Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6084,2,Mod(1,6084)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6084.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 6084.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 52) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 6084.2.a.c | 1 | |
3.b | odd | 2 | 1 | 676.2.a.b | 1 | ||
12.b | even | 2 | 1 | 2704.2.a.m | 1 | ||
13.b | even | 2 | 1 | 6084.2.a.o | 1 | ||
13.d | odd | 4 | 2 | 6084.2.b.k | 2 | ||
13.e | even | 6 | 2 | 468.2.l.d | 2 | ||
39.d | odd | 2 | 1 | 676.2.a.a | 1 | ||
39.f | even | 4 | 2 | 676.2.d.a | 2 | ||
39.h | odd | 6 | 2 | 52.2.e.b | ✓ | 2 | |
39.i | odd | 6 | 2 | 676.2.e.d | 2 | ||
39.k | even | 12 | 4 | 676.2.h.d | 4 | ||
52.i | odd | 6 | 2 | 1872.2.t.m | 2 | ||
156.h | even | 2 | 1 | 2704.2.a.l | 1 | ||
156.l | odd | 4 | 2 | 2704.2.f.i | 2 | ||
156.r | even | 6 | 2 | 208.2.i.a | 2 | ||
195.y | odd | 6 | 2 | 1300.2.i.b | 2 | ||
195.bf | even | 12 | 4 | 1300.2.bb.d | 4 | ||
273.u | even | 6 | 2 | 2548.2.k.a | 2 | ||
273.x | odd | 6 | 2 | 2548.2.l.b | 2 | ||
273.y | even | 6 | 2 | 2548.2.l.g | 2 | ||
273.bp | odd | 6 | 2 | 2548.2.i.g | 2 | ||
273.br | even | 6 | 2 | 2548.2.i.b | 2 | ||
312.ba | even | 6 | 2 | 832.2.i.i | 2 | ||
312.bg | odd | 6 | 2 | 832.2.i.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.2.e.b | ✓ | 2 | 39.h | odd | 6 | 2 | |
208.2.i.a | 2 | 156.r | even | 6 | 2 | ||
468.2.l.d | 2 | 13.e | even | 6 | 2 | ||
676.2.a.a | 1 | 39.d | odd | 2 | 1 | ||
676.2.a.b | 1 | 3.b | odd | 2 | 1 | ||
676.2.d.a | 2 | 39.f | even | 4 | 2 | ||
676.2.e.d | 2 | 39.i | odd | 6 | 2 | ||
676.2.h.d | 4 | 39.k | even | 12 | 4 | ||
832.2.i.c | 2 | 312.bg | odd | 6 | 2 | ||
832.2.i.i | 2 | 312.ba | even | 6 | 2 | ||
1300.2.i.b | 2 | 195.y | odd | 6 | 2 | ||
1300.2.bb.d | 4 | 195.bf | even | 12 | 4 | ||
1872.2.t.m | 2 | 52.i | odd | 6 | 2 | ||
2548.2.i.b | 2 | 273.br | even | 6 | 2 | ||
2548.2.i.g | 2 | 273.bp | odd | 6 | 2 | ||
2548.2.k.a | 2 | 273.u | even | 6 | 2 | ||
2548.2.l.b | 2 | 273.x | odd | 6 | 2 | ||
2548.2.l.g | 2 | 273.y | even | 6 | 2 | ||
2704.2.a.l | 1 | 156.h | even | 2 | 1 | ||
2704.2.a.m | 1 | 12.b | even | 2 | 1 | ||
2704.2.f.i | 2 | 156.l | odd | 4 | 2 | ||
6084.2.a.c | 1 | 1.a | even | 1 | 1 | trivial | |
6084.2.a.o | 1 | 13.b | even | 2 | 1 | ||
6084.2.b.k | 2 | 13.d | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|