Properties

Label 275.2.h.d.201.3
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 25x^{12} + 57x^{10} + 194x^{8} + 303x^{6} + 235x^{4} + 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.3
Root \(-0.381325 - 1.17360i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.d.26.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.998322 - 0.725323i) q^{2} +(0.112477 + 0.346168i) q^{3} +(-0.147481 + 0.453901i) q^{4} +(0.363371 + 0.264005i) q^{6} +(-0.798988 + 2.45903i) q^{7} +(0.944641 + 2.90731i) q^{8} +(2.31987 - 1.68548i) q^{9} +(3.12020 + 1.12443i) q^{11} -0.173714 q^{12} +(2.23232 - 1.62187i) q^{13} +(0.985946 + 3.03443i) q^{14} +(2.27957 + 1.65620i) q^{16} +(-3.11572 - 2.26370i) q^{17} +(1.09346 - 3.36531i) q^{18} +(-0.0857804 - 0.264005i) q^{19} -0.941105 q^{21} +(3.93054 - 1.14061i) q^{22} -8.40180 q^{23} +(-0.900166 + 0.654009i) q^{24} +(1.05219 - 3.23830i) q^{26} +(1.72780 + 1.25532i) q^{27} +(-0.998322 - 0.725323i) q^{28} +(1.02689 - 3.16043i) q^{29} +(-0.456498 + 0.331666i) q^{31} -2.63682 q^{32} +(-0.0382919 + 1.20659i) q^{33} -4.75241 q^{34} +(0.422906 + 1.30157i) q^{36} +(-0.161487 + 0.497006i) q^{37} +(-0.277125 - 0.201343i) q^{38} +(0.812523 + 0.590333i) q^{39} +(-1.57966 - 4.86168i) q^{41} +(-0.939526 + 0.682605i) q^{42} +2.54457 q^{43} +(-0.970553 + 1.25043i) q^{44} +(-8.38769 + 6.09402i) q^{46} +(-1.52184 - 4.68373i) q^{47} +(-0.316926 + 0.975398i) q^{48} +(0.254663 + 0.185023i) q^{49} +(0.433175 - 1.33318i) q^{51} +(0.406945 + 1.25245i) q^{52} +(7.05533 - 5.12599i) q^{53} +2.63541 q^{54} -7.90392 q^{56} +(0.0817417 - 0.0593888i) q^{57} +(-1.26717 - 3.89995i) q^{58} +(2.31987 - 7.13983i) q^{59} +(-11.4711 - 8.33424i) q^{61} +(-0.215168 + 0.662218i) q^{62} +(2.29111 + 7.05132i) q^{63} +(-7.19153 + 5.22495i) q^{64} +(0.836937 + 1.23233i) q^{66} +3.20618 q^{67} +(1.48701 - 1.08037i) q^{68} +(-0.945006 - 2.90843i) q^{69} +(6.79655 + 4.93798i) q^{71} +(7.09166 + 5.15239i) q^{72} +(-4.02812 + 12.3973i) q^{73} +(0.199274 + 0.613302i) q^{74} +0.132483 q^{76} +(-5.25802 + 6.77427i) q^{77} +1.23934 q^{78} +(-7.85090 + 5.70401i) q^{79} +(2.41812 - 7.44221i) q^{81} +(-5.10330 - 3.70776i) q^{82} +(-2.66732 - 1.93792i) q^{83} +(0.138796 - 0.427169i) q^{84} +(2.54030 - 1.84564i) q^{86} +1.20954 q^{87} +(-0.321596 + 10.1336i) q^{88} +2.48823 q^{89} +(2.20464 + 6.78519i) q^{91} +(1.23911 - 3.81359i) q^{92} +(-0.166157 - 0.120720i) q^{93} +(-4.91650 - 3.57205i) q^{94} +(-0.296581 - 0.912781i) q^{96} +(8.81946 - 6.40771i) q^{97} +0.388437 q^{98} +(9.13367 - 2.65051i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 18 q^{6} - 2 q^{9} - 6 q^{11} + 12 q^{14} + 16 q^{16} - 6 q^{19} + 8 q^{21} - 6 q^{24} + 40 q^{26} - 2 q^{29} + 8 q^{31} + 16 q^{34} + 10 q^{36} - 30 q^{39} - 52 q^{41} - 4 q^{44} - 62 q^{46}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.998322 0.725323i 0.705920 0.512881i −0.175935 0.984402i \(-0.556295\pi\)
0.881855 + 0.471521i \(0.156295\pi\)
\(3\) 0.112477 + 0.346168i 0.0649385 + 0.199860i 0.978261 0.207376i \(-0.0664925\pi\)
−0.913323 + 0.407236i \(0.866492\pi\)
\(4\) −0.147481 + 0.453901i −0.0737407 + 0.226951i
\(5\) 0 0
\(6\) 0.363371 + 0.264005i 0.148346 + 0.107780i
\(7\) −0.798988 + 2.45903i −0.301989 + 0.929427i 0.678795 + 0.734328i \(0.262503\pi\)
−0.980784 + 0.195099i \(0.937497\pi\)
\(8\) 0.944641 + 2.90731i 0.333981 + 1.02789i
\(9\) 2.31987 1.68548i 0.773290 0.561828i
\(10\) 0 0
\(11\) 3.12020 + 1.12443i 0.940776 + 0.339029i
\(12\) −0.173714 −0.0501470
\(13\) 2.23232 1.62187i 0.619133 0.449826i −0.233486 0.972360i \(-0.575013\pi\)
0.852619 + 0.522534i \(0.175013\pi\)
\(14\) 0.985946 + 3.03443i 0.263505 + 0.810985i
\(15\) 0 0
\(16\) 2.27957 + 1.65620i 0.569892 + 0.414051i
\(17\) −3.11572 2.26370i −0.755673 0.549028i 0.141907 0.989880i \(-0.454677\pi\)
−0.897580 + 0.440852i \(0.854677\pi\)
\(18\) 1.09346 3.36531i 0.257730 0.793211i
\(19\) −0.0857804 0.264005i −0.0196794 0.0605669i 0.940735 0.339144i \(-0.110137\pi\)
−0.960414 + 0.278577i \(0.910137\pi\)
\(20\) 0 0
\(21\) −0.941105 −0.205366
\(22\) 3.93054 1.14061i 0.837994 0.243179i
\(23\) −8.40180 −1.75190 −0.875948 0.482406i \(-0.839763\pi\)
−0.875948 + 0.482406i \(0.839763\pi\)
\(24\) −0.900166 + 0.654009i −0.183746 + 0.133499i
\(25\) 0 0
\(26\) 1.05219 3.23830i 0.206351 0.635083i
\(27\) 1.72780 + 1.25532i 0.332514 + 0.241586i
\(28\) −0.998322 0.725323i −0.188665 0.137073i
\(29\) 1.02689 3.16043i 0.190688 0.586877i −0.809312 0.587379i \(-0.800160\pi\)
1.00000 0.000502126i \(0.000159832\pi\)
\(30\) 0 0
\(31\) −0.456498 + 0.331666i −0.0819895 + 0.0595689i −0.628025 0.778193i \(-0.716136\pi\)
0.546035 + 0.837762i \(0.316136\pi\)
\(32\) −2.63682 −0.466128
\(33\) −0.0382919 + 1.20659i −0.00666576 + 0.210040i
\(34\) −4.75241 −0.815031
\(35\) 0 0
\(36\) 0.422906 + 1.30157i 0.0704843 + 0.216928i
\(37\) −0.161487 + 0.497006i −0.0265483 + 0.0817073i −0.963453 0.267878i \(-0.913678\pi\)
0.936905 + 0.349585i \(0.113678\pi\)
\(38\) −0.277125 0.201343i −0.0449556 0.0326622i
\(39\) 0.812523 + 0.590333i 0.130108 + 0.0945289i
\(40\) 0 0
\(41\) −1.57966 4.86168i −0.246701 0.759267i −0.995352 0.0963031i \(-0.969298\pi\)
0.748651 0.662964i \(-0.230702\pi\)
\(42\) −0.939526 + 0.682605i −0.144972 + 0.105328i
\(43\) 2.54457 0.388043 0.194022 0.980997i \(-0.437847\pi\)
0.194022 + 0.980997i \(0.437847\pi\)
\(44\) −0.970553 + 1.25043i −0.146316 + 0.188509i
\(45\) 0 0
\(46\) −8.38769 + 6.09402i −1.23670 + 0.898514i
\(47\) −1.52184 4.68373i −0.221983 0.683193i −0.998584 0.0532000i \(-0.983058\pi\)
0.776601 0.629993i \(-0.216942\pi\)
\(48\) −0.316926 + 0.975398i −0.0457443 + 0.140787i
\(49\) 0.254663 + 0.185023i 0.0363804 + 0.0264319i
\(50\) 0 0
\(51\) 0.433175 1.33318i 0.0606566 0.186682i
\(52\) 0.406945 + 1.25245i 0.0564331 + 0.173683i
\(53\) 7.05533 5.12599i 0.969123 0.704109i 0.0138718 0.999904i \(-0.495584\pi\)
0.955252 + 0.295794i \(0.0955843\pi\)
\(54\) 2.63541 0.358633
\(55\) 0 0
\(56\) −7.90392 −1.05621
\(57\) 0.0817417 0.0593888i 0.0108269 0.00786624i
\(58\) −1.26717 3.89995i −0.166388 0.512088i
\(59\) 2.31987 7.13983i 0.302021 0.929526i −0.678751 0.734369i \(-0.737478\pi\)
0.980772 0.195157i \(-0.0625217\pi\)
\(60\) 0 0
\(61\) −11.4711 8.33424i −1.46872 1.06709i −0.980981 0.194103i \(-0.937820\pi\)
−0.487743 0.872987i \(-0.662180\pi\)
\(62\) −0.215168 + 0.662218i −0.0273263 + 0.0841017i
\(63\) 2.29111 + 7.05132i 0.288653 + 0.888382i
\(64\) −7.19153 + 5.22495i −0.898942 + 0.653119i
\(65\) 0 0
\(66\) 0.836937 + 1.23233i 0.103020 + 0.151690i
\(67\) 3.20618 0.391698 0.195849 0.980634i \(-0.437254\pi\)
0.195849 + 0.980634i \(0.437254\pi\)
\(68\) 1.48701 1.08037i 0.180326 0.131015i
\(69\) −0.945006 2.90843i −0.113765 0.350134i
\(70\) 0 0
\(71\) 6.79655 + 4.93798i 0.806602 + 0.586030i 0.912843 0.408310i \(-0.133882\pi\)
−0.106242 + 0.994340i \(0.533882\pi\)
\(72\) 7.09166 + 5.15239i 0.835761 + 0.607216i
\(73\) −4.02812 + 12.3973i −0.471455 + 1.45099i 0.379224 + 0.925305i \(0.376191\pi\)
