Properties

Label 605.2.j.g.269.3
Level $605$
Weight $2$
Character 605.269
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(9,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.3
Root \(1.17360 + 0.381325i\) of defining polynomial
Character \(\chi\) \(=\) 605.269
Dual form 605.2.j.g.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17360 - 0.381325i) q^{2} +(0.213943 - 0.294468i) q^{3} +(-0.386111 + 0.280526i) q^{4} +(2.13387 - 0.668267i) q^{5} +(0.138796 - 0.427169i) q^{6} +(1.51977 + 2.09178i) q^{7} +(-1.79681 + 2.47310i) q^{8} +(0.886111 + 2.72717i) q^{9} +(2.24948 - 1.59798i) q^{10} +0.173714i q^{12} +(-2.62424 + 0.852669i) q^{13} +(2.58124 + 1.87538i) q^{14} +(0.259745 - 0.771329i) q^{15} +(-0.870718 + 2.67979i) q^{16} +(3.66275 + 1.19010i) q^{17} +(2.07988 + 2.86270i) q^{18} +(0.224576 + 0.163164i) q^{19} +(-0.636447 + 0.856634i) q^{20} +0.941105 q^{21} -8.40180i q^{23} +(0.343833 + 1.05821i) q^{24} +(4.10684 - 2.85199i) q^{25} +(-2.75466 + 2.00138i) q^{26} +(2.03115 + 0.659959i) q^{27} +(-1.17360 - 0.381325i) q^{28} +(-2.68842 + 1.95325i) q^{29} +(0.0107095 - 1.00428i) q^{30} +(0.174367 + 0.536646i) q^{31} -2.63682i q^{32} +4.75241 q^{34} +(4.64085 + 3.44798i) q^{35} +(-1.10718 - 0.804414i) q^{36} +(-0.307166 - 0.422778i) q^{37} +(0.325780 + 0.105852i) q^{38} +(-0.310356 + 0.955178i) q^{39} +(-2.18148 + 6.47804i) q^{40} +(-4.13559 - 3.00469i) q^{41} +(1.10448 - 0.358867i) q^{42} -2.54457i q^{43} +(3.71333 + 5.22728i) q^{45} +(-3.20381 - 9.86033i) q^{46} +(2.89471 - 3.98422i) q^{47} +(0.602829 + 0.829723i) q^{48} +(0.0972724 - 0.299374i) q^{49} +(3.73224 - 4.91313i) q^{50} +(1.13407 - 0.823948i) q^{51} +(0.774055 - 1.06539i) q^{52} +(8.29403 - 2.69489i) q^{53} +2.63541 q^{54} -7.90392 q^{56} +(0.0960931 - 0.0312225i) q^{57} +(-2.41030 + 3.31749i) q^{58} +(6.07350 - 4.41265i) q^{59} +(0.116087 + 0.370684i) q^{60} +(-4.38157 + 13.4851i) q^{61} +(0.409273 + 0.563316i) q^{62} +(-4.35795 + 5.99821i) q^{63} +(-2.74692 - 8.45415i) q^{64} +(-5.03000 + 3.57318i) q^{65} -3.20618i q^{67} +(-1.74808 + 0.567987i) q^{68} +(-2.47406 - 1.79751i) q^{69} +(6.76130 + 2.27687i) q^{70} +(-2.59605 + 7.98982i) q^{71} +(-8.33675 - 2.70877i) q^{72} +(-7.66193 - 10.5457i) q^{73} +(-0.521706 - 0.379041i) q^{74} +(0.0388104 - 1.81950i) q^{75} -0.132483 q^{76} +1.23934i q^{78} +(2.99878 + 9.22929i) q^{79} +(-0.0671851 + 6.30022i) q^{80} +(-6.33072 + 4.59954i) q^{81} +(-5.99928 - 1.94929i) q^{82} +(-3.13562 - 1.01883i) q^{83} +(-0.363371 + 0.264005i) q^{84} +(8.61115 + 0.0918288i) q^{85} +(-0.970308 - 2.98630i) q^{86} +1.20954i q^{87} -2.48823 q^{89} +(6.35125 + 