.2.i.i.321.1 2
104.85 odd 12 832.2.i.c.321.1 2
104.99 even 4 832.2.i.i.705.1 2
156.47 odd 4 1872.2.t.m.289.1 2
156.59 odd 12 1872.2.t.m.1153.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.e.b.9.1 2 13.7 odd 12
52.2.e.b.29.1 yes 2 13.8 odd 4
208.2.i.a.81.1 2 52.47 even 4
208.2.i.a.113.1 2 52.7 even 12
468.2.l.d.217.1 2 39.20 even 12
468.2.l.d.289.1 2 39.8 even 4
676.2.a.a.1.1 1 13.11 odd 12
676.2.a.b.1.1 1 13.2 odd 12
676.2.d.a.337.1 2 13.10 even 6
676.2.d.a.337.2 2 13.3 even 3
676.2.e.d.529.1 2 13.6 odd 12
676.2.e.d.653.1 2 13.5 odd 4
676.2.h.d.361.1 4 13.12 even 2 inner
676.2.h.d.361.2 4 1.1 even 1 trivial
676.2.h.d.485.1 4 13.4 even 6 inner
676.2.h.d.485.2 4 13.9 even 3 inner
832.2.i.c.321.1 2 104.85 odd 12
832.2.i.c.705.1 2 104.21 odd 4
832.2.i.i.321.1 2 104.59 even 12
832.2.i.i.705.1 2 104.99 even 4
1300.2.i.b.601.1 2 65.34 odd 4
1300.2.i.b.1101.1 2 65.59 odd 12
1300.2.bb.d.549.1 4 65.8 even 4
1300.2.bb.d.549.2 4 65.47 even 4
1300.2.bb.d.1049.1 4 65.7 even 12
1300.2.bb.d.1049.2 4 65.33 even 12
1872.2.t.m.289.1 2 156.47 odd 4
1872.2.t.m.1153.1 2 156.59 odd 12
2548.2.i.b.165.1 2 91.33 even 12
2548.2.i.b.1745.1 2 91.73 even 12
2548.2.i.g.165.1 2 91.72 odd 12
2548.2.i.g.1745.1 2 91.60 odd 12
2548.2.k.a.393.1 2 91.34 even 4
2548.2.k.a.1569.1 2 91.20 even 12
2548.2.l.b.373.1 2 91.46 odd 12
2548.2.l.b.1537.1 2 91.86 odd 12
2548.2.l.g.373.1 2 91.59 even 12
2548.2.l.g.1537.1 2 91.47 even 12
2704.2.a.l.1.1 1 52.11 even 12
2704.2.a.m.1.1 1 52.15 even 12
2704.2.f.i.337.1 2 52.23 odd 6
2704.2.f.i.337.2 2 52.3 odd 6
6084.2.a.c.1.1 1 39.2 even 12
6084.2.a.o.1.1 1 39.11 even 12
6084.2.b.k.4393.1 2 39.29 odd 6
6084.2.b.k.4393.2 2 39.23 odd 6