−0.850679 + 0.525685i \(0.823809\pi\)
\(74\) 0.199274 + 0.613302i 0.0231651 + 0.0712949i
\(75\) 0 0
\(76\) 0.132483 0.0151969
\(77\) −5.25802 + 6.77427i −0.599206 + 0.771999i
\(78\) 1.23934 0.140328
\(79\) −7.85090 + 5.70401i −0.883295 + 0.641752i −0.934121 0.356956i \(-0.883815\pi\)
0.0508259 + 0.998708i \(0.483815\pi\)
\(80\) 0 0
\(81\) 2.41812 7.44221i 0.268680 0.826912i
\(82\) −5.10330 3.70776i −0.563565 0.409454i
\(83\) −2.66732 1.93792i −0.292776 0.212715i 0.431694 0.902020i \(-0.357916\pi\)
−0.724471 + 0.689305i \(0.757916\pi\)
\(84\) 0.138796 0.427169i 0.0151438 0.0466079i
\(85\) 0 0
\(86\) 2.54030 1.84564i 0.273928 0.199020i
\(87\) 1.20954 0.129676
\(88\) −0.321596 + 10.1336i −0.0342823 + 1.08024i
\(89\) 2.48823 0.263752 0.131876 0.991266i \(-0.457900\pi\)
0.131876 + 0.991266i \(0.457900\pi\)
\(90\) 0 0
\(91\) 2.20464 + 6.78519i 0.231109 + 0.711281i
\(92\) 1.23911 3.81359i 0.129186 0.397594i
\(93\) −0.166157 0.120720i −0.0172297 0.0125181i
\(94\) −4.91650 3.57205i −0.507099 0.368429i
\(95\) 0 0
\(96\) −0.296581 0.912781i −0.0302696 0.0931604i
\(97\) 8.81946 6.40771i 0.895480 0.650605i −0.0418208 0.999125i \(-0.513316\pi\)
0.937301 + 0.348521i \(0.113316\pi\)
\(98\) 0.388437 0.0392380
\(99\) 9.13367 2.65051i 0.917969 0.266387i
\(100\) 0 0
\(101\) −11.1954 + 8.13391i −1.11398 + 0.809355i −0.983286 0.182068i \(-0.941721\pi\)
−0.130695 + 0.991423i \(0.541721\pi\)
\(102\) −0.534535 1.64513i −0.0529269 0.162892i
\(103\) 4.13771 12.7346i 0.407700 1.25477i −0.510919 0.859629i \(-0.670695\pi\)
0.918619 0.395144i \(-0.129305\pi\)
\(104\) 6.82402 + 4.95794i 0.669150 + 0.486166i
\(105\) 0 0
\(106\) 3.32548 10.2348i 0.322999 0.994090i
\(107\) 3.17033 + 9.75728i 0.306488 + 0.943272i 0.979118 + 0.203293i \(0.0651644\pi\)
−0.672630 + 0.739979i \(0.734836\pi\)
\(108\) −0.824608 + 0.599112i −0.0793479 + 0.0576496i
\(109\) −4.94262 −0.473417 −0.236708 0.971581i \(-0.576069\pi\)
−0.236708 + 0.971581i \(0.576069\pi\)
\(110\) 0 0
\(111\) −0.190211 −0.0180540
\(112\) −5.89401 + 4.28225i −0.556931 + 0.404634i
\(113\) −3.06671 9.43836i −0.288492 0.887886i −0.985330 0.170658i \(-0.945411\pi\)
0.696839 0.717228i \(-0.254589\pi\)
\(114\) 0.0385284 0.118578i 0.00360852 0.0111059i
\(115\) 0 0
\(116\) 1.28308 + 0.932209i 0.119131 + 0.0865534i
\(117\) 2.44504 7.52506i 0.226044 0.695692i
\(118\) −2.86270 8.81050i −0.263533 0.811072i
\(119\) 8.05594 5.85298i 0.738487 0.536542i
\(120\) 0 0
\(121\) 8.47131 + 7.01690i 0.770119 + 0.637900i
\(122\) −17.4969 −1.58409
\(123\) 1.50528 1.09365i 0.135727 0.0986113i
\(124\) −0.0832183 0.256120i −0.00747323 0.0230002i
\(125\) 0 0
\(126\) 7.40175 + 5.37769i 0.659400 + 0.479082i
\(127\) −9.00901 6.54543i −0.799420 0.580813i 0.111324 0.993784i \(-0.464491\pi\)
−0.910744 + 0.412972i \(0.864491\pi\)
\(128\) −1.76004 + 5.41684i −0.155567 + 0.478786i
\(129\) 0.286205 + 0.880848i 0.0251989 + 0.0775544i
\(130\) 0 0
\(131\) 10.1649 0.888114 0.444057 0.895999i \(-0.353539\pi\)
0.444057 + 0.895999i \(0.353539\pi\)
\(132\) −0.542023 0.195330i −0.0471771 0.0170013i
\(133\) 0.717734 0.0622354
\(134\) 3.20080 2.32552i 0.276507 0.200894i
\(135\) 0 0
\(136\) 3.63804 11.1967i 0.311959 0.960112i
\(137\) 3.51604 + 2.55455i 0.300395 + 0.218250i 0.727764 0.685827i \(-0.240559\pi\)
−0.427369 + 0.904077i \(0.640559\pi\)
\(138\) −3.05297 2.21811i −0.259886 0.188818i
\(139\) −2.56560 + 7.89611i −0.217612 + 0.669739i 0.781346 + 0.624098i \(0.214533\pi\)
−0.998958 + 0.0456418i \(0.985467\pi\)
\(140\) 0 0
\(141\) 1.45019 1.05362i 0.122128 0.0887310i
\(142\) 10.3668 0.869960
\(143\) 8.78896 2.55048i 0.734969 0.213282i
\(144\) 8.07981 0.673318
\(145\) 0 0
\(146\) 4.97067 + 15.2981i 0.411375 + 1.26608i
\(147\) −0.0354054 + 0.108967i −0.00292019 + 0.00898743i
\(148\) −0.201775 0.146598i −0.0165858 0.0120503i
\(149\) −6.84987 4.97672i −0.561163 0.407709i 0.270721 0.962658i \(-0.412738\pi\)
−0.831884 + 0.554949i \(0.812738\pi\)
\(150\) 0 0
\(151\) 3.43080 + 10.5589i 0.279195 + 0.859273i 0.988079 + 0.153948i \(0.0491988\pi\)
−0.708884 + 0.705325i \(0.750801\pi\)
\(152\) 0.686511 0.498780i 0.0556834 0.0404564i
\(153\) −11.0435 −0.892814
\(154\) −0.335658 + 10.5767i −0.0270481 + 0.852291i
\(155\) 0 0
\(156\) −0.387785 + 0.281742i −0.0310476 + 0.0225574i
\(157\) 4.25400 + 13.0925i 0.339506 + 1.04489i 0.964459 + 0.264231i \(0.0851181\pi\)
−0.624953 + 0.780662i \(0.714882\pi\)
\(158\) −3.70047 + 11.3889i −0.294394 + 0.906051i
\(159\) 2.56801 + 1.86577i 0.203657 + 0.147965i
\(160\) 0 0
\(161\) 6.71293 20.6603i 0.529053 1.62826i
\(162\) −2.98395 9.18364i −0.234441 0.721535i
\(163\) −7.23337 + 5.25535i −0.566561 + 0.411631i −0.833854 0.551985i \(-0.813871\pi\)
0.267293 + 0.963615i \(0.413871\pi\)
\(164\) 2.43969 0.190508
\(165\) 0 0
\(166\) −4.06846 −0.315774
\(167\) 13.6871 9.94425i 1.05914 0.769509i 0.0852095 0.996363i \(-0.472844\pi\)
0.973929 + 0.226854i \(0.0728440\pi\)
\(168\) −0.889007 2.73608i −0.0685883 0.211093i
\(169\) −1.66446 + 5.12268i −0.128035 + 0.394052i
\(170\) 0 0
\(171\) −0.643975 0.467875i −0.0492460 0.0357793i
\(172\) −0.375277 + 1.15498i −0.0286146 + 0.0880667i
\(173\) 1.04445 + 3.21447i 0.0794077 + 0.244392i 0.982878 0.184260i \(-0.0589888\pi\)
−0.903470 + 0.428652i \(0.858989\pi\)
\(174\) 1.20751 0.877307i 0.0915410 0.0665085i
\(175\) 0 0
\(176\) 5.25043 + 7.73091i 0.395766 + 0.582739i
\(177\) 2.73251 0.205388
\(178\) 2.48405 1.80477i 0.186188 0.135273i
\(179\) 4.27183 + 13.1473i 0.319291 + 0.982678i 0.973952 + 0.226755i \(0.0728116\pi\)
−0.654660 + 0.755923i \(0.727188\pi\)
\(180\) 0 0
\(181\) 2.10264 + 1.52766i 0.156288 + 0.113550i 0.663181 0.748459i \(-0.269206\pi\)
−0.506893 + 0.862009i \(0.669206\pi\)
\(182\) 7.12240 + 5.17473i 0.527947 + 0.383576i
\(183\) 1.59481 4.90833i 0.117892 0.362834i
\(184\) −7.93668 24.4266i −0.585100 1.80075i
\(185\) 0 0
\(186\) −0.253440 −0.0185831
\(187\) −7.17629 10.5666i −0.524782 0.772708i
\(188\) 2.35039 0.171420
\(189\) −4.46735 + 3.24572i −0.324952 + 0.236091i
\(190\) 0 0
\(191\) 0.685498 2.10975i 0.0496009 0.152656i −0.923188 0.384348i \(-0.874426\pi\)
0.972789 + 0.231692i \(0.0744262\pi\)
\(192\) −2.61759 1.90179i −0.188908 0.137250i
\(193\) 8.47564 + 6.15791i 0.610090 + 0.443256i 0.849446 0.527676i \(-0.176936\pi\)
−0.239356 + 0.970932i \(0.576936\pi\)
\(194\) 4.15700 12.7939i 0.298455 0.918550i
\(195\) 0 0
\(196\) −0.121540 + 0.0883042i −0.00868145 + 0.00630744i
\(197\) −1.32667 −0.0945210 −0.0472605 0.998883i \(-0.515049\pi\)
−0.0472605 + 0.998883i \(0.515049\pi\)
\(198\) 7.19586 9.27093i 0.511388 0.658856i
\(199\) −5.20321 −0.368846 −0.184423 0.982847i \(-0.559042\pi\)
−0.184423 + 0.982847i \(0.559042\pi\)
\(200\) 0 0
\(201\) 0.360621 + 1.10988i 0.0254362 + 0.0782847i
\(202\) −5.27687 + 16.2405i −0.371279 + 1.14268i
\(203\) 6.95113 + 5.05029i 0.487873 + 0.354461i
\(204\) 0.541245 + 0.393237i 0.0378947 + 0.0275321i
\(205\) 0 0
\(206\) −5.10590 15.7144i −0.355745 1.09487i
\(207\) −19.4911 + 14.1611i −1.35472 + 0.984264i