4.71874i) q^{90} +(-5.77183 - 4.19348i) q^{91} +(2.35693 + 3.24403i) q^{92} +(0.195330 + 0.0634665i) q^{93} +(1.87794 - 5.77970i) q^{94} +(0.588254 + 0.198095i) q^{95} +(-0.776458 - 0.564130i) q^{96} +(-10.3679 + 3.36873i) q^{97} -0.388437i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} - 2 q^{5} - 12 q^{6} + 2 q^{9} + 8 q^{14} + 24 q^{15} + 6 q^{16} - 6 q^{19} + 12 q^{20} - 8 q^{21} + 4 q^{24} + 24 q^{25} - 50 q^{26} - 22 q^{29} + 4 q^{30} - 22 q^{31} - 16 q^{34} + 8 q^{35}+ \cdots - 94 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17360 0.381325i 0.829859 0.269637i 0.136873 0.990589i \(-0.456295\pi\)
0.692986 + 0.720951i \(0.256295\pi\)
\(3\) 0.213943 0.294468i 0.123520 0.170011i −0.742779 0.669537i \(-0.766492\pi\)
0.866299 + 0.499526i \(0.166492\pi\)
\(4\) −0.386111 + 0.280526i −0.193056 + 0.140263i
\(5\) 2.13387 0.668267i 0.954298 0.298858i
\(6\) 0.138796 0.427169i 0.0566630 0.174391i
\(7\) 1.51977 + 2.09178i 0.574417 + 0.790618i 0.993069 0.117529i \(-0.0374973\pi\)
−0.418652 + 0.908147i \(0.637497\pi\)
\(8\) −1.79681 + 2.47310i −0.635270 + 0.874374i
\(9\) 0.886111 + 2.72717i 0.295370 + 0.909057i
\(10\) 2.24948 1.59798i 0.711349 0.505324i
\(11\) 0 0
\(12\) 0.173714i 0.0501470i
\(13\) −2.62424 + 0.852669i −0.727834 + 0.236488i −0.649417 0.760433i \(-0.724987\pi\)
−0.0784178 + 0.996921i \(0.524987\pi\)
\(14\) 2.58124 + 1.87538i 0.689865 + 0.501217i
\(15\) 0.259745 0.771329i 0.0670659 0.199156i
\(16\) −0.870718 + 2.67979i −0.217680 + 0.669949i
\(17\) 3.66275 + 1.19010i 0.888347 + 0.288641i 0.717419 0.696642i \(-0.245323\pi\)
0.170928 + 0.985284i \(0.445323\pi\)
\(18\) 2.07988 + 2.86270i 0.490232 + 0.674746i
\(19\) 0.224576 + 0.163164i 0.0515212 + 0.0374324i 0.613248 0.789891i \(-0.289863\pi\)
−0.561727 + 0.827323i \(0.689863\pi\)
\(20\) −0.636447 + 0.856634i −0.142314 + 0.191549i
\(21\) 0.941105 0.205366
\(22\) 0 0
\(23\) 8.40180i 1.75190i −0.482406 0.875948i \(-0.660237\pi\)
0.482406 0.875948i \(-0.339763\pi\)
\(24\) 0.343833 + 1.05821i 0.0701845 + 0.216006i
\(25\) 4.10684 2.85199i 0.821368 0.570399i
\(26\) −2.75466 + 2.00138i −0.540234 + 0.392503i
\(27\) 2.03115 + 0.659959i 0.390894 + 0.127009i
\(28\) −1.17360 0.381325i −0.221789 0.0720636i
\(29\) −2.68842 + 1.95325i −0.499227 + 0.362710i −0.808722 0.588191i \(-0.799840\pi\)
0.309495 + 0.950901i \(0.399840\pi\)
\(30\) 0.0107095 1.00428i 0.00195529 0.183355i
\(31\) 0.174367 + 0.536646i 0.0313172 + 0.0963845i 0.965493 0.260428i \(-0.0838636\pi\)
−0.934176 + 0.356812i \(0.883864\pi\)
\(32\) 2.63682i 0.466128i
\(33\) 0 0
\(34\) 4.75241 0.815031
\(35\) 4.64085 + 3.44798i 0.784447 + 0.582815i
