L(s) = 1 | + (0.998 − 0.725i)2-s + (0.112 + 0.346i)3-s + (−0.147 + 0.453i)4-s + (0.363 + 0.264i)6-s + (−0.798 + 2.45i)7-s + (0.944 + 2.90i)8-s + (2.31 − 1.68i)9-s + (3.12 + 1.12i)11-s − 0.173·12-s + (2.23 − 1.62i)13-s + (0.985 + 3.03i)14-s + (2.27 + 1.65i)16-s + (−3.11 − 2.26i)17-s + (1.09 − 3.36i)18-s + (−0.0857 − 0.264i)19-s + ⋯ |
L(s) = 1 | + (0.705 − 0.512i)2-s + (0.0649 + 0.199i)3-s + (−0.0737 + 0.226i)4-s + (0.148 + 0.107i)6-s + (−0.301 + 0.929i)7-s + (0.333 + 1.02i)8-s + (0.773 − 0.561i)9-s + (0.940 + 0.339i)11-s − 0.0501·12-s + (0.619 − 0.449i)13-s + (0.263 + 0.810i)14-s + (0.569 + 0.414i)16-s + (−0.755 − 0.549i)17-s + (0.257 − 0.793i)18-s + (−0.0196 − 0.0605i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 - 0.255i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.966 - 0.255i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83350 + 0.238458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83350 + 0.238458i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + (-3.12 - 1.12i)T \) |
good | 2 | \( 1 + (-0.998 + 0.725i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.112 - 0.346i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (0.798 - 2.45i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.23 + 1.62i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (3.11 + 2.26i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.0857 + 0.264i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 8.40T + 23T^{2} \) |
| 29 | \( 1 + (-1.02 + 3.16i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.456 - 0.331i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.161 - 0.497i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.57 + 4.86i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.54T + 43T^{2} \) |
| 47 | \( 1 + (1.52 + 4.68i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-7.05 + 5.12i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.31 + 7.13i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (11.4 + 8.33i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.20T + 67T^{2} \) |
| 71 | \( 1 + (-6.79 - 4.93i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.02 - 12.3i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (7.85 - 5.70i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (2.66 + 1.93i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 2.48T + 89T^{2} \) |
| 97 | \( 1 + (-8.81 + 6.40i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.08314533885069181050020716240, −11.35262886041007331558282788418, −10.05337690815622198534033182630, −9.128241804000805848108522423494, −8.245200541027073197856584745754, −6.83688012300393925175593408233, −5.72483662127444157633965721954, −4.37938681863028102427488082150, −3.57388536955125010835977295478, −2.14902997725055210749328661247,
1.45351825844076690202510518963, 3.88441716435767249506435041818, 4.42742872416721682266996871926, 6.02326916224367815198507408506, 6.68823582228389188294216155422, 7.64152279728711459882958843390, 8.987628839032050229268415398455, 10.11205564788360576706302770740, 10.76413705919457427357633848919, 12.07178860895747786266278524650