\(208\) 7.77487 0.539090
\(209\) 0.0292033 0.920202i 0.00202004 0.0636517i
\(210\) 0 0
\(211\) −15.3038 + 11.1189i −1.05356 + 0.765454i −0.972886 0.231287i \(-0.925706\pi\)
−0.0806716 + 0.996741i \(0.525706\pi\)
\(212\) 1.28617 + 3.95841i 0.0883342 + 0.271865i
\(213\) −0.944916 + 2.90815i −0.0647446 + 0.199263i
\(214\) 10.2422 + 7.44139i 0.700142 + 0.508683i
\(215\) 0 0
\(216\) −2.01744 + 6.20905i −0.137270 + 0.422473i
\(217\) −0.450839 1.38754i −0.0306050 0.0941924i
\(218\) −4.93432 + 3.58499i −0.334194 + 0.242806i
\(219\) −4.74460 −0.320611
\(220\) 0 0
\(221\) −10.6267 −0.714829
\(222\) −0.189892 + 0.137964i −0.0127447 + 0.00925956i
\(223\) 6.75890 + 20.8018i 0.452610 + 1.39299i 0.873919 + 0.486072i \(0.161571\pi\)
−0.421309 + 0.906917i \(0.638429\pi\)
\(224\) 2.10679 6.48402i 0.140766 0.433232i
\(225\) 0 0
\(226\) −9.90742 7.19816i −0.659032 0.478815i
\(227\) −0.753584 + 2.31929i −0.0500171 + 0.153937i −0.972945 0.231035i \(-0.925789\pi\)
0.922928 + 0.384972i \(0.125789\pi\)
\(228\) 0.0149013 + 0.0458614i 0.000986860 + 0.00303724i
\(229\) −5.90678 + 4.29153i −0.390331 + 0.283592i −0.765591 0.643327i \(-0.777553\pi\)
0.375260 + 0.926920i \(0.377553\pi\)
\(230\) 0 0
\(231\) −2.93644 1.05821i −0.193203 0.0696250i
\(232\) 10.1584 0.666930
\(233\) −3.60685 + 2.62053i −0.236292 + 0.171676i −0.699630 0.714505i \(-0.746652\pi\)
0.463338 + 0.886182i \(0.346652\pi\)
\(234\) −3.01717 9.28588i −0.197238 0.607037i
\(235\) 0 0
\(236\) 2.89864 + 2.10598i 0.188685 + 0.137088i
\(237\) −2.85759 2.07616i −0.185620 0.134861i
\(238\) 3.79711 11.6863i 0.246130 0.757511i
\(239\) 7.47040 + 22.9915i 0.483220 + 1.48720i 0.834542 + 0.550944i \(0.185732\pi\)
−0.351322 + 0.936255i \(0.614268\pi\)
\(240\) 0 0
\(241\) −12.0393 −0.775522 −0.387761 0.921760i \(-0.626751\pi\)
−0.387761 + 0.921760i \(0.626751\pi\)
\(242\) 13.5466 + 0.860691i 0.870809 + 0.0553273i
\(243\) 9.25525 0.593725
\(244\) 5.47470 3.97760i 0.350482 0.254640i
\(245\) 0 0
\(246\) 0.709506 2.18363i 0.0452364 0.139223i
\(247\) −0.619671 0.450217i −0.0394287 0.0286466i
\(248\) −1.39548 1.01388i −0.0886131 0.0643812i
\(249\) 0.370835 1.14131i 0.0235007 0.0723277i
\(250\) 0 0
\(251\) 0.433947 0.315281i 0.0273905 0.0199004i −0.574006 0.818851i \(-0.694611\pi\)
0.601396 + 0.798951i \(0.294611\pi\)
\(252\) −3.53850 −0.222904
\(253\) −26.2153 9.44724i −1.64814 0.593943i
\(254\) −13.7414 −0.862214
\(255\) 0 0
\(256\) −3.32196 10.2240i −0.207623 0.638997i
\(257\) 7.32987 22.5590i 0.457224 1.40719i −0.411279 0.911509i \(-0.634918\pi\)
0.868504 0.495683i \(-0.165082\pi\)
\(258\) 0.924624 + 0.671779i 0.0575646 + 0.0418231i
\(259\) −1.09313 0.794203i −0.0679236 0.0493494i
\(260\) 0 0
\(261\) −2.94461 9.06258i −0.182267 0.560960i
\(262\) 10.1479 7.37286i 0.626937 0.455497i
\(263\) −4.97643 −0.306860 −0.153430 0.988160i \(-0.549032\pi\)
−0.153430 + 0.988160i \(0.549032\pi\)
\(264\) −3.54409 + 1.02846i −0.218123 + 0.0632976i
\(265\) 0 0
\(266\) 0.716529 0.520589i 0.0439332 0.0319194i
\(267\) 0.279868 + 0.861345i 0.0171276 + 0.0527134i
\(268\) −0.472852 + 1.45529i −0.0288841 + 0.0888960i
\(269\) −23.3034 16.9309i −1.42083 1.03230i −0.991633 0.129087i \(-0.958795\pi\)
−0.429201 0.903209i \(-0.641205\pi\)
\(270\) 0 0
\(271\) −4.96782 + 15.2894i −0.301773 + 0.928763i 0.679088 + 0.734057i \(0.262375\pi\)
−0.980862 + 0.194706i \(0.937625\pi\)
\(272\) −3.35334 10.3205i −0.203326 0.625774i
\(273\) −2.10084 + 1.52635i −0.127149 + 0.0923790i
\(274\) 5.36301 0.323992
\(275\) 0 0
\(276\) 1.45951 0.0878522
\(277\) −14.5654 + 10.5824i −0.875148 + 0.635832i −0.931963 0.362552i \(-0.881905\pi\)
0.0568151 + 0.998385i \(0.481905\pi\)
\(278\) 3.16594 + 9.74375i 0.189880 + 0.584391i
\(279\) −0.500000 + 1.53884i −0.0299342 + 0.0921280i
\(280\) 0 0
\(281\) −11.0957 8.06146i −0.661911 0.480907i 0.205397 0.978679i \(-0.434152\pi\)
−0.867308 + 0.497772i \(0.834152\pi\)
\(282\) 0.683536 2.10371i 0.0407040 0.125274i
\(283\) −6.33621 19.5009i −0.376649 1.15921i −0.942360 0.334602i \(-0.891398\pi\)
0.565711 0.824604i \(-0.308602\pi\)
\(284\) −3.24372 + 2.35670i −0.192479 + 0.139844i
\(285\) 0 0
\(286\) 6.92428 8.92103i 0.409441 0.527512i
\(287\) 13.2172 0.780184
\(288\) −6.11708 + 4.44432i −0.360452 + 0.261884i
\(289\) −0.669933 2.06184i −0.0394078 0.121285i
\(290\) 0 0
\(291\) 3.21013 + 2.33229i 0.188181 + 0.136721i
\(292\) −5.03306 3.65673i −0.294538 0.213994i
\(293\) 6.92608 21.3163i 0.404626 1.24531i −0.516581 0.856238i \(-0.672796\pi\)
0.921207 0.389073i \(-0.127204\pi\)
\(294\) 0.0436901 + 0.134464i 0.00254806 + 0.00784212i
\(295\) 0 0
\(296\) −1.59750 −0.0928525
\(297\) 3.97955 + 5.85963i 0.230917 + 0.340010i
\(298\) −10.4481 −0.605242
\(299\) −18.7555 + 13.6266i −1.08466 + 0.788049i
\(300\) 0 0
\(301\) −2.03308 + 6.25718i −0.117185 + 0.360658i
\(302\) 11.0837 + 8.05276i 0.637794 + 0.463384i
\(303\) −4.07492 2.96060i −0.234098 0.170082i
\(304\) 0.241704 0.743887i 0.0138627 0.0426649i
\(305\) 0 0
\(306\) −11.0250 + 8.01010i −0.630255 + 0.457907i
\(307\) −20.3044 −1.15883 −0.579416 0.815032i \(-0.696719\pi\)
−0.579416 + 0.815032i \(0.696719\pi\)
\(308\) −2.29939 3.38570i −0.131020 0.192918i
\(309\) 4.87369 0.277254
\(310\) 0 0
\(311\) −2.70662 8.33012i −0.153478 0.472358i 0.844525 0.535516i \(-0.179883\pi\)
−0.998004 + 0.0631580i \(0.979883\pi\)
\(312\) −0.948735 + 2.91991i −0.0537116 + 0.165307i
\(313\) −1.40060 1.01759i −0.0791664 0.0575177i 0.547498 0.836807i \(-0.315580\pi\)
−0.626664 + 0.779289i \(0.715580\pi\)
\(314\) 13.7431 + 9.98497i 0.775570 + 0.563485i
\(315\) 0 0
\(316\) −1.43120 4.40477i −0.0805111 0.247788i
\(317\) −14.1387 + 10.2724i −0.794109 + 0.576954i −0.909180 0.416403i \(-0.863290\pi\)
0.115071 + 0.993357i \(0.463290\pi\)
\(318\) 3.91699 0.219654
\(319\) 6.75777 8.70651i 0.378363 0.487471i
\(320\) 0 0
\(321\) −3.02107 + 2.19493i −0.168619 + 0.122509i
\(322\) −8.28372 25.4947i −0.461633 1.42076i
\(323\) −0.330361 + 1.01675i −0.0183818 + 0.0565733i
\(324\) 3.02140 + 2.19518i 0.167856 + 0.121954i
\(325\) 0 0
\(326\) −3.40940 + 10.4931i −0.188829 + 0.581157i
\(327\) −0.555929 1.71097i −0.0307430 0.0946171i
\(328\) 12.6422 9.18509i 0.698048 0.507162i
\(329\) 12.7334 0.702014
\(330\) 0 0
\(331\) 12.6193 0.693620 0.346810 0.937935i \(-0.387265\pi\)
0.346810 + 0.937935i \(0.387265\pi\)
\(332\) 1.27301 0.924893i 0.0698653 0.0507601i
\(333\) 0.463067 + 1.42517i 0.0253759 + 0.0780990i
\(334\) 6.45132 19.8551i 0.353000 1.08642i
\(335\) 0 0
\(336\) −2.14531 1.55866i −0.117036 0.0850320i
\(337\) −3.66490 + 11.2794i −0.199640 + 0.614428i 0.800251 + 0.599665i \(0.204699\pi\)
−0.999891 + 0.0147629i \(0.995301\pi\)
\(338\) 2.05393 + 6.32135i 0.111719 + 0.343836i
\(339\) 2.92232 2.12319i 0.158719 0.115316i
\(340\) 0 0
\(341\) −1.79730 + 0.521562i −0.0973294 + 0.0282442i
\(342\) −0.982255 −0.0531143
\(343\) −15.3009 + 11.1167i −0.826171 + 0.600248i
\(344\) 2.40371 + 7.39785i 0.129599 + 0.398865i
\(345\) 0 0
\(346\) 3.37422 + 2.45152i 0.181399 + 0.131794i