\(36\) −1.10718 0.804414i −0.184530 0.134069i
\(37\) −0.307166 0.422778i −0.0504979 0.0695043i 0.783021 0.621995i \(-0.213678\pi\)
−0.833519 + 0.552491i \(0.813678\pi\)
\(38\) 0.325780 + 0.105852i 0.0528485 + 0.0171715i
\(39\) −0.310356 + 0.955178i −0.0496968 + 0.152951i
\(40\) −2.18148 + 6.47804i −0.344923 + 1.02427i
\(41\) −4.13559 3.00469i −0.645871 0.469253i 0.215991 0.976395i \(-0.430702\pi\)
−0.861862 + 0.507142i \(0.830702\pi\)
\(42\) 1.10448 0.358867i 0.170425 0.0553744i
\(43\) 2.54457i 0.388043i −0.980997 0.194022i \(-0.937847\pi\)
0.980997 0.194022i \(-0.0621532\pi\)
\(44\) 0 0
\(45\) 3.71333 + 5.22728i 0.553550 + 0.779237i
\(46\) −3.20381 9.86033i −0.472377 1.45383i
\(47\) 2.89471 3.98422i 0.422236 0.581158i −0.543913 0.839142i \(-0.683058\pi\)
0.966149 + 0.257983i \(0.0830579\pi\)
\(48\) 0.602829 + 0.829723i 0.0870109 + 0.119760i
\(49\) 0.0972724 0.299374i 0.0138961 0.0427677i
\(50\) 3.73224 4.91313i 0.527818 0.694822i
\(51\) 1.13407 0.823948i 0.158801 0.115376i
\(52\) 0.774055 1.06539i 0.107342 0.147744i
\(53\) 8.29403 2.69489i 1.13927 0.370172i 0.322180 0.946678i \(-0.395584\pi\)
0.817093 + 0.576506i \(0.195584\pi\)
\(54\) 2.63541 0.358633
\(55\) 0 0
\(56\) −7.90392 −1.05621
\(57\) 0.0960931 0.0312225i 0.0127278 0.00413553i
\(58\) −2.41030 + 3.31749i −0.316488 + 0.435608i
\(59\) 6.07350 4.41265i 0.790702 0.574479i −0.117470 0.993076i \(-0.537478\pi\)
0.908172 + 0.418598i \(0.137478\pi\)
\(60\) 0.116087 + 0.370684i 0.0149868 + 0.0478551i
\(61\) −4.38157 + 13.4851i −0.561003 + 1.72659i 0.118537 + 0.992950i \(0.462180\pi\)
−0.679539 + 0.733639i \(0.737820\pi\)
\(62\) 0.409273 + 0.563316i 0.0519777 + 0.0715412i
\(63\) −4.35795 + 5.99821i −0.549050 + 0.755703i
\(64\) −2.74692 8.45415i −0.343365 1.05677i
\(65\) −5.03000 + 3.57318i −0.623894 + 0.443199i
\(66\) 0 0
\(67\) 3.20618i 0.391698i −0.980634 0.195849i \(-0.937254\pi\)
0.980634 0.195849i \(-0.0627462\pi\)
\(68\) −1.74808 + 0.567987i −0.211986 + 0.0688785i
\(69\) −2.47406 1.79751i −0.297842 0.216395i
\(70\) 6.76130 + 2.27687i 0.808129 + 0.272138i
\(71\) −2.59605 + 7.98982i −0.308094 + 0.948217i 0.670410 + 0.741991i \(0.266118\pi\)
−0.978504 + 0.206226i \(0.933882\pi\)
\(72\) −8.33675 2.70877i −0.982495 0.319232i
\(73\) −7.66193 10.5457i −0.896761 1.23429i −0.971490 0.237082i \(-0.923809\pi\)
0.0747283 0.997204i \(-0.476191\pi\)
\(74\) −0.521706 0.379041i −0.0606471 0.0440627i
\(75\) 0.0388104 1.81950i 0.00448144 0.210097i
\(76\) −0.132483 −0.0151969
\(77\) 0 0
\(78\) 1.23934i 0.140328i
\(79\) 2.99878 + 9.22929i 0.337389 + 1.03838i 0.965533 + 0.260279i \(0.0838146\pi\)
−0.628145 + 0.778097i \(0.716185\pi\)
