Properties

Label 676.2.h.d
Level $676$
Weight $2$
Character orbit 676.h
Analytic conductor $5.398$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(361,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{12}^{2} + 2) q^{3} + 3 \zeta_{12}^{3} q^{5} + (4 \zeta_{12}^{3} - 4 \zeta_{12}) q^{7} - \zeta_{12}^{2} q^{9} + 6 \zeta_{12} q^{15} + 3 \zeta_{12}^{2} q^{17} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{19} + \cdots + (14 \zeta_{12}^{3} - 14 \zeta_{12}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 2 q^{9} + 6 q^{17} - 12 q^{23} - 16 q^{25} + 16 q^{27} - 18 q^{29} - 24 q^{35} - 8 q^{43} + 18 q^{49} + 24 q^{51} + 36 q^{53} - 10 q^{61} + 24 q^{69} - 16 q^{75} - 16 q^{79} + 22 q^{81}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 1.00000 + 1.73205i 0 3.00000i 0 −3.46410 2.00000i 0 −0.500000 + 0.866025i 0
361.2 0 1.00000 + 1.73205i 0 3.00000i 0 3.46410 + 2.00000i 0 −0.500000 + 0.866025i 0
485.1 0 1.00000 1.73205i 0 3.00000i 0 3.46410 2.00000i 0 −0.500000 0.866025i 0
485.2 0 1.00000 1.73205i 0 3.00000i 0 −3.46410 + 2.00000i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 676.2.h.d 4
13.b even 2 1 inner 676.2.h.d 4
13.c even 3 1 676.2.d.a 2
13.c even 3 1 inner 676.2.h.d 4
13.d odd 4 1 52.2.e.b 2
13.d odd 4 1 676.2.e.d 2
13.e even 6 1 676.2.d.a 2
13.e even 6 1 inner 676.2.h.d 4
13.f odd 12 1 52.2.e.b 2
13.f odd 12 1 676.2.a.a 1
13.f odd 12 1 676.2.a.b 1
13.f odd 12 1 676.2.e.d 2
39.f even 4 1 468.2.l.d 2
39.h odd 6 1 6084.2.b.k 2
39.i odd 6 1 6084.2.b.k 2
39.k even 12 1 468.2.l.d 2
39.k even 12 1 6084.2.a.c 1
39.k even 12 1 6084.2.a.o 1
52.f even 4 1 208.2.i.a 2
52.i odd 6 1 2704.2.f.i 2
52.j odd 6 1 2704.2.f.i 2
52.l even 12 1 208.2.i.a 2
52.l even 12 1 2704.2.a.l 1
52.l even 12 1 2704.2.a.m 1
65.f even 4 1 1300.2.bb.d 4
65.g odd 4 1 1300.2.i.b 2
65.k even 4 1 1300.2.bb.d 4
65.o even 12 1 1300.2.bb.d 4
65.s odd 12 1 1300.2.i.b 2
65.t even 12 1 1300.2.bb.d 4
91.i even 4 1 2548.2.k.a 2
91.w even 12 1 2548.2.i.b 2
91.x odd 12 1 2548.2.l.b 2
91.z odd 12 1 2548.2.i.g 2
91.z odd 12 1 2548.2.l.b 2
91.ba even 12 1 2548.2.l.g 2
91.bb even 12 1 2548.2.i.b 2
91.bb even 12 1 2548.2.l.g 2
91.bc even 12 1 2548.2.k.a 2
91.bd odd 12 1 2548.2.i.g 2
104.j odd 4 1 832.2.i.c 2
104.m even 4 1 832.2.i.i 2
104.u even 12 1 832.2.i.i 2
104.x odd 12 1 832.2.i.c 2
156.l odd 4 1 1872.2.t.m 2
156.v odd 12 1 1872.2.t.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.e.b 2 13.d odd 4 1
52.2.e.b 2 13.f odd 12 1
208.2.i.a 2 52.f even 4 1
208.2.i.a 2 52.l even 12 1
468.2.l.d 2 39.f even 4 1
468.2.l.d 2 39.k even 12 1
676.2.a.a 1 13.f odd 12 1
676.2.a.b 1 13.f odd 12 1
676.2.d.a 2 13.c even 3 1
676.2.d.a 2 13.e even 6 1
676.2.e.d 2 13.d odd 4 1
676.2.e.d 2 13.f odd 12 1
676.2.h.d 4 1.a even 1 1 trivial
676.2.h.d 4 13.b even 2 1 inner
676.2.h.d 4 13.c even 3 1 inner
676.2.h.d 4 13.e even 6 1 inner
832.2.i.c 2 104.j odd 4 1
832.2.i.c 2 104.x odd 12 1
832.2.i.i 2 104.m even 4 1
832.2.i.i 2 104.u even 12 1
1300.2.i.b 2 65.g odd 4 1
1300.2.i.b 2 65.s odd 12 1
1300.2.bb.d 4 65.f even 4 1
1300.2.bb.d 4 65.k even 4 1
1300.2.bb.d 4 65.o even 12 1
1300.2.bb.d 4 65.t even 12 1
1872.2.t.m 2 156.l odd 4 1
1872.2.t.m 2 156.v odd 12 1
2548.2.i.b 2 91.w even 12 1
2548.2.i.b 2 91.bb even 12 1
2548.2.i.g 2 91.z odd 12 1
2548.2.i.g 2 91.bd odd 12 1
2548.2.k.a 2 91.i even 4 1
2548.2.k.a 2 91.bc even 12 1
2548.2.l.b 2 91.x odd 12 1
2548.2.l.b 2 91.z odd 12 1
2548.2.l.g 2 91.ba even 12 1
2548.2.l.g 2 91.bb even 12 1
2704.2.a.l 1 52.l even 12 1
2704.2.a.m 1 52.l even 12 1
2704.2.f.i 2 52.i odd 6 1
2704.2.f.i 2 52.j odd 6 1
6084.2.a.c 1 39.k even 12 1
6084.2.a.o 1 39.k even 12 1
6084.2.b.k 2 39.h odd 6 1
6084.2.b.k 2 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(676, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$41$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T - 9)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$73$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$97$ \( T^{4} - 196 T^{2} + 38416 \) Copy content Toggle raw display
show more
show less