\(347\) 18.0444 + 13.1100i 0.968672 + 0.703781i 0.955148 0.296127i \(-0.0956953\pi\)
0.0135232 + 0.999909i \(0.495695\pi\)
\(348\) −0.178385 + 0.549011i −0.00956242 + 0.0294301i
\(349\) 4.93434 + 15.1863i 0.264129 + 0.812906i 0.991893 + 0.127078i \(0.0405599\pi\)
−0.727763 + 0.685828i \(0.759440\pi\)
\(350\) 0 0
\(351\) 5.89295 0.314542
\(352\) −8.22740 2.96492i −0.438522 0.158031i
\(353\) 24.1406 1.28488 0.642439 0.766337i \(-0.277923\pi\)
0.642439 + 0.766337i \(0.277923\pi\)
\(354\) 2.72792 1.98195i 0.144987 0.105340i
\(355\) 0 0
\(356\) −0.366968 + 1.12941i −0.0194492 + 0.0598586i
\(357\) 2.93222 + 2.13038i 0.155189 + 0.112752i
\(358\) 13.8007 + 10.0268i 0.729391 + 0.529934i
\(359\) 6.29726 19.3810i 0.332357 1.02289i −0.635653 0.771975i \(-0.719269\pi\)
0.968010 0.250913i \(-0.0807309\pi\)
\(360\) 0 0
\(361\) 15.3090 11.1226i 0.805736 0.585401i
\(362\) 3.20716 0.168564
\(363\) −1.47620 + 3.72173i −0.0774804 + 0.195340i
\(364\) −3.40495 −0.178468
\(365\) 0 0
\(366\) −1.96799 6.05685i −0.102869 0.316597i
\(367\) −1.67002 + 5.13979i −0.0871744 + 0.268295i −0.985135 0.171780i \(-0.945048\pi\)
0.897961 + 0.440075i \(0.145048\pi\)
\(368\) −19.1525 13.9151i −0.998392 0.725374i
\(369\) −11.8589 8.61599i −0.617349 0.448530i
\(370\) 0 0
\(371\) 6.96786 + 21.4449i 0.361753 + 1.11336i
\(372\) 0.0793003 0.0576150i 0.00411153 0.00298720i
\(373\) 17.0982 0.885311 0.442656 0.896692i \(-0.354036\pi\)
0.442656 + 0.896692i \(0.354036\pi\)
\(374\) −14.8285 5.34375i −0.766761 0.276319i
\(375\) 0 0
\(376\) 12.1795 8.84889i 0.628108 0.456347i
\(377\) −2.83348 8.72055i −0.145932 0.449131i
\(378\) −2.10566 + 6.48055i −0.108303 + 0.333323i
\(379\) 6.95104 + 5.05023i 0.357051 + 0.259413i 0.751821 0.659367i \(-0.229176\pi\)
−0.394770 + 0.918780i \(0.629176\pi\)
\(380\) 0 0
\(381\) 1.25251 3.85484i 0.0641681 0.197489i
\(382\) −0.845900 2.60341i −0.0432800 0.133202i
\(383\) −7.82286 + 5.68364i −0.399729 + 0.290420i −0.769431 0.638730i \(-0.779460\pi\)
0.369701 + 0.929151i \(0.379460\pi\)
\(384\) −2.07310 −0.105792
\(385\) 0 0
\(386\) 12.9279 0.658012
\(387\) 5.90307 4.28883i 0.300070 0.218014i
\(388\) 1.60776 + 4.94818i 0.0816217 + 0.251206i
\(389\) −8.45759 + 26.0298i −0.428817 + 1.31976i 0.470475 + 0.882414i \(0.344083\pi\)
−0.899292 + 0.437350i \(0.855917\pi\)
\(390\) 0 0
\(391\) 26.1776 + 19.0192i 1.32386 + 0.961840i
\(392\) −0.297354 + 0.915163i −0.0150187 + 0.0462227i
\(393\) 1.14332 + 3.51877i 0.0576727 + 0.177498i
\(394\) −1.32444 + 0.962262i −0.0667243 + 0.0484780i
\(395\) 0 0
\(396\) −0.143975 + 4.53669i −0.00723503 + 0.227977i
\(397\) 10.6518 0.534596 0.267298 0.963614i \(-0.413869\pi\)
0.267298 + 0.963614i \(0.413869\pi\)
\(398\) −5.19448 + 3.77401i −0.260376 + 0.189174i
\(399\) 0.0807283 + 0.248456i 0.00404147 + 0.0124384i
\(400\) 0 0
\(401\) −11.0953 8.06124i −0.554075 0.402559i 0.275210 0.961384i \(-0.411252\pi\)
−0.829286 + 0.558825i \(0.811252\pi\)
\(402\) 1.16504 + 0.846448i 0.0581067 + 0.0422170i
\(403\) −0.481129 + 1.48076i −0.0239668 + 0.0737621i
\(404\) −2.04088 6.28119i −0.101538 0.312501i
\(405\) 0 0
\(406\) 10.6026 0.526196
\(407\) −1.06272 + 1.36918i −0.0526771 + 0.0678676i
\(408\) 4.28514 0.212146
\(409\) 18.0478 13.1125i 0.892408 0.648372i −0.0440970 0.999027i \(-0.514041\pi\)
0.936505 + 0.350655i \(0.114041\pi\)
\(410\) 0 0
\(411\) −0.488831 + 1.50447i −0.0241123 + 0.0742099i
\(412\) 5.16999 + 3.75622i 0.254707 + 0.185056i
\(413\) 15.7035 + 11.4093i 0.772719 + 0.561413i
\(414\) −9.18699 + 28.2747i −0.451516 + 1.38962i
\(415\) 0 0
\(416\) −5.88621 + 4.27658i −0.288595 + 0.209677i
\(417\) −3.02195 −0.147986
\(418\) −0.638290 0.939840i −0.0312198 0.0459691i
\(419\) −0.510725 −0.0249506 −0.0124753 0.999922i \(-0.503971\pi\)
−0.0124753 + 0.999922i \(0.503971\pi\)
\(420\) 0 0
\(421\) 4.08365 + 12.5682i 0.199025 + 0.612536i 0.999906 + 0.0137124i \(0.00436492\pi\)
−0.800881 + 0.598824i \(0.795635\pi\)
\(422\) −7.21335 + 22.2004i −0.351140 + 1.08070i
\(423\) −11.4248 8.30062i −0.555494 0.403590i
\(424\) 21.5676 + 15.6698i 1.04741 + 0.760991i
\(425\) 0 0
\(426\) 1.16602 + 3.58864i 0.0564939 + 0.173870i
\(427\) 29.6594 21.5488i 1.43532 1.04282i
\(428\) −4.89641 −0.236677
\(429\) 1.87145 + 2.75558i 0.0903543 + 0.133041i
\(430\) 0 0
\(431\) 23.7902 17.2846i 1.14594 0.832571i 0.158000 0.987439i \(-0.449495\pi\)
0.987935 + 0.154868i \(0.0494952\pi\)
\(432\) 1.85957 + 5.72316i 0.0894685 + 0.275356i
\(433\) −3.15708 + 9.71650i −0.151720 + 0.466945i −0.997814 0.0660883i \(-0.978948\pi\)
0.846094 + 0.533034i \(0.178948\pi\)
\(434\) −1.45650 1.05821i −0.0699142 0.0507956i
\(435\) 0 0
\(436\) 0.728944 2.24346i 0.0349101 0.107442i
\(437\) 0.720709 + 2.21811i 0.0344762 + 0.106107i
\(438\) −4.73664 + 3.44137i −0.226325 + 0.164435i
\(439\) −1.53306 −0.0731691 −0.0365846 0.999331i \(-0.511648\pi\)
−0.0365846 + 0.999331i \(0.511648\pi\)
\(440\) 0 0
\(441\) 0.902638 0.0429827
\(442\) −10.6089 + 7.70779i −0.504612 + 0.366622i
\(443\) 1.04835 + 3.22650i 0.0498088 + 0.153296i 0.972867 0.231364i \(-0.0743188\pi\)
−0.923058 + 0.384660i \(0.874319\pi\)
\(444\) 0.0280526 0.0863370i 0.00133132 0.00409737i
\(445\) 0 0
\(446\) 21.8356 + 15.8645i 1.03394 + 0.751204i
\(447\) 0.952329 2.93097i 0.0450436 0.138630i
\(448\) −7.10238 21.8589i −0.335556 1.03274i
\(449\) 26.1718 19.0149i 1.23512 0.897368i 0.237858 0.971300i \(-0.423555\pi\)
0.997263 + 0.0739317i \(0.0235547\pi\)
\(450\) 0 0
\(451\) 0.537783 16.9456i 0.0253232 0.797939i
\(452\) 4.73637 0.222780
\(453\) −3.26927 + 2.37527i −0.153604 + 0.111600i
\(454\) 0.929918 + 2.86199i 0.0436432 + 0.134320i
\(455\) 0 0
\(456\) 0.249878 + 0.181547i 0.0117016 + 0.00850171i
\(457\) −9.84814 7.15509i −0.460676 0.334701i 0.333120 0.942884i \(-0.391899\pi\)
−0.793797 + 0.608183i \(0.791899\pi\)
\(458\) −2.78412 + 8.56865i −0.130094 + 0.400387i
\(459\) −2.54166 7.82243i −0.118635 0.365120i
\(460\) 0 0
\(461\) −16.5699 −0.771739 −0.385869 0.922553i \(-0.626098\pi\)
−0.385869 + 0.922553i \(0.626098\pi\)
\(462\) −3.69905 + 1.07343i −0.172095 + 0.0499407i
\(463\) 14.6302 0.679924 0.339962 0.940439i \(-0.389586\pi\)
0.339962 + 0.940439i \(0.389586\pi\)
\(464\) 7.57517 5.50368i 0.351669 0.255502i
\(465\) 0 0
\(466\) −1.70006 + 5.23226i −0.0787539 + 0.242380i
\(467\) −24.6632 17.9188i −1.14128 0.829185i −0.153979 0.988074i \(-0.549209\pi\)
−0.987296 + 0.158889i \(0.949209\pi\)
\(468\) 3.05504 + 2.21961i 0.141219 + 0.102602i
\(469\) −2.56170 + 7.88411i −0.118288 + 0.364054i
\(470\) 0 0
\(471\) −4.05372 + 2.94520i −0.186785 + 0.135707i
\(472\) 22.9491 1.05632
\(473\) 7.93957 + 2.86120i 0.365062 + 0.131558i
\(474\) −4.35868 −0.200201
\(475\) 0 0
\(476\) 1.46857 + 4.51981i 0.0673120 + 0.207165i
\(477\) 7.72766 23.7833i 0.353825 1.08896i
\(478\) 24.1342 + 17.5345i 1.10387 + 0.802009i
\(479\) −11.3257 8.22857i −0.517482 0.375973i 0.298172 0.954512i \(-0.403623\pi\)
−0.815655 + 0.578539i \(0.803623\pi\)
\(480\) 0 0
\(481\) 0.445590 + 1.37138i 0.0203172 + 0.0625298i
\(482\) −12.0191 + 8.73241i −0.547456 + 0.397750i