\(80\) −0.0671851 + 6.30022i −0.00751153 + 0.704386i
\(81\) −6.33072 + 4.59954i −0.703414 + 0.511060i
\(82\) −5.99928 1.94929i −0.662510 0.215263i
\(83\) −3.13562 1.01883i −0.344179 0.111831i 0.131826 0.991273i \(-0.457916\pi\)
−0.476006 + 0.879442i \(0.657916\pi\)
\(84\) −0.363371 + 0.264005i −0.0396471 + 0.0288053i
\(85\) 8.61115 + 0.0918288i 0.934010 + 0.00996023i
\(86\) −0.970308 2.98630i −0.104631 0.322021i
\(87\) 1.20954i 0.129676i
\(88\) 0 0
\(89\) −2.48823 −0.263752 −0.131876 0.991266i \(-0.542100\pi\)
−0.131876 + 0.991266i \(0.542100\pi\)
\(90\) 6.35125 + 4.71874i 0.669480 + 0.497399i
\(91\) −5.77183 4.19348i −0.605052 0.439596i
\(92\) 2.35693 + 3.24403i 0.245726 + 0.338213i
\(93\) 0.195330 + 0.0634665i 0.0202547 + 0.00658117i
\(94\) 1.87794 5.77970i 0.193694 0.596130i
\(95\) 0.588254 + 0.198095i 0.0603536 + 0.0203241i
\(96\) −0.776458 0.564130i −0.0792469 0.0575763i
\(97\) −10.3679 + 3.36873i −1.05270 + 0.342043i −0.783728 0.621105i \(-0.786684\pi\)
−0.268973 + 0.963148i \(0.586684\pi\)
\(98\) 0.388437i 0.0392380i
\(99\) 0 0
\(100\) −0.785638 + 2.25326i −0.0785638 + 0.225326i
\(101\) −4.27625 13.1609i −0.425503 1.30956i −0.902512 0.430665i \(-0.858279\pi\)
0.477009 0.878898i \(-0.341721\pi\)
\(102\) 1.01675 1.39943i 0.100673 0.138564i
\(103\) −7.87039 10.8327i −0.775492 1.06737i −0.995765 0.0919350i \(-0.970695\pi\)
0.220273 0.975438i \(-0.429305\pi\)
\(104\) 2.60654 8.02211i 0.255592 0.786633i
\(105\) 2.00820 0.628909i 0.195980 0.0613753i
\(106\) 8.70623 6.32544i 0.845623 0.614381i
\(107\) 6.03033 8.30004i 0.582974 0.802395i −0.411044 0.911616i \(-0.634836\pi\)
0.994018 + 0.109221i \(0.0348356\pi\)
\(108\) −0.969384 + 0.314972i −0.0932790 + 0.0303082i
\(109\) −4.94262 −0.473417 −0.236708 0.971581i \(-0.576069\pi\)
−0.236708 + 0.971581i \(0.576069\pi\)
\(110\) 0 0
\(111\) −0.190211 −0.0180540
\(112\) −6.92882 + 2.25131i −0.654712 + 0.212729i
\(113\) −5.83323 + 8.02875i −0.548744 + 0.755281i −0.989841 0.142178i \(-0.954589\pi\)
0.441097 + 0.897459i \(0.354589\pi\)
\(114\) 0.100869 0.0732854i 0.00944722 0.00686380i
\(115\) −5.61464 17.9284i −0.523568 1.67183i
\(116\) 0.490091 1.50835i 0.0455038 0.140046i
\(117\) −4.65075 6.40120i −0.429962 0.591791i
\(118\) 5.44519 7.49466i 0.501270 0.689939i
\(119\) 3.07709 + 9.47032i 0.282077 + 0.868143i
\(120\) 1.44086 + 2.02831i 0.131532 + 0.185159i
\(121\) 0 0
\(122\) 17.4969i 1.58409i
\(123\) −1.76957 + 0.574967i −0.159556 + 0.0518430i
\(124\) −0.217868 0.158291i −0.0195652 0.0142149i
\(125\) 6.85758 8.83026i 0.613361 0.789803i
\(126\) −2.82722 + 8.70128i −0.251868 + 0.775171i
\(127\) 10.5907 + 3.44113i 0.939775 + 0.305351i 0.738554 0.674195i \(-0.235509\pi\)
