Properties

Label 676.2.h.d
Level 676676
Weight 22
Character orbit 676.h
Analytic conductor 5.3985.398
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(361,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 676=22132 676 = 2^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 676.h (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.397887176645.39788717664
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ122+2)q3+3ζ123q5+(4ζ1234ζ12)q7ζ122q9+6ζ12q15+3ζ122q17+(2ζ1232ζ12)q19++(14ζ12314ζ12)q97+O(q100) q + ( - 2 \zeta_{12}^{2} + 2) q^{3} + 3 \zeta_{12}^{3} q^{5} + (4 \zeta_{12}^{3} - 4 \zeta_{12}) q^{7} - \zeta_{12}^{2} q^{9} + 6 \zeta_{12} q^{15} + 3 \zeta_{12}^{2} q^{17} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{19} + \cdots + (14 \zeta_{12}^{3} - 14 \zeta_{12}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q32q9+6q1712q2316q25+16q2718q2924q358q43+18q49+24q51+36q5310q61+24q6916q7516q79+22q81+12q95+O(q100) 4 q + 4 q^{3} - 2 q^{9} + 6 q^{17} - 12 q^{23} - 16 q^{25} + 16 q^{27} - 18 q^{29} - 24 q^{35} - 8 q^{43} + 18 q^{49} + 24 q^{51} + 36 q^{53} - 10 q^{61} + 24 q^{69} - 16 q^{75} - 16 q^{79} + 22 q^{81}+ \cdots - 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/676Z)×\left(\mathbb{Z}/676\mathbb{Z}\right)^\times.

nn 339339 509509
χ(n)\chi(n) 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 1.00000 + 1.73205i 0 3.00000i 0 −3.46410 2.00000i 0 −0.500000 + 0.866025i 0
361.2 0 1.00000 + 1.73205i 0 3.00000i 0 3.46410 + 2.00000i 0 −0.500000 + 0.866025i 0
485.1 0 1.00000 1.73205i 0 3.00000i 0 3.46410 2.00000i 0 −0.500000 0.866025i 0
485.2 0 1.00000 1.73205i 0 3.00000i 0 −3.46410 + 2.00000i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 676.2.h.d 4
13.b even 2 1 inner 676.2.h.d 4
13.c even 3 1 676.2.d.a 2
13.c even 3 1 inner 676.2.h.d 4
13.d odd 4 1 52.2.e.b 2
13.d odd 4 1 676.2.e.d 2
13.e even 6 1 676.2.d.a 2
13.e even 6 1 inner 676.2.h.d 4
13.f odd 12 1 52.2.e.b 2
13.f odd 12 1 676.2.a.a 1
13.f odd 12 1 676.2.a.b 1
13.f odd 12 1 676.2.e.d 2
39.f even 4 1 468.2.l.d 2
39.h odd 6 1 6084.2.b.k 2
39.i odd 6 1 6084.2.b.k 2
39.k even 12 1 468.2.l.d 2
39.k even 12 1 6084.2.a.c 1
39.k even 12 1 6084.2.a.o 1
52.f even 4 1 208.2.i.a 2
52.i odd 6 1 2704.2.f.i 2
52.j odd 6 1 2704.2.f.i 2
52.l even 12 1 208.2.i.a 2
52.l even 12 1 2704.2.a.l 1
52.l even 12 1 2704.2.a.m 1
65.f even 4 1 1300.2.bb.d 4
65.g odd 4 1 1300.2.i.b 2
65.k even 4 1 1300.2.bb.d 4
65.o even 12 1 1300.2.bb.d 4
65.s odd 12 1 1300.2.i.b 2
65.t even 12 1 1300.2.bb.d 4
91.i even 4 1 2548.2.k.a 2
91.w even 12 1 2548.2.i.b 2
91.x odd 12 1 2548.2.l.b 2
91.z odd 12 1 2548.2.i.g 2
91.z odd 12 1 2548.2.l.b 2
91.ba even 12 1 2548.2.l.g 2
91.bb even 12 1 2548.2.i.b 2
91.bb even 12 1 2548.2.l.g 2
91.bc even 12 1 2548.2.k.a 2
91.bd odd 12 1 2548.2.i.g 2
104.j odd 4 1 832.2.i.c 2
104.m even 4 1 832.2.i.i 2
104.u even 12 1 832.2.i.i 2
104.x odd 12 1 832.2.i.c 2
156.l odd 4 1 1872.2.t.m 2
156.v odd 12 1 1872.2.t.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.e.b 2 13.d odd 4 1
52.2.e.b 2 13.f odd 12 1
208.2.i.a 2 52.f even 4 1
208.2.i.a 2 52.l even 12 1
468.2.l.d 2 39.f even 4 1
468.2.l.d 2 39.k even 12 1
676.2.a.a 1 13.f odd 12 1
676.2.a.b 1 13.f odd 12 1
676.2.d.a 2 13.c even 3 1
676.2.d.a 2 13.e even 6 1
676.2.e.d 2 13.d odd 4 1
676.2.e.d 2 13.f odd 12 1
676.2.h.d 4 1.a even 1 1 trivial
676.2.h.d 4 13.b even 2 1 inner
676.2.h.d 4 13.c even 3 1 inner
676.2.h.d 4 13.e even 6 1 inner
832.2.i.c 2 104.j odd 4 1
832.2.i.c 2 104.x odd 12 1
832.2.i.i 2 104.m even 4 1
832.2.i.i 2 104.u even 12 1
1300.2.i.b 2 65.g odd 4 1
1300.2.i.b 2 65.s odd 12 1
1300.2.bb.d 4 65.f even 4 1
1300.2.bb.d 4 65.k even 4 1
1300.2.bb.d 4 65.o even 12 1
1300.2.bb.d 4 65.t even 12 1
1872.2.t.m 2 156.l odd 4 1
1872.2.t.m 2 156.v odd 12 1
2548.2.i.b 2 91.w even 12 1
2548.2.i.b 2 91.bb even 12 1
2548.2.i.g 2 91.z odd 12 1
2548.2.i.g 2 91.bd odd 12 1
2548.2.k.a 2 91.i even 4 1
2548.2.k.a 2 91.bc even 12 1
2548.2.l.b 2 91.x odd 12 1
2548.2.l.b 2 91.z odd 12 1
2548.2.l.g 2 91.ba even 12 1
2548.2.l.g 2 91.bb even 12 1
2704.2.a.l 1 52.l even 12 1
2704.2.a.m 1 52.l even 12 1
2704.2.f.i 2 52.i odd 6 1
2704.2.f.i 2 52.j odd 6 1
6084.2.a.c 1 39.k even 12 1
6084.2.a.o 1 39.k even 12 1
6084.2.b.k 2 39.h odd 6 1
6084.2.b.k 2 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T322T3+4 T_{3}^{2} - 2T_{3} + 4 acting on S2new(676,[χ])S_{2}^{\mathrm{new}}(676, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
55 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
77 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
1919 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
2323 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
2929 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
3131 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
3737 T449T2+2401 T^{4} - 49T^{2} + 2401 Copy content Toggle raw display
4141 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
4343 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
4747 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
5353 (T9)4 (T - 9)^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T2+5T+25)2 (T^{2} + 5 T + 25)^{2} Copy content Toggle raw display
6767 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
7171 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
7373 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
7979 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
8383 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
8989 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
9797 T4196T2+38416 T^{4} - 196 T^{2} + 38416 Copy content Toggle raw display
show more
show less