\(483\) 7.90697 0.359780
\(484\) −4.43434 + 2.81027i −0.201561 + 0.127740i
\(485\) 0 0
\(486\) 9.23972 6.71305i 0.419122 0.304510i
\(487\) 10.5471 + 32.4606i 0.477934 + 1.47093i 0.841960 + 0.539541i \(0.181402\pi\)
−0.364026 + 0.931389i \(0.618598\pi\)
\(488\) 13.3941 41.2229i 0.606324 1.86607i
\(489\) −2.63282 1.91285i −0.119060 0.0865022i
\(490\) 0 0
\(491\) −0.987097 + 3.03797i −0.0445470 + 0.137102i −0.970856 0.239662i \(-0.922963\pi\)
0.926309 + 0.376764i \(0.122963\pi\)
\(492\) 0.274409 + 0.844543i 0.0123713 + 0.0380750i
\(493\) −10.3538 + 7.52244i −0.466310 + 0.338794i
\(494\) −0.945184 −0.0425258
\(495\) 0 0
\(496\) −1.58993 −0.0713898
\(497\) −17.5730 + 12.7675i −0.788257 + 0.572702i
\(498\) −0.457607 1.40837i −0.0205059 0.0631106i
\(499\) 2.01742 6.20897i 0.0903120 0.277952i −0.895692 0.444676i \(-0.853319\pi\)
0.986004 + 0.166724i \(0.0533189\pi\)
\(500\) 0 0
\(501\) 4.98186 + 3.61953i 0.222573 + 0.161709i
\(502\) 0.204538 0.629504i 0.00912898 0.0280961i
\(503\) 0.310213 + 0.954737i 0.0138317 + 0.0425696i 0.957734 0.287655i \(-0.0928756\pi\)
−0.943902 + 0.330224i \(0.892876\pi\)
\(504\) −18.3361 + 13.3219i −0.816753 + 0.593406i
\(505\) 0 0
\(506\) −33.0236 + 9.58317i −1.46808 + 0.426024i
\(507\) −1.96052 −0.0870697
\(508\) 4.29964 3.12387i 0.190766 0.138599i
\(509\) −1.32074 4.06483i −0.0585409 0.180170i 0.917510 0.397713i \(-0.130196\pi\)
−0.976051 + 0.217542i \(0.930196\pi\)
\(510\) 0 0
\(511\) −27.2669 19.8105i −1.20621 0.876366i
\(512\) −19.9477 14.4929i −0.881574 0.640501i
\(513\) 0.183199 0.563828i 0.00808842 0.0248936i
\(514\) −9.04501 27.8377i −0.398958 1.22787i
\(515\) 0 0
\(516\) −0.442028 −0.0194592
\(517\) 0.518099 16.3254i 0.0227860 0.717990i
\(518\) −1.66735 −0.0732590
\(519\) −0.995271 + 0.723107i −0.0436875 + 0.0317409i
\(520\) 0 0
\(521\) −3.05561 + 9.40421i −0.133869 + 0.412006i −0.995412 0.0956779i \(-0.969498\pi\)
0.861544 + 0.507684i \(0.169498\pi\)
\(522\) −9.51297 6.91158i −0.416371 0.302512i
\(523\) −35.7318 25.9607i −1.56244 1.13518i −0.933970 0.357351i \(-0.883680\pi\)
−0.628474 0.777831i \(-0.716320\pi\)
\(524\) −1.49914 + 4.61387i −0.0654901 + 0.201558i
\(525\) 0 0
\(526\) −4.96808 + 3.60952i −0.216619 + 0.157383i
\(527\) 2.17311 0.0946623
\(528\) −2.08564 + 2.68708i −0.0907659 + 0.116940i
\(529\) 47.5902 2.06914
\(530\) 0 0
\(531\) −6.65227 20.4736i −0.288684 0.888477i
\(532\) −0.105852 + 0.325780i −0.00458928 + 0.0141244i
\(533\) −11.4113 8.29081i −0.494279 0.359115i
\(534\) 0.904152 + 0.656905i 0.0391265 + 0.0284270i
\(535\) 0 0
\(536\) 3.02869 + 9.32135i 0.130820 + 0.402621i
\(537\) −4.07070 + 2.95754i −0.175664 + 0.127627i
\(538\) −35.5447 −1.53244
\(539\) 0.586552 + 0.863660i 0.0252646 + 0.0372005i
\(540\) 0 0
\(541\) 17.2074 12.5019i 0.739805 0.537499i −0.152845 0.988250i \(-0.548844\pi\)
0.892650 + 0.450751i \(0.148844\pi\)
\(542\) 6.13026 + 18.8670i 0.263317 + 0.810406i
\(543\) −0.292328 + 0.899692i −0.0125450 + 0.0386095i
\(544\) 8.21558 + 5.96897i 0.352240 + 0.255918i
\(545\) 0 0
\(546\) −0.990219 + 3.04758i −0.0423775 + 0.130424i
\(547\) 1.27746 + 3.93160i 0.0546201 + 0.168103i 0.974645 0.223756i \(-0.0718319\pi\)
−0.920025 + 0.391859i \(0.871832\pi\)
\(548\) −1.67806 + 1.21919i −0.0716834 + 0.0520810i
\(549\) −40.6587 −1.73527
\(550\) 0 0
\(551\) −0.922455 −0.0392979
\(552\) 7.56301 5.49485i 0.321903 0.233876i
\(553\) −7.75358 23.8631i −0.329716 1.01476i
\(554\) −6.86529 + 21.1292i −0.291678 + 0.897694i
\(555\) 0 0
\(556\) −3.20568 2.32906i −0.135951 0.0987742i
\(557\) 9.78568 30.1172i 0.414633 1.27611i −0.497947 0.867208i \(-0.665912\pi\)
0.912579 0.408900i \(-0.134088\pi\)
\(558\) 0.616997 + 1.89892i 0.0261196 + 0.0803877i
\(559\) 5.68028 4.12697i 0.240250 0.174552i
\(560\) 0 0
\(561\) 2.85066 3.67270i 0.120355 0.155061i
\(562\) −16.9242 −0.713904
\(563\) 10.3123 7.49233i 0.434612 0.315764i −0.348879 0.937168i \(-0.613437\pi\)
0.783490 + 0.621404i \(0.213437\pi\)
\(564\) 0.264365 + 0.813631i 0.0111318 + 0.0342600i
\(565\) 0 0
\(566\) −20.4700 14.8723i −0.860419 0.625131i
\(567\) 16.3686 + 11.8925i 0.687416 + 0.499437i
\(568\) −7.93592 + 24.4243i −0.332984 + 1.02482i
\(569\) 4.83153 + 14.8699i 0.202548 + 0.623380i 0.999805 + 0.0197396i \(0.00628372\pi\)
−0.797257 + 0.603640i \(0.793716\pi\)
\(570\) 0 0
\(571\) −3.61999 −0.151492 −0.0757460 0.997127i \(-0.524134\pi\)
−0.0757460 + 0.997127i \(0.524134\pi\)
\(572\) −0.138541 + 4.36547i −0.00579271 + 0.182529i
\(573\) 0.807429 0.0337308
\(574\) 13.1950 9.58671i 0.550748 0.400142i
\(575\) 0 0
\(576\) −7.87684 + 24.2424i −0.328202 + 1.01010i
\(577\) 19.2831 + 14.0100i 0.802765 + 0.583243i 0.911724 0.410803i \(-0.134752\pi\)
−0.108959 + 0.994046i \(0.534752\pi\)
\(578\) −2.16431 1.57246i −0.0900234 0.0654058i
\(579\) −1.17836 + 3.62661i −0.0489709 + 0.150717i
\(580\) 0 0
\(581\) 6.89657 5.01065i 0.286118 0.207877i
\(582\) 4.89641 0.202963
\(583\) 27.7779 8.06090i 1.15044 0.333848i
\(584\) −39.8478 −1.64891
\(585\) 0 0
\(586\) −8.54674 26.3042i −0.353063 1.08661i
\(587\) −0.385338 + 1.18595i −0.0159046 + 0.0489493i −0.958694 0.284440i \(-0.908192\pi\)
0.942789 + 0.333389i \(0.108192\pi\)
\(588\) −0.0442385 0.0321412i −0.00182436 0.00132548i
\(589\) 0.126720 + 0.0920674i 0.00522140 + 0.00379357i
\(590\) 0 0
\(591\) −0.149219 0.459249i −0.00613805 0.0188910i
\(592\) −1.19126 + 0.865504i −0.0489606 + 0.0355720i
\(593\) −18.5288 −0.760886 −0.380443 0.924804i \(-0.624228\pi\)
−0.380443 + 0.924804i \(0.624228\pi\)
\(594\) 8.22300 + 2.96333i 0.337394 + 0.121587i
\(595\) 0 0
\(596\) 3.26917 2.37519i 0.133910 0.0972915i
\(597\) −0.585240 1.80118i −0.0239523 0.0737176i
\(598\) −8.84026 + 27.2075i −0.361505 + 1.11260i
\(599\) −27.3738 19.8882i −1.11846 0.812611i −0.134488 0.990915i \(-0.542939\pi\)
−0.983975 + 0.178304i \(0.942939\pi\)
\(600\) 0 0
\(601\) −6.58286 + 20.2600i −0.268520 + 0.826421i 0.722341 + 0.691537i \(0.243066\pi\)
−0.990861 + 0.134884i \(0.956934\pi\)
\(602\) 2.50881 + 7.72132i 0.102251 + 0.314698i
\(603\) 7.43793 5.40397i 0.302896 0.220067i
\(604\) −5.29869 −0.215601
\(605\) 0 0
\(606\) −6.21547 −0.252486
\(607\) 30.3059 22.0185i 1.23008 0.893704i 0.233182 0.972433i \(-0.425086\pi\)
0.996896 + 0.0787287i \(0.0250861\pi\)
\(608\) 0.226187 + 0.696133i 0.00917310 + 0.0282319i
\(609\) −0.966407 + 2.97430i −0.0391608 + 0.120525i
\(610\) 0 0
\(611\) −10.9936 7.98734i −0.444755 0.323133i
\(612\) 1.62871 5.01266i 0.0658367 0.202625i
\(613\) 6.18180 + 19.0256i 0.249680 + 0.768437i 0.994831 + 0.101541i \(0.0323774\pi\)
−0.745151 + 0.666896i \(0.767623\pi\)
\(614\) −20.2703 + 14.7272i −0.818043 + 0.594343i
\(615\) 0 0
\(616\) −24.6618 8.88741i −0.993652 0.358084i
\(617\) −34.7932 −1.40072 −0.700360 0.713790i \(-0.746977\pi\)
−0.700360 + 0.713790i \(0.746977\pi\)
\(618\) 4.86551 3.53500i 0.195719 0.142198i
\(619\) −14.2407 43.8285i −0.572384 1.76162i −0.644920 0.764250i \(-0.723109\pi\)
0.0725362 0.997366i \(-0.476891\pi\)
\(620\) 0 0