0.201221 + 0.979546i \(0.435509\pi\)
\(128\) −3.34779 4.60784i −0.295906 0.407280i
\(129\) −0.749294 0.544394i −0.0659717 0.0479312i
\(130\) −4.54065 + 6.11154i −0.398241 + 0.536018i
\(131\) −10.1649 −0.888114 −0.444057 0.895999i \(-0.646461\pi\)
−0.444057 + 0.895999i \(0.646461\pi\)
\(132\) 0 0
\(133\) 0.717734i 0.0622354i
\(134\) −1.22260 3.76277i −0.105616 0.325054i
\(135\) 4.77524 + 0.0509228i 0.410987 + 0.00438274i
\(136\) −9.52451 + 6.91996i −0.816720 + 0.593382i
\(137\) 4.13335 + 1.34301i 0.353136 + 0.114741i 0.480213 0.877152i \(-0.340559\pi\)
−0.127077 + 0.991893i \(0.540559\pi\)
\(138\) −3.58898 1.16613i −0.305515 0.0992677i
\(139\) 6.71683 4.88007i 0.569714 0.413922i −0.265287 0.964169i \(-0.585467\pi\)
0.835001 + 0.550248i \(0.185467\pi\)
\(140\) −2.75914 0.0294233i −0.233190 0.00248672i
\(141\) −0.553922 1.70480i −0.0466486 0.143570i
\(142\) 10.3668i 0.869960i
\(143\) 0 0
\(144\) −8.07981 −0.673318
\(145\) −4.43146 + 5.96458i −0.368013 + 0.495331i
\(146\) −13.0134 9.45477i −1.07700 0.782483i
\(147\) −0.0673452 0.0926927i −0.00555454 0.00764516i
\(148\) 0.237201 + 0.0770713i 0.0194978 + 0.00633522i
\(149\) 2.61642 8.05250i 0.214345 0.659687i −0.784854 0.619680i \(-0.787262\pi\)
0.999199 0.0400062i \(-0.0127378\pi\)
\(150\) −0.648272 2.15016i −0.0529312 0.175560i
\(151\) 8.98195 + 6.52577i 0.730941 + 0.531060i 0.889861 0.456232i \(-0.150801\pi\)
−0.158920 + 0.987291i \(0.550801\pi\)
\(152\) −0.807042 + 0.262224i −0.0654598 + 0.0212692i
\(153\) 11.0435i 0.892814i
\(154\) 0 0
\(155\) 0.730700 + 1.02861i 0.0586912 + 0.0826201i
\(156\) −0.148121 0.455868i −0.0118591 0.0364987i
\(157\) −8.09159 + 11.1371i −0.645779 + 0.888839i −0.998907 0.0467360i \(-0.985118\pi\)
0.353128 + 0.935575i \(0.385118\pi\)
\(158\) 7.03872 + 9.68796i 0.559970 + 0.770733i
\(159\) 0.980894 3.01888i 0.0777899 0.239413i
\(160\) −1.76210 5.62664i −0.139306 0.444825i
\(161\) 17.5747 12.7688i 1.38508 1.00632i
\(162\) −5.67580 + 7.81207i −0.445933 + 0.613774i
\(163\) −8.50333 + 2.76290i −0.666032 + 0.216407i −0.622470 0.782644i \(-0.713871\pi\)
−0.0435624 + 0.999051i \(0.513871\pi\)
\(164\) 2.43969 0.190508
\(165\) 0 0
\(166\) −4.06846 −0.315774
\(167\) 16.0901 5.22800i 1.24509 0.404555i 0.388932 0.921266i \(-0.372844\pi\)
0.856160 + 0.516712i \(0.172844\pi\)
\(168\) −1.69099 + 2.32745i −0.130463 + 0.179567i
\(169\) −4.35761 + 3.16599i −0.335201 + 0.243538i
\(170\) 10.1410 3.17587i 0.777782 0.243578i
\(171\) −0.245977 + 0.757038i −0.0188103 + 0.0578922i
\(172\) 0.713819 + 0.982488i 0.0544282 + 0.0749140i
\(173\) −1.98665 + 2.73439i −0.151042 + 0.207892i −0.877833 0.478967i \(-0.841011\pi\)
