L(s) = 1 | + (1.36 − 0.366i)2-s + (1.73 − i)4-s + (3 + 3i)5-s + (1.99 − 2i)8-s + (−1.5 − 2.59i)9-s + (5.19 + 3i)10-s + (1.99 − 3.46i)16-s + (−1.73 + i)17-s + (−3 − 3i)18-s + (8.19 + 2.19i)20-s + 13i·25-s + (−2 + 3.46i)29-s + (1.46 − 5.46i)32-s + (−1.99 + 2i)34-s + (−5.19 − 3i)36-s + (−1.83 − 6.83i)37-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.5i)4-s + (1.34 + 1.34i)5-s + (0.707 − 0.707i)8-s + (−0.5 − 0.866i)9-s + (1.64 + 0.948i)10-s + (0.499 − 0.866i)16-s + (−0.420 + 0.242i)17-s + (−0.707 − 0.707i)18-s + (1.83 + 0.491i)20-s + 2.60i·25-s + (−0.371 + 0.643i)29-s + (0.258 − 0.965i)32-s + (−0.342 + 0.342i)34-s + (−0.866 − 0.5i)36-s + (−0.300 − 1.12i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.23378 - 0.0624420i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.23378 - 0.0624420i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 + 0.366i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-3 - 3i)T + 5iT^{2} \) |
| 7 | \( 1 + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.73 - i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (1.83 + 6.83i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.36 - 0.366i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + 14T + 53T^{2} \) |
| 59 | \( 1 + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5 + 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-11 + 11i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (1.09 + 4.09i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.83 - 6.83i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78178213230309285380126183828, −9.808167447534433768546796658321, −9.119111432884457291585416254660, −7.45490883055894980511526779478, −6.52685859983827212587737400614, −6.10908377100309000693418573652, −5.18823651061258684904304454003, −3.66817314207737757395427194397, −2.85564073930611767716720073002, −1.82731276170867514234143650167,
1.68592757397874732013627925692, 2.67190764120389758005385419319, 4.35224066470441988035796298028, 5.13789183619840115935627461882, 5.72170782687909150393604702643, 6.63797318787420513637596818269, 7.950561825379673843031600399636, 8.649021013427562390158414370461, 9.629824856616633219605656292669, 10.56816515940329436587741006307