\(621\) −14.5166 10.5469i −0.582530 0.423233i
\(622\) −8.74411 6.35297i −0.350607 0.254731i
\(623\) −1.98807 + 6.11864i −0.0796502 + 0.245138i
\(624\) 0.874492 + 2.69141i 0.0350077 + 0.107743i
\(625\) 0 0
\(626\) −2.13633 −0.0853849
\(627\) 0.321829 0.0933921i 0.0128526 0.00372972i
\(628\) −6.57008 −0.262175
\(629\) 1.62822 1.18297i 0.0649214 0.0471682i
\(630\) 0 0
\(631\) −6.34658 + 19.5328i −0.252653 + 0.777587i 0.741629 + 0.670810i \(0.234053\pi\)
−0.994283 + 0.106778i \(0.965947\pi\)
\(632\) −23.9996 17.4367i −0.954653 0.693596i
\(633\) −5.57031 4.04707i −0.221400 0.160857i
\(634\) −6.66419 + 20.5103i −0.264669 + 0.814567i
\(635\) 0 0
\(636\) −1.22561 + 0.890458i −0.0485986 + 0.0353090i
\(637\) 0.868571 0.0344140
\(638\) 0.431399 13.5935i 0.0170793 0.538171i
\(639\) 24.0900 0.952985
\(640\) 0 0
\(641\) 4.91631 + 15.1309i 0.194183 + 0.597633i 0.999985 + 0.00544856i \(0.00173434\pi\)
−0.805802 + 0.592185i \(0.798266\pi\)
\(642\) −1.42396 + 4.38250i −0.0561992 + 0.172963i
\(643\) 34.2246 + 24.8656i 1.34968 + 0.980603i 0.999027 + 0.0440996i \(0.0140419\pi\)
0.350658 + 0.936504i \(0.385958\pi\)
\(644\) 8.38769 + 6.09402i 0.330521 + 0.240138i
\(645\) 0 0
\(646\) 0.407663 + 1.25466i 0.0160393 + 0.0493639i
\(647\) −6.05866 + 4.40187i −0.238190 + 0.173055i −0.700477 0.713675i \(-0.747029\pi\)
0.462286 + 0.886731i \(0.347029\pi\)
\(648\) 23.9210 0.939707
\(649\) 15.2667 19.6692i 0.599271 0.772082i
\(650\) 0 0
\(651\) 0.429613 0.312132i 0.0168379 0.0122334i
\(652\) −1.31862 4.05830i −0.0516412 0.158935i
\(653\) −5.08959 + 15.6641i −0.199171 + 0.612985i 0.800732 + 0.599023i \(0.204444\pi\)
−0.999903 + 0.0139618i \(0.995556\pi\)
\(654\) −1.79601 1.30487i −0.0702294 0.0510246i
\(655\) 0 0
\(656\) 4.45100 13.6988i 0.173782 0.534847i
\(657\) 11.5507 + 35.5494i 0.450635 + 1.38691i
\(658\) 12.7120 9.23581i 0.495566 0.360050i
\(659\) 23.7359 0.924619 0.462310 0.886719i \(-0.347021\pi\)
0.462310 + 0.886719i \(0.347021\pi\)
\(660\) 0 0
\(661\) 13.4183 0.521911 0.260956 0.965351i \(-0.415962\pi\)
0.260956 + 0.965351i \(0.415962\pi\)
\(662\) 12.5981 9.15308i 0.489640 0.355745i
\(663\) −1.19526 3.67862i −0.0464199 0.142866i
\(664\) 3.11447 9.58536i 0.120865 0.371984i
\(665\) 0 0
\(666\) 1.49600 + 1.08691i 0.0579688 + 0.0421168i
\(667\) −8.62768 + 26.5533i −0.334065 + 1.02815i
\(668\) 2.49512 + 7.67918i 0.0965389 + 0.297116i
\(669\) −6.44068 + 4.67943i −0.249011 + 0.180917i
\(670\) 0 0
\(671\) −26.4209 38.9030i −1.01997 1.50183i
\(672\) 2.48152 0.0957268
\(673\) 39.0650 28.3824i 1.50585 1.09406i 0.537867 0.843030i \(-0.319230\pi\)
0.967979 0.251031i \(-0.0807697\pi\)
\(674\) 4.52246 + 13.9187i 0.174199 + 0.536128i
\(675\) 0 0
\(676\) −2.07971 1.51100i −0.0799889 0.0581154i
\(677\) 19.7107 + 14.3206i 0.757543 + 0.550387i 0.898156 0.439678i \(-0.144907\pi\)
−0.140613 + 0.990065i \(0.544907\pi\)
\(678\) 1.37742 4.23926i 0.0528994 0.162808i
\(679\) 8.71013 + 26.8070i 0.334264 + 1.02876i
\(680\) 0 0
\(681\) −0.887625 −0.0340139
\(682\) −1.41598 + 1.82431i −0.0542209 + 0.0698565i
\(683\) −38.9856 −1.49174 −0.745871 0.666090i \(-0.767966\pi\)
−0.745871 + 0.666090i \(0.767966\pi\)
\(684\) 0.307344 0.223298i 0.0117516 0.00853802i
\(685\) 0 0
\(686\) −7.21198 + 22.1962i −0.275355 + 0.847454i
\(687\) −2.14996 1.56204i −0.0820263 0.0595956i
\(688\) 5.80053 + 4.21433i 0.221143 + 0.160670i
\(689\) 7.43600 22.8857i 0.283289 0.871875i
\(690\) 0 0
\(691\) −4.78820 + 3.47883i −0.182152 + 0.132341i −0.675125 0.737704i \(-0.735910\pi\)
0.492973 + 0.870045i \(0.335910\pi\)
\(692\) −1.61309 −0.0613205
\(693\) −0.779993 + 24.5777i −0.0296295 + 0.933630i
\(694\) 27.5230 1.04476
\(695\) 0 0
\(696\) 1.14258 + 3.51650i 0.0433094 + 0.133293i
\(697\) −6.08364 + 18.7235i −0.230434 + 0.709203i
\(698\) 15.9411 + 11.5819i 0.603378 + 0.438380i
\(699\) −1.31283 0.953826i −0.0496557 0.0360770i
\(700\) 0 0
\(701\) 3.69808 + 11.3815i 0.139675 + 0.429874i 0.996288 0.0860851i \(-0.0274357\pi\)
−0.856613 + 0.515959i \(0.827436\pi\)
\(702\) 5.88306 4.27429i 0.222042 0.161323i
\(703\) 0.145064 0.00547120
\(704\) −28.3141 + 8.21652i −1.06713 + 0.309672i
\(705\) 0 0
\(706\) 24.1001 17.5098i 0.907021 0.658989i
\(707\) −11.0566 34.0287i −0.415826 1.27978i
\(708\) −0.402994 + 1.24029i −0.0151455 + 0.0466129i
\(709\) −5.50819 4.00194i −0.206865 0.150296i 0.479529 0.877526i \(-0.340807\pi\)
−0.686394 + 0.727230i \(0.740807\pi\)
\(710\) 0 0
\(711\) −8.59904 + 26.4651i −0.322489 + 0.992520i
\(712\) 2.35048 + 7.23405i 0.0880881 + 0.271107i
\(713\) 3.83541 2.78659i 0.143637 0.104358i
\(714\) 4.47251 0.167380
\(715\) 0 0
\(716\) −6.59761 −0.246564
\(717\) −7.11868 + 5.17202i −0.265852 + 0.193153i
\(718\) −7.77077 23.9160i −0.290003 0.892537i
\(719\) −2.86277 + 8.81069i −0.106763 + 0.328583i −0.990140 0.140080i \(-0.955264\pi\)
0.883377 + 0.468663i \(0.155264\pi\)
\(720\) 0 0
\(721\) 28.0087 + 20.3495i 1.04310 + 0.757855i
\(722\) 7.21579 22.2079i 0.268544 0.826493i
\(723\) −1.35414 4.16763i −0.0503612 0.154996i
\(724\) −1.00351 + 0.729090i −0.0372950 + 0.0270964i
\(725\) 0 0
\(726\) 1.22574 + 4.78621i 0.0454913 + 0.177633i
\(727\) −19.4121 −0.719956 −0.359978 0.932961i \(-0.617216\pi\)
−0.359978 + 0.932961i \(0.617216\pi\)
\(728\) −17.6440 + 12.8191i −0.653931 + 0.475109i
\(729\) −6.21336 19.1228i −0.230125 0.708250i
\(730\) 0 0
\(731\) −7.92817 5.76015i −0.293234 0.213047i
\(732\) 1.99269 + 1.44778i 0.0736521 + 0.0535114i
\(733\) −3.57287 + 10.9962i −0.131967 + 0.406152i −0.995106 0.0988140i \(-0.968495\pi\)
0.863139 + 0.504966i \(0.168495\pi\)
\(734\) 2.06079 + 6.34247i 0.0760653 + 0.234105i
\(735\) 0 0
\(736\) 22.1540 0.816608
\(737\) 10.0039 + 3.60513i 0.368500 + 0.132797i
\(738\) −18.0884 −0.665842
\(739\) −7.36801 + 5.35317i −0.271037 + 0.196920i −0.714998 0.699126i \(-0.753573\pi\)
0.443962 + 0.896046i \(0.353573\pi\)
\(740\) 0 0
\(741\) 0.0861521 0.265149i 0.00316488 0.00974049i
\(742\) 22.5106 + 16.3549i 0.826391 + 0.600409i
\(743\) 0.0591398 + 0.0429676i 0.00216963 + 0.00157633i 0.588870 0.808228i \(-0.299573\pi\)
−0.586700 + 0.809804i \(0.699573\pi\)
\(744\) 0.194012 0.597108i 0.00711283 0.0218910i
\(745\) 0 0
\(746\) 17.0695 12.4017i 0.624959 0.454059i
\(747\) −9.45417 −0.345910
\(748\) 5.85457 1.69895i 0.214064 0.0621197i
\(749\) −26.5265 −0.969258
\(750\) 0 0
\(751\) −11.9045 36.6384i −0.434403 1.33695i −0.893697 0.448670i \(-0.851898\pi\)
0.459295 0.888284i \(-0.348102\pi\)
\(752\) 4.28808 13.1974i 0.156370 0.481258i
\(753\) 0.157949 + 0.114757i 0.00575598 + 0.00418197i
\(754\) −9.15394 6.65073i −0.333367 0.242205i
\(755\) 0 0
\(756\) −0.814385 2.50642i −0.0296189 0.0911576i
\(757\) 22.7833 16.5530i 0.828073 0.601630i −0.0909407 0.995856i \(-0.528987\pi\)
0.919013 + 0.394226i \(0.128987\pi\)
\(758\) 10.6024 0.385097
\(759\) 0.321721 10.1375i 0.0116777 0.367967i
\(760\) 0 0
\(761\) 23.8575 17.3335i 0.864832 0.628337i −0.0643631 0.997927i \(-0.520502\pi\)
0.929195 + 0.369589i \(0.120502\pi\)
\(762\) −1.54559 4.75684i −0.0559909 0.172322i