0.726790 + 0.686859i \(0.241011\pi\)
\(174\) 0.461227 + 1.41951i 0.0349656 + 0.107613i
\(175\) 12.2072 + 4.25623i 0.922775 + 0.321741i
\(176\) 0 0
\(177\) 2.73251i 0.205388i
\(178\) −2.92018 + 0.948824i −0.218877 + 0.0711174i
\(179\) 11.1838 + 8.12550i 0.835916 + 0.607328i 0.921227 0.389026i \(-0.127188\pi\)
−0.0853110 + 0.996354i \(0.527188\pi\)
\(180\) −2.90015 0.976626i −0.216164 0.0727934i
\(181\) −0.803137 + 2.47180i −0.0596967 + 0.183728i −0.976458 0.215708i \(-0.930794\pi\)
0.916761 + 0.399436i \(0.130794\pi\)
\(182\) −8.37288 2.72051i −0.620639 0.201658i
\(183\) 3.03352 + 4.17528i 0.224244 + 0.308645i
\(184\) 20.7785 + 15.0965i 1.53181 + 1.11293i
\(185\) −0.937983 0.696887i −0.0689619 0.0512361i
\(186\) 0.253440 0.0185831
\(187\) 0 0
\(188\) 2.35039i 0.171420i
\(189\) 1.70638 + 5.25169i 0.124121 + 0.382004i
\(190\) 0.765912 + 0.00816764i 0.0555651 + 0.000592543i
\(191\) −1.79466 + 1.30390i −0.129857 + 0.0943465i −0.650818 0.759234i \(-0.725574\pi\)
0.520961 + 0.853581i \(0.325574\pi\)
\(192\) −3.07716 0.999831i −0.222075 0.0721566i
\(193\) 9.96371 + 3.23741i 0.717203 + 0.233034i 0.644810 0.764343i \(-0.276936\pi\)
0.0723931 + 0.997376i \(0.476936\pi\)
\(194\) −10.8832 + 7.90707i −0.781365 + 0.567695i
\(195\) −0.0239473 + 2.24563i −0.00171490 + 0.160813i
\(196\) 0.0464242 + 0.142879i 0.00331602 + 0.0102057i
\(197\) 1.32667i 0.0945210i −0.998883 0.0472605i \(-0.984951\pi\)
0.998883 0.0472605i \(-0.0150491\pi\)
\(198\) 0 0
\(199\) 5.20321 0.368846 0.184423 0.982847i \(-0.440958\pi\)
0.184423 + 0.982847i \(0.440958\pi\)
\(200\) −0.325951 + 15.2811i −0.0230482 + 1.08054i
\(201\) −0.944118 0.685942i −0.0665929 0.0483826i
\(202\) −10.0372 13.8150i −0.706215 0.972021i
\(203\) −8.17154 2.65509i −0.573530 0.186351i
\(204\) −0.206737 + 0.636271i −0.0144745 + 0.0445479i
\(205\) −10.8328 3.64794i −0.756593 0.254783i
\(206\) −13.3674 9.71200i −0.931353 0.676667i
\(207\) 22.9131 7.44493i 1.59257 0.517458i
\(208\) 7.77487i 0.539090i
\(209\) 0 0
\(210\) 2.11700 1.50386i 0.146087 0.103776i
\(211\) −5.84553 17.9907i −0.402423 1.23853i −0.923028 0.384733i \(-0.874294\pi\)
0.520605 0.853798i \(-0.325706\pi\)
\(212\) −2.44643 + 3.36722i −0.168022 + 0.231262i
\(213\) 1.79734 + 2.47382i 0.123152 + 0.169504i
\(214\) 3.91217 12.0404i 0.267430 0.823066i
\(215\) −1.70045 5.42979i −0.115970 0.370309i
\(216\) −5.28174 + 3.83741i −0.359377 + 0.261102i
\(217\) −0.857548 + 1.18031i −0.0582141 + 0.0801249i
\(218\) −5.80064 + 1.88474i −0.392869 + 0.127651i
\(219\) −4.74460 −0.320611
\(220\) 0 0
\(221\) −10.6267 −0.714829
\(222\) −0.223231 + 0.0725322i −0.0149823 + 0.00486804i
