L(s) = 1 | + 2i·7-s + i·13-s − 2·19-s − 31-s − i·37-s + i·43-s − 3·49-s + 2·61-s − i·67-s + i·73-s + 79-s − 2·91-s + 2i·97-s + i·103-s + 109-s + ⋯ |
L(s) = 1 | + 2i·7-s + i·13-s − 2·19-s − 31-s − i·37-s + i·43-s − 3·49-s + 2·61-s − i·67-s + i·73-s + 79-s − 2·91-s + 2i·97-s + i·103-s + 109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9220721639\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9220721639\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 2iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 2T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 2iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.091637785423212198883693756993, −8.681202808432108185843661024514, −7.963934002418641488404220151691, −6.77359256091689445132605530201, −6.20626766168947538560534306563, −5.47505686787301888731190198415, −4.64136848189099960822936788501, −3.66752309616216248150560617331, −2.39021057010672013546513966627, −1.98235594742285009280200967455,
0.56401318666265424352534726049, 1.88673787759696423020837282265, 3.25534057957201705989848958104, 4.01643959780259350109852983031, 4.66056966403181168801545658913, 5.72113353838417469636715861883, 6.70740244205642144942380433275, 7.17440219770292500724061322933, 8.037499074387559441106608185730, 8.572446661602938616566236442309