\(763\) 3.94909 12.1541i 0.142967 0.440006i
\(764\) 0.856518 + 0.622297i 0.0309877 + 0.0225139i
\(765\) 0 0
\(766\) −3.68725 + 11.3482i −0.133226 + 0.410027i
\(767\) −6.40120 19.7009i −0.231134 0.711357i
\(768\) 3.16556 2.29991i 0.114227 0.0829910i
\(769\) 8.42410 0.303781 0.151890 0.988397i \(-0.451464\pi\)
0.151890 + 0.988397i \(0.451464\pi\)
\(770\) 0 0
\(771\) 8.63364 0.310933
\(772\) −4.04508 + 2.93892i −0.145586 + 0.105774i
\(773\) −0.277338 0.853557i −0.00997514 0.0307003i 0.945945 0.324327i \(-0.105138\pi\)
−0.955920 + 0.293627i \(0.905138\pi\)
\(774\) 2.78238 8.56327i 0.100010 0.307800i
\(775\) 0 0
\(776\) 26.9604 + 19.5879i 0.967822 + 0.703164i
\(777\) 0.151976 0.467735i 0.00545212 0.0167799i
\(778\) 10.4366 + 32.1206i 0.374171 + 1.15158i
\(779\) −1.14800 + 0.834074i −0.0411315 + 0.0298838i
\(780\) 0 0
\(781\) 15.6542 + 23.0497i 0.560150 + 0.824785i
\(782\) 39.9287 1.42785
\(783\) 5.74159 4.17151i 0.205188 0.149077i
\(784\) 0.274085 + 0.843546i 0.00978874 + 0.0301267i
\(785\) 0 0
\(786\) 3.69364 + 2.68359i 0.131748 + 0.0957205i
\(787\) −30.5814 22.2187i −1.09011 0.792010i −0.110691 0.993855i \(-0.535306\pi\)
−0.979418 + 0.201844i \(0.935306\pi\)
\(788\) 0.195659 0.602175i 0.00697005 0.0214516i
\(789\) −0.559733 1.72268i −0.0199270 0.0613290i
\(790\) 0 0
\(791\) 25.6595 0.912346
\(792\) 16.3339 + 24.0506i 0.580400 + 0.854601i
\(793\) −39.1242 −1.38934
\(794\) 10.6339 7.72596i 0.377382 0.274184i
\(795\) 0 0
\(796\) 0.767377 2.36174i 0.0271990 0.0837098i
\(797\) 12.2894 + 8.92880i 0.435314 + 0.316274i 0.783770 0.621051i \(-0.213294\pi\)
−0.348456 + 0.937325i \(0.613294\pi\)
\(798\) 0.260804 + 0.189485i 0.00923236 + 0.00670770i
\(799\) −5.86096 + 18.0382i −0.207346 + 0.638145i
\(800\) 0 0
\(801\) 5.77237 4.19387i 0.203957 0.148183i
\(802\) −16.9237 −0.597598
\(803\) −26.5084 + 34.1526i −0.935461 + 1.20522i
\(804\) −0.556959 −0.0196424
\(805\) 0 0
\(806\) 0.593711 + 1.82725i 0.0209126 + 0.0643623i
\(807\) 3.23985 9.97122i 0.114048 0.351004i
\(808\) −34.2234 24.8647i −1.20397 0.874739i
\(809\) 32.1268 + 23.3415i 1.12952 + 0.820643i 0.985625 0.168951i \(-0.0540379\pi\)
0.143893 + 0.989593i \(0.454038\pi\)
\(810\) 0 0
\(811\) 2.72454 + 8.38527i 0.0956715 + 0.294447i 0.987428 0.158069i \(-0.0505268\pi\)
−0.891757 + 0.452515i \(0.850527\pi\)
\(812\) −3.31749 + 2.41030i −0.116421 + 0.0845850i
\(813\) −5.85145 −0.205219
\(814\) −0.0678414 + 2.13770i −0.00237784 + 0.0749262i
\(815\) 0 0
\(816\) 3.19546 2.32164i 0.111864 0.0812736i
\(817\) −0.218274 0.671779i −0.00763645 0.0235026i
\(818\) 8.50673 26.1810i 0.297431 0.915398i
\(819\) 16.5508 + 12.0249i 0.578332 + 0.420183i
\(820\) 0 0
\(821\) −2.60214 + 8.00856i −0.0908153 + 0.279501i −0.986141 0.165912i \(-0.946943\pi\)
0.895325 + 0.445413i \(0.146943\pi\)
\(822\) 0.603214 + 1.85650i 0.0210395 + 0.0647530i
\(823\) 19.3388 14.0504i 0.674107 0.489767i −0.197291 0.980345i \(-0.563214\pi\)
0.871397 + 0.490578i \(0.163214\pi\)
\(824\) 40.9319 1.42593
\(825\) 0 0
\(826\) 23.9526 0.833416
\(827\) −38.4379 + 27.9268i −1.33662 + 0.971109i −0.337055 + 0.941485i \(0.609431\pi\)
−0.999561 + 0.0296239i \(0.990569\pi\)
\(828\) −3.55317 10.9355i −0.123481 0.380036i
\(829\) −8.71437 + 26.8201i −0.302663 + 0.931500i 0.677876 + 0.735176i \(0.262900\pi\)
−0.980539 + 0.196324i \(0.937100\pi\)
\(830\) 0 0
\(831\) −5.30154 3.85179i −0.183908 0.133617i
\(832\) −7.57956 + 23.3275i −0.262774 + 0.808735i
\(833\) −0.374620 1.15296i −0.0129798 0.0399477i
\(834\) −3.01688 + 2.19189i −0.104466 + 0.0758990i
\(835\) 0 0
\(836\) 0.413374 + 0.148968i 0.0142968 + 0.00515217i
\(837\) −1.20508 −0.0416537
\(838\) −0.509868 + 0.370441i −0.0176131 + 0.0127967i
\(839\) 6.90363 + 21.2472i 0.238340 + 0.733535i 0.996661 + 0.0816534i \(0.0260200\pi\)
−0.758321 + 0.651881i \(0.773980\pi\)
\(840\) 0 0
\(841\) 14.5277 + 10.5550i 0.500954 + 0.363965i
\(842\) 13.1928 + 9.58513i 0.454654 + 0.330325i
\(843\) 1.54262 4.74768i 0.0531305 0.163519i
\(844\) −2.78984 8.58624i −0.0960302 0.295551i
\(845\) 0 0
\(846\) −17.4263 −0.599128
\(847\) −24.0233 + 15.2248i −0.825449 + 0.523130i
\(848\) 24.5728 0.843833
\(849\) 6.03789 4.38679i 0.207220 0.150554i
\(850\) 0 0
\(851\) 1.35678 4.17574i 0.0465098 0.143143i
\(852\) −1.18066 0.857797i −0.0404486 0.0293876i
\(853\) −6.59563 4.79201i −0.225830 0.164075i 0.469117 0.883136i \(-0.344572\pi\)
−0.694947 + 0.719061i \(0.744572\pi\)
\(854\) 13.9798 43.0254i 0.478378 1.47230i
\(855\) 0 0
\(856\) −25.3726 + 18.4343i −0.867217 + 0.630070i
\(857\) −4.42433 −0.151132 −0.0755662 0.997141i \(-0.524076\pi\)
−0.0755662 + 0.997141i \(0.524076\pi\)
\(858\) 3.86699 + 1.39355i 0.132017 + 0.0475752i
\(859\) 2.90501 0.0991176 0.0495588 0.998771i \(-0.484218\pi\)
0.0495588 + 0.998771i \(0.484218\pi\)
\(860\) 0 0
\(861\) 1.48662 + 4.57535i 0.0506640 + 0.155928i
\(862\) 11.2134 34.5112i 0.381929 1.17546i
\(863\) −14.3277 10.4097i −0.487722 0.354351i 0.316586 0.948564i \(-0.397464\pi\)
−0.804308 + 0.594213i \(0.797464\pi\)
\(864\) −4.55588 3.31004i −0.154994 0.112610i
\(865\) 0 0
\(866\) 3.89582 + 11.9901i 0.132385 + 0.407440i
\(867\) 0.638391 0.463818i 0.0216809 0.0157521i
\(868\) 0.696297 0.0236339
\(869\) −30.9102 + 8.96987i −1.04856 + 0.304282i
\(870\) 0 0
\(871\) 7.15721 5.20002i 0.242513 0.176196i
\(872\) −4.66900 14.3697i −0.158112 0.486619i
\(873\) 9.65990 29.7301i 0.326938 1.00621i
\(874\) 2.32835 + 1.69164i 0.0787576 + 0.0572207i
\(875\) 0 0
\(876\) 0.699741 2.15358i 0.0236421 0.0727628i
\(877\) −15.8772 48.8651i −0.536136 1.65006i −0.741181 0.671305i \(-0.765734\pi\)
0.205045 0.978753i \(-0.434266\pi\)
\(878\) −1.53049 + 1.11197i −0.0516516 + 0.0375270i
\(879\) 8.15803 0.275164
\(880\) 0 0
\(881\) 33.6727 1.13446 0.567231 0.823559i \(-0.308015\pi\)
0.567231 + 0.823559i \(0.308015\pi\)
\(882\) 0.901123 0.654704i 0.0303424 0.0220450i
\(883\) 4.29860 + 13.2297i 0.144660 + 0.445216i 0.996967 0.0778247i \(-0.0247974\pi\)
−0.852308 + 0.523041i \(0.824797\pi\)
\(884\) 1.56724 4.82347i 0.0527120 0.162231i
\(885\) 0 0
\(886\) 3.38685 + 2.46069i 0.113783 + 0.0826685i
\(887\) −13.8133 + 42.5128i −0.463804 + 1.42744i 0.396677 + 0.917958i \(0.370163\pi\)
−0.860481 + 0.509483i \(0.829837\pi\)
\(888\) −0.179681 0.553001i −0.00602970 0.0185575i
\(889\) 23.2935 16.9237i 0.781239 0.567603i
\(890\) 0 0
\(891\) 15.9133 20.5022i 0.533115 0.686849i
\(892\) −10.4388 −0.349516
\(893\) −1.10598 + 0.803545i −0.0370104 + 0.0268896i
\(894\) −1.17517 3.61680i −0.0393035 0.120964i
\(895\) 0 0
\(896\) −11.9139 8.65598i −0.398017 0.289176i
\(897\) −6.82665 4.95985i −0.227935 0.165605i
\(898\) 12.3359 37.9660i 0.411654 1.26694i
\(899\) 0.579434 + 1.78331i 0.0193252 + 0.0594768i
\(900\) 0 0
\(901\) −33.5861 −1.11892
\(902\) −11.7542 17.3073i −0.391372 0.576269i
\(903\) −2.39471 −0.0796909
\(904\) 24.5433 17.8317i 0.816297 0.593074i
\(905\) 0 0
\(906\) −1.54095 + 4.74256i −0.0511947 + 0.157561i
\(907\) 18.4440 + 13.4003i 0.612421 + 0.444950i 0.850266 0.526353i \(-0.176441\pi\)
