Properties

Label 2-2736-1.1-c1-0-17
Degree $2$
Conductor $2736$
Sign $1$
Analytic cond. $21.8470$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 6·13-s + 6·17-s + 19-s + 4·23-s − 25-s − 2·29-s − 8·31-s − 10·37-s + 2·41-s + 4·43-s + 12·47-s − 7·49-s + 6·53-s − 12·59-s − 2·61-s + 12·65-s + 4·67-s + 10·73-s + 16·83-s + 12·85-s + 2·89-s + 2·95-s + 10·97-s + 10·101-s − 8·103-s + 4·107-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.66·13-s + 1.45·17-s + 0.229·19-s + 0.834·23-s − 1/5·25-s − 0.371·29-s − 1.43·31-s − 1.64·37-s + 0.312·41-s + 0.609·43-s + 1.75·47-s − 49-s + 0.824·53-s − 1.56·59-s − 0.256·61-s + 1.48·65-s + 0.488·67-s + 1.17·73-s + 1.75·83-s + 1.30·85-s + 0.211·89-s + 0.205·95-s + 1.01·97-s + 0.995·101-s − 0.788·103-s + 0.386·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2736\)    =    \(2^{4} \cdot 3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(21.8470\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2736,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.506398236\)
\(L(\frac12)\) \(\approx\) \(2.506398236\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.092693734190788229037074202448, −8.062008804214737453511932083588, −7.33667434445098454643296446245, −6.39584814801769229586264060019, −5.69178884171323828176864961556, −5.22523151161492305197654101068, −3.84859941092912106278451327058, −3.25148783575260438600086430315, −1.95255670636420425042320954209, −1.07628396925620245570845051253, 1.07628396925620245570845051253, 1.95255670636420425042320954209, 3.25148783575260438600086430315, 3.84859941092912106278451327058, 5.22523151161492305197654101068, 5.69178884171323828176864961556, 6.39584814801769229586264060019, 7.33667434445098454643296446245, 8.062008804214737453511932083588, 9.092693734190788229037074202448

Graph of the $Z$-function along the critical line