Properties

Label 6084.2.a.c
Level $6084$
Weight $2$
Character orbit 6084.a
Self dual yes
Analytic conductor $48.581$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6084,2,Mod(1,6084)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6084.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6084.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.5809845897\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{5} + 4 q^{7} - 3 q^{17} - 2 q^{19} + 6 q^{23} + 4 q^{25} - 9 q^{29} - 2 q^{31} - 12 q^{35} + 7 q^{37} + 3 q^{41} - 4 q^{43} - 6 q^{47} + 9 q^{49} - 9 q^{53} + 5 q^{61} - 2 q^{67} - 6 q^{71} + q^{73} - 4 q^{79} + 12 q^{83} + 9 q^{85} + 6 q^{89} + 6 q^{95} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −3.00000 0 4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6084.2.a.c 1
3.b odd 2 1 676.2.a.b 1
12.b even 2 1 2704.2.a.m 1
13.b even 2 1 6084.2.a.o 1
13.d odd 4 2 6084.2.b.k 2
13.e even 6 2 468.2.l.d 2
39.d odd 2 1 676.2.a.a 1
39.f even 4 2 676.2.d.a 2
39.h odd 6 2 52.2.e.b 2
39.i odd 6 2 676.2.e.d 2
39.k even 12 4 676.2.h.d 4
52.i odd 6 2 1872.2.t.m 2
156.h even 2 1 2704.2.a.l 1
156.l odd 4 2 2704.2.f.i 2
156.r even 6 2 208.2.i.a 2
195.y odd 6 2 1300.2.i.b 2
195.bf even 12 4 1300.2.bb.d 4
273.u even 6 2 2548.2.k.a 2
273.x odd 6 2 2548.2.l.b 2
273.y even 6 2 2548.2.l.g 2
273.bp odd 6 2 2548.2.i.g 2
273.br even 6 2 2548.2.i.b 2
312.ba even 6 2 832.2.i.i 2
312.bg odd 6 2 832.2.i.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.e.b 2 39.h odd 6 2
208.2.i.a 2 156.r even 6 2
468.2.l.d 2 13.e even 6 2
676.2.a.a 1 39.d odd 2 1
676.2.a.b 1 3.b odd 2 1
676.2.d.a 2 39.f even 4 2
676.2.e.d 2 39.i odd 6 2
676.2.h.d 4 39.k even 12 4
832.2.i.c 2 312.bg odd 6 2
832.2.i.i 2 312.ba even 6 2
1300.2.i.b 2 195.y odd 6 2
1300.2.bb.d 4 195.bf even 12 4
1872.2.t.m 2 52.i odd 6 2
2548.2.i.b 2 273.br even 6 2
2548.2.i.g 2 273.bp odd 6 2
2548.2.k.a 2 273.u even 6 2
2548.2.l.b 2 273.x odd 6 2
2548.2.l.g 2 273.y even 6 2
2704.2.a.l 1 156.h even 2 1
2704.2.a.m 1 12.b even 2 1
2704.2.f.i 2 156.l odd 4 2
6084.2.a.c 1 1.a even 1 1 trivial
6084.2.a.o 1 13.b even 2 1
6084.2.b.k 2 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6084))\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T - 7 \) Copy content Toggle raw display
$41$ \( T - 3 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 5 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less