−0.237845 + 0.971303i \(0.576441\pi\)
\(908\) −0.941591 0.684106i −0.0312478 0.0227028i
\(909\) −12.2622 + 37.7392i −0.406712 + 1.25173i
\(910\) 0 0
\(911\) −30.3887 + 22.0787i −1.00682 + 0.731499i −0.963540 0.267564i \(-0.913781\pi\)
−0.0432817 + 0.999063i \(0.513781\pi\)
\(912\) 0.284696 0.00942722
\(913\) −6.14352 9.04593i −0.203321 0.299376i
\(914\) −15.0214 −0.496863
\(915\) 0 0
\(916\) −1.07679 3.31402i −0.0355781 0.109498i
\(917\) −8.12165 + 24.9959i −0.268201 + 0.825437i
\(918\) −8.21118 5.96577i −0.271009 0.196900i
\(919\) −32.1280 23.3424i −1.05981 0.769994i −0.0857538 0.996316i \(-0.527330\pi\)
−0.974053 + 0.226322i \(0.927330\pi\)
\(920\) 0 0
\(921\) −2.28377 7.02872i −0.0752528 0.231604i
\(922\) −16.5421 + 12.0186i −0.544786 + 0.395810i
\(923\) 23.1808 0.763005
\(924\) 0.913392 1.17679i 0.0300484 0.0387134i
\(925\) 0 0
\(926\) 14.6057 10.6116i 0.479972 0.348720i
\(927\) −11.8649 36.5165i −0.389696 1.19936i
\(928\) −2.70771 + 8.33348i −0.0888850 + 0.273560i
\(929\) −16.7708 12.1847i −0.550231 0.399766i 0.277640 0.960685i \(-0.410448\pi\)
−0.827871 + 0.560919i \(0.810448\pi\)
\(930\) 0 0
\(931\) 0.0270020 0.0831035i 0.000884954 0.00272361i
\(932\) −0.657518 2.02363i −0.0215377 0.0662862i
\(933\) 2.57919 1.87389i 0.0844388 0.0613484i
\(934\) −37.6187 −1.23092
\(935\) 0 0
\(936\) 24.1874 0.790588
\(937\) 45.1841 32.8282i 1.47610 1.07245i 0.497312 0.867572i \(-0.334320\pi\)
0.978788 0.204877i \(-0.0656795\pi\)
\(938\) 3.16112 + 9.72893i 0.103214 + 0.317661i
\(939\) 0.194723 0.599297i 0.00635455 0.0195573i
\(940\) 0 0
\(941\) 10.8120 + 7.85541i 0.352462 + 0.256079i 0.749901 0.661550i \(-0.230101\pi\)
−0.397439 + 0.917629i \(0.630101\pi\)
\(942\) −1.91069 + 5.88051i −0.0622537 + 0.191597i
\(943\) 13.2720 + 40.8469i 0.432194 + 1.33016i
\(944\) 17.1133 12.4336i 0.556991 0.404678i
\(945\) 0 0
\(946\) 10.0015 2.90236i 0.325178 0.0943639i
\(947\) 42.2245 1.37211 0.686055 0.727550i \(-0.259341\pi\)
0.686055 + 0.727550i \(0.259341\pi\)
\(948\) 1.36381 0.990868i 0.0442946 0.0321819i
\(949\) 11.1148 + 34.2077i 0.360800 + 1.11043i
\(950\) 0 0
\(951\) −5.14624 3.73896i −0.166878 0.121244i
\(952\) 24.6264 + 17.8921i 0.798146 + 0.579887i
\(953\) −4.54837 + 13.9985i −0.147336 + 0.453454i −0.997304 0.0733803i \(-0.976621\pi\)
0.849968 + 0.526835i \(0.176621\pi\)
\(954\) −9.53588 29.3484i −0.308735 0.950190i
\(955\) 0 0
\(956\) −11.5376 −0.373154
\(957\) 3.77401 + 1.36004i 0.121996 + 0.0439640i
\(958\) −17.2750 −0.558131
\(959\) −9.09100 + 6.60500i −0.293564 + 0.213286i
\(960\) 0 0
\(961\) −9.48114 + 29.1799i −0.305843 + 0.941288i
\(962\) 1.43954 + 1.04589i 0.0464126 + 0.0337207i
\(963\) 23.8005 + 17.2921i 0.766960 + 0.557229i
\(964\) 1.77558 5.46467i 0.0571875 0.176005i
\(965\) 0 0
\(966\) 7.89370 5.73511i 0.253976 0.184524i
\(967\) 32.2786 1.03801 0.519005 0.854771i \(-0.326303\pi\)
0.519005 + 0.854771i \(0.326303\pi\)
\(968\) −12.3979 + 31.2571i −0.398485 + 1.00464i
\(969\) −0.389123 −0.0125004
\(970\) 0 0
\(971\) −13.2262 40.7060i −0.424448 1.30632i −0.903522 0.428542i \(-0.859027\pi\)
0.479074 0.877775i \(-0.340973\pi\)
\(972\) −1.36498 + 4.20097i −0.0437817 + 0.134746i
\(973\) −17.3669 12.6178i −0.556757 0.404508i
\(974\) 34.0738 + 24.7561i 1.09179 + 0.793235i
\(975\) 0 0
\(976\) −12.3460 37.9970i −0.395185 1.21625i
\(977\) 9.86772 7.16932i 0.315696 0.229367i −0.418640 0.908152i \(-0.637493\pi\)
0.734337 + 0.678785i \(0.237493\pi\)
\(978\) −4.01584 −0.128412
\(979\) 7.76378 + 2.79784i 0.248131 + 0.0894195i
\(980\) 0 0
\(981\) −11.4662 + 8.33070i −0.366088 + 0.265979i
\(982\) 1.21807 + 3.74884i 0.0388702 + 0.119630i
\(983\) −4.34697 + 13.3786i −0.138647 + 0.426711i −0.996139 0.0877853i \(-0.972021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(984\) 4.60153 + 3.34321i 0.146692 + 0.106578i
\(985\) 0 0
\(986\) −4.88018 + 15.0196i −0.155416 + 0.478323i
\(987\) 1.43221 + 4.40788i 0.0455877 + 0.140305i
\(988\) 0.295744 0.214871i 0.00940887 0.00683595i
\(989\) −21.3790 −0.679811
\(990\) 0 0
\(991\) −22.9455 −0.728887 −0.364444 0.931225i \(-0.618741\pi\)
−0.364444 + 0.931225i \(0.618741\pi\)
\(992\) 1.20370 0.874542i 0.0382176 0.0277667i
\(993\) 1.41938 + 4.36840i 0.0450426 + 0.138627i
\(994\) −8.28292 + 25.4922i −0.262718 + 0.808564i
\(995\) 0 0
\(996\) 0.463351 + 0.336645i 0.0146819 + 0.0106670i
\(997\) −1.12311 + 3.45659i −0.0355694 + 0.109471i −0.967265 0.253769i \(-0.918330\pi\)
0.931695 + 0.363240i \(0.118330\pi\)
\(998\) −2.48948 7.66183i −0.0788031 0.242531i
\(999\) −0.902916 + 0.656007i −0.0285670 + 0.0207551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.d.201.3 16
5.2 odd 4 55.2.j.a.14.3 yes 16
5.3 odd 4 55.2.j.a.14.2 yes 16
5.4 even 2 inner 275.2.h.d.201.2 16
11.2 odd 10 3025.2.a.bk.1.6 8
11.4 even 5 inner 275.2.h.d.26.3 16
11.9 even 5 3025.2.a.bl.1.3 8
15.2 even 4 495.2.ba.a.289.2 16
15.8 even 4 495.2.ba.a.289.3 16
20.3 even 4 880.2.cd.c.289.3 16
20.7 even 4 880.2.cd.c.289.2 16
55.2 even 20 605.2.b.f.364.6 8
55.3 odd 20 605.2.j.h.269.2 16
55.4 even 10 inner 275.2.h.d.26.2 16
55.7 even 20 605.2.j.d.444.3 16
55.8 even 20 605.2.j.g.269.3 16
55.9 even 10 3025.2.a.bl.1.6 8
55.13 even 20 605.2.b.f.364.3 8
55.17 even 20 605.2.j.g.9.3 16
55.18 even 20 605.2.j.d.444.2 16
55.24 odd 10 3025.2.a.bk.1.3 8
55.27 odd 20 605.2.j.h.9.2 16
55.28 even 20 605.2.j.g.9.2 16
55.32 even 4 605.2.j.d.124.2 16
55.37 odd 20 55.2.j.a.4.2 16
55.38 odd 20 605.2.j.h.9.3 16
55.42 odd 20 605.2.b.g.364.3 8
55.43 even 4 605.2.j.d.124.3 16
55.47 odd 20 605.2.j.h.269.3 16
55.48 odd 20 55.2.j.a.4.3 yes 16
55.52 even 20 605.2.j.g.269.2 16
55.53 odd 20 605.2.b.g.364.6 8
165.92 even 20 495.2.ba.a.334.3 16
165.158 even 20 495.2.ba.a.334.2 16
220.103 even 20 880.2.cd.c.609.2 16
220.147 even 20 880.2.cd.c.609.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.2 16 55.37 odd 20
55.2.j.a.4.3 yes 16 55.48 odd 20
55.2.j.a.14.2 yes 16 5.3 odd 4
55.2.j.a.14.3 yes 16 5.2 odd 4
275.2.h.d.26.2 16 55.4 even 10 inner
275.2.h.d.26.3 16 11.4 even 5 inner
275.2.h.d.201.2 16 5.4 even 2 inner
275.2.h.d.201.3 16 1.1 even 1 trivial
495.2.ba.a.289.2 16 15.2 even 4
495.2.ba.a.289.3 16 15.8 even 4
495.2.ba.a.334.2 16 165.158 even 20
495.2.ba.a.334.3 16 165.92 even 20
605.2.b.f.364.3 8 55.13 even 20
605.2.b.f.364.6 8 55.2 even 20
605.2.b.g.364.3 8 55.42 odd 20
605.2.b.g.364.6 8 55.53 odd 20
605.2.j.d.124.2 16 55.32 even 4
605.2.j.d.124.3 16 55.43 even 4
605.2.j.d.444.2 16 55.18 even 20
605.2.j.d.444.3 16 55.7 even 20
605.2.j.g.9.2 16 55.28 even 20
605.2.j.g.9.3 16 55.17 even 20
605.2.j.g.269.2 16 55.52 even 20
605.2.j.g.269.3 16 55.8 even 20
605.2.j.h.9.2 16 55.27 odd 20
605.2.j.h.9.3 16 55.38 odd 20
605.2.j.h.269.2 16 55.3 odd 20
605.2.j.h.269.3 16 55.47 odd 20
880.2.cd.c.289.2 16 20.7 even 4
880.2.cd.c.289.3 16 20.3 even 4
880.2.cd.c.609.2 16 220.103 even 20
880.2.cd.c.609.3 16 220.147 even 20
3025.2.a.bk.1.3 8 55.24 odd 10
3025.2.a.bk.1.6 8 11.2 odd 10
3025.2.a.bl.1.3 8 11.9 even 5
3025.2.a.bl.1.6 8 55.9 even 10