Properties

Label 1872.2.t.m
Level 18721872
Weight 22
Character orbit 1872.t
Analytic conductor 14.94814.948
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(289,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1872=243213 1872 = 2^{4} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1872.t (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.947995258414.9479952584
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q54ζ6q7+(ζ63)q13+3ζ6q17+2ζ6q19+(6ζ6+6)q23+4q25+(9ζ6+9)q292q3112ζ6q35+14ζ6q97+O(q100) q + 3 q^{5} - 4 \zeta_{6} q^{7} + ( - \zeta_{6} - 3) q^{13} + 3 \zeta_{6} q^{17} + 2 \zeta_{6} q^{19} + ( - 6 \zeta_{6} + 6) q^{23} + 4 q^{25} + ( - 9 \zeta_{6} + 9) q^{29} - 2 q^{31} - 12 \zeta_{6} q^{35} + \cdots - 14 \zeta_{6} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q54q77q13+3q17+2q19+6q23+8q25+9q294q3112q35+7q37+3q414q4312q479q4918q535q6121q65+14q97+O(q100) 2 q + 6 q^{5} - 4 q^{7} - 7 q^{13} + 3 q^{17} + 2 q^{19} + 6 q^{23} + 8 q^{25} + 9 q^{29} - 4 q^{31} - 12 q^{35} + 7 q^{37} + 3 q^{41} - 4 q^{43} - 12 q^{47} - 9 q^{49} - 18 q^{53} - 5 q^{61} - 21 q^{65}+ \cdots - 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1872Z)×\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) ζ6-\zeta_{6} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 3.00000 0 −2.00000 + 3.46410i 0 0 0
1153.1 0 0 0 3.00000 0 −2.00000 3.46410i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.2.t.m 2
3.b odd 2 1 208.2.i.a 2
4.b odd 2 1 468.2.l.d 2
12.b even 2 1 52.2.e.b 2
13.c even 3 1 inner 1872.2.t.m 2
24.f even 2 1 832.2.i.c 2
24.h odd 2 1 832.2.i.i 2
39.h odd 6 1 2704.2.a.m 1
39.i odd 6 1 208.2.i.a 2
39.i odd 6 1 2704.2.a.l 1
39.k even 12 2 2704.2.f.i 2
52.i odd 6 1 6084.2.a.c 1
52.j odd 6 1 468.2.l.d 2
52.j odd 6 1 6084.2.a.o 1
52.l even 12 2 6084.2.b.k 2
60.h even 2 1 1300.2.i.b 2
60.l odd 4 2 1300.2.bb.d 4
84.h odd 2 1 2548.2.k.a 2
84.j odd 6 1 2548.2.i.b 2
84.j odd 6 1 2548.2.l.g 2
84.n even 6 1 2548.2.i.g 2
84.n even 6 1 2548.2.l.b 2
156.h even 2 1 676.2.e.d 2
156.l odd 4 2 676.2.h.d 4
156.p even 6 1 52.2.e.b 2
156.p even 6 1 676.2.a.a 1
156.r even 6 1 676.2.a.b 1
156.r even 6 1 676.2.e.d 2
156.v odd 12 2 676.2.d.a 2
156.v odd 12 2 676.2.h.d 4
312.bh odd 6 1 832.2.i.i 2
312.bn even 6 1 832.2.i.c 2
780.br even 6 1 1300.2.i.b 2
780.cj odd 12 2 1300.2.bb.d 4
1092.bt odd 6 1 2548.2.l.g 2
1092.cc odd 6 1 2548.2.i.b 2
1092.ck even 6 1 2548.2.l.b 2
1092.dc even 6 1 2548.2.i.g 2
1092.dd odd 6 1 2548.2.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.e.b 2 12.b even 2 1
52.2.e.b 2 156.p even 6 1
208.2.i.a 2 3.b odd 2 1
208.2.i.a 2 39.i odd 6 1
468.2.l.d 2 4.b odd 2 1
468.2.l.d 2 52.j odd 6 1
676.2.a.a 1 156.p even 6 1
676.2.a.b 1 156.r even 6 1
676.2.d.a 2 156.v odd 12 2
676.2.e.d 2 156.h even 2 1
676.2.e.d 2 156.r even 6 1
676.2.h.d 4 156.l odd 4 2
676.2.h.d 4 156.v odd 12 2
832.2.i.c 2 24.f even 2 1
832.2.i.c 2 312.bn even 6 1
832.2.i.i 2 24.h odd 2 1
832.2.i.i 2 312.bh odd 6 1
1300.2.i.b 2 60.h even 2 1
1300.2.i.b 2 780.br even 6 1
1300.2.bb.d 4 60.l odd 4 2
1300.2.bb.d 4 780.cj odd 12 2
1872.2.t.m 2 1.a even 1 1 trivial
1872.2.t.m 2 13.c even 3 1 inner
2548.2.i.b 2 84.j odd 6 1
2548.2.i.b 2 1092.cc odd 6 1
2548.2.i.g 2 84.n even 6 1
2548.2.i.g 2 1092.dc even 6 1
2548.2.k.a 2 84.h odd 2 1
2548.2.k.a 2 1092.dd odd 6 1
2548.2.l.b 2 84.n even 6 1
2548.2.l.b 2 1092.ck even 6 1
2548.2.l.g 2 84.j odd 6 1
2548.2.l.g 2 1092.bt odd 6 1
2704.2.a.l 1 39.i odd 6 1
2704.2.a.m 1 39.h odd 6 1
2704.2.f.i 2 39.k even 12 2
6084.2.a.c 1 52.i odd 6 1
6084.2.a.o 1 52.j odd 6 1
6084.2.b.k 2 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1872,[χ])S_{2}^{\mathrm{new}}(1872, [\chi]):

T53 T_{5} - 3 Copy content Toggle raw display
T72+4T7+16 T_{7}^{2} + 4T_{7} + 16 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T3)2 (T - 3)^{2} Copy content Toggle raw display
77 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+7T+13 T^{2} + 7T + 13 Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
2323 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2929 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3131 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3737 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
4141 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
4343 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
4747 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5353 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
6767 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7171 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7373 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
7979 (T4)2 (T - 4)^{2} Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
show more
show less