L(s) = 1 | + 2i·7-s + i·13-s − 2·19-s − 31-s − i·37-s + i·43-s − 3·49-s + 2·61-s − i·67-s + i·73-s + 79-s − 2·91-s + 2i·97-s + i·103-s + 109-s + ⋯ |
L(s) = 1 | + 2i·7-s + i·13-s − 2·19-s − 31-s − i·37-s + i·43-s − 3·49-s + 2·61-s − i·67-s + i·73-s + 79-s − 2·91-s + 2i·97-s + i·103-s + 109-s + ⋯ |
Λ(s)=(=(2700s/2ΓC(s)L(s)(−0.447−0.894i)Λ(1−s)
Λ(s)=(=(2700s/2ΓC(s)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2700
= 22⋅33⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
1.34747 |
Root analytic conductor: |
1.16080 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2700(1349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2700, ( :0), −0.447−0.894i)
|
Particular Values
L(21) |
≈ |
0.9220721639 |
L(21) |
≈ |
0.9220721639 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−2iT−T2 |
| 11 | 1−T2 |
| 13 | 1−iT−T2 |
| 17 | 1+T2 |
| 19 | 1+2T+T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1+T+T2 |
| 37 | 1+iT−T2 |
| 41 | 1−T2 |
| 43 | 1−iT−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−2T+T2 |
| 67 | 1+iT−T2 |
| 71 | 1−T2 |
| 73 | 1−iT−T2 |
| 79 | 1−T+T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−2iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.091637785423212198883693756993, −8.681202808432108185843661024514, −7.963934002418641488404220151691, −6.77359256091689445132605530201, −6.20626766168947538560534306563, −5.47505686787301888731190198415, −4.64136848189099960822936788501, −3.66752309616216248150560617331, −2.39021057010672013546513966627, −1.98235594742285009280200967455,
0.56401318666265424352534726049, 1.88673787759696423020837282265, 3.25534057957201705989848958104, 4.01643959780259350109852983031, 4.66056966403181168801545658913, 5.72113353838417469636715861883, 6.70740244205642144942380433275, 7.17440219770292500724061322933, 8.037499074387559441106608185730, 8.572446661602938616566236442309