\(223\) 12.8562 17.6950i 0.860915 1.18495i −0.120436 0.992721i \(-0.538429\pi\)
0.981351 0.192226i \(-0.0615708\pi\)
\(224\) 5.51564 4.00735i 0.368529 0.267752i
\(225\) 11.4170 + 8.67287i 0.761133 + 0.578191i
\(226\) −3.78430 + 11.6469i −0.251728 + 0.774738i
\(227\) 1.43340 + 1.97291i 0.0951383 + 0.130947i 0.853932 0.520384i \(-0.174211\pi\)
−0.758794 + 0.651331i \(0.774211\pi\)
\(228\) −0.0283439 + 0.0390120i −0.00187712 + 0.00258363i
\(229\) −2.25619 6.94384i −0.149093 0.458862i 0.848421 0.529321i \(-0.177553\pi\)
−0.997515 + 0.0704596i \(0.977553\pi\)
\(230\) −13.4259 18.8997i −0.885275 1.24621i
\(231\) 0 0
\(232\) 10.1584i 0.666930i
\(233\) 4.24010 1.37769i 0.277778 0.0902557i −0.166815 0.985988i \(-0.553348\pi\)
0.444593 + 0.895733i \(0.353348\pi\)
\(234\) −7.89904 5.73899i −0.516376 0.375169i
\(235\) 3.51442 10.4363i 0.229255 0.680787i
\(236\) −1.10718 + 3.40755i −0.0720714 + 0.221813i
\(237\) 3.35930 + 1.09150i 0.218210 + 0.0709007i
\(238\) 7.22254 + 9.94098i 0.468168 + 0.644378i
\(239\) −19.5578 14.2095i −1.26509 0.919139i −0.266091 0.963948i \(-0.585732\pi\)
−0.998996 + 0.0448086i \(0.985732\pi\)
\(240\) 1.84084 + 1.36767i 0.118826 + 0.0882830i
\(241\) 12.0393 0.775522 0.387761 0.921760i \(-0.373249\pi\)
0.387761 + 0.921760i \(0.373249\pi\)
\(242\) 0 0
\(243\) 9.25525i 0.593725i
\(244\) −2.09115 6.43589i −0.133872 0.412016i
\(245\) 0.00750560 0.703830i 0.000479515 0.0449660i
\(246\) −1.85751 + 1.34956i −0.118430 + 0.0860448i
\(247\) −0.728467 0.236693i −0.0463512 0.0150604i
\(248\) −1.64049 0.533026i −0.104171 0.0338472i
\(249\) −0.970858 + 0.705369i −0.0615256 + 0.0447010i
\(250\) 4.68085 12.9781i 0.296043 0.820810i
\(251\) −0.165753 0.510135i −0.0104622 0.0321995i 0.945689 0.325072i \(-0.105389\pi\)
−0.956151 + 0.292873i \(0.905389\pi\)
\(252\) 3.53850i 0.222904i
\(253\) 0 0
\(254\) 13.7414 0.862214
\(255\) 1.86934 2.51606i 0.117063 0.157562i
\(256\) 8.69702 + 6.31875i 0.543564 + 0.394922i
\(257\) 13.9422 + 19.1898i 0.869693 + 1.19703i 0.979170 + 0.203040i \(0.0650821\pi\)
−0.109478 + 0.993989i \(0.534918\pi\)
\(258\) −1.08696 0.353175i −0.0676712 0.0219877i
\(259\) 0.417537 1.28505i 0.0259445 0.0798490i
\(260\) 0.939767 2.79069i 0.0582819 0.173071i
\(261\) −7.70909 5.60098i −0.477181 0.346692i
\(262\) −11.9295 + 3.87614i −0.737009 + 0.239469i
\(263\) 4.97643i 0.306860i 0.988160 + 0.153430i \(0.0490320\pi\)
−0.988160 + 0.153430i \(0.950968\pi\)
\(264\) 0 0
\(265\) 15.8975 11.2932i 0.976576 0.693735i
\(266\) 0.273690 + 0.842331i 0.0167810 + 0.0516466i
\(267\) −0.532340 + 0.732704i −0.0325787 + 0.0448407i
\(268\) 0.899419 + 1.23794i 0.0549407 + 0.0756195i
\(269\) −8.90111 + 27.3948i −0.542710 + 1.67029i 0.183662 + 0.982989i \(0.441205\pi\)
−0.726373 + 0.687301i \(0.758795\pi\)
\(270\) 5.62362 1.76115i 0.342243 0.107180i
\(271\) −13.0059 + 9.44935i −0.790053 + 0.574007i −0.907979 0.419015i \(-0.862375\pi\)
0.117926 + 0.993022i \(0.462375\pi\)
\(272\) −6.37844 + 8.77917i −0.386750 + 0.532315i
\(273\) −2.46969 + 0.802451i −0.149472 + 0.0485665i
\(274\) 5.36301 0.323992
\(275\) 0 0
\(276\) 1.45951 0.0878522
\(277\) −17.1226 + 5.56348i −1.02880 + 0.334277i −0.774315 0.632800i \(-0.781905\pi\)
−0.254483 + 0.967077i \(0.581905\pi\)
\(278\) 6.02197 8.28853i 0.361174 0.497113i
\(279\) −1.30902 + 0.951057i −0.0783688 + 0.0569383i
\(280\) −16.8660 + 5.28192i −1.00793 + 0.315655i
\(281\) −4.23816 + 13.0437i −0.252828 + 0.778123i 0.741422 + 0.671039i \(0.234152\pi\)
−0.994250 + 0.107085i \(0.965848\pi\)
\(282\) −1.30016 1.78952i −0.0774235 0.106564i
\(283\) 12.0522 16.5884i 0.716429 0.986079i −0.283206 0.959059i \(-0.591398\pi\)
0.999635 0.0270204i \(-0.00860190\pi\)
\(284\) −1.23899 3.81322i −0.0735206 0.226273i
\(285\) 0.184186 0.130841i 0.0109102 0.00775034i
\(286\) 0 0
\(287\) 13.2172i 0.780184i
\(288\) 7.19105 2.33652i 0.423737 0.137680i
\(289\) −1.75391 1.27429i −0.103171 0.0749581i
\(290\) −2.92631 + 8.68984i −0.171839 + 0.510285i
\(291\) −1.22616 + 3.77373i −0.0718787 + 0.221220i
\(292\) 5.91672 + 1.92246i 0.346250 + 0.112503i
\(293\) 13.1742 + 18.1327i 0.769644 + 1.05932i 0.996350 + 0.0853614i \(0.0272045\pi\)
−0.226706 + 0.973963i \(0.572796\pi\)
\(294\) −0.114382 0.0831035i −0.00667090 0.00484669i
\(295\) 10.0113 13.4748i 0.582878 0.784531i
\(296\) 1.59750 0.0928525
\(297\) 0 0
\(298\) 10.4481i 0.605242i
\(299\) 7.16395 + 22.0484i 0.414302 + 1.27509i
\(300\) 0.495432 + 0.713416i 0.0286038 + 0.0411891i
\(301\) 5.32268 3.86715i 0.306794 0.222899i
\(302\) 13.0296 + 4.23359i 0.749772 + 0.243616i
\(303\) −4.79035 1.55648i −0.275199 0.0894174i
\(304\) −0.632788 + 0.459748i −0.0362929 + 0.0263683i
\(305\) −0.338085 + 31.7035i −0.0193587 + 1.81534i
\(306\) 4.21116 + 12.9606i 0.240736 + 0.740909i
\(307\) 20.3044i 1.15883i −0.815032 0.579416i \(-0.803281\pi\)
0.815032 0.579416i \(-0.196719\pi\)
\(308\) 0 0
\(309\) −4.87369 −0.277254
\(310\) 1.24978 + 0.928542i 0.0709829 + 0.0527377i
\(311\) 7.08602 + 5.14830i 0.401812 + 0.291933i 0.770278 0.637708i \(-0.220117\pi\)
−0.368467 + 0.929641i \(0.620117\pi\)
\(312\) −1.80460 2.48382i −0.102165 0.140619i
\(313\) 1.64650 + 0.534980i 0.0930656 + 0.0302389i 0.355180 0.934798i \(-0.384420\pi\)
−0.262114 + 0.965037i \(0.584420\pi\)
\(314\) −5.24941 + 16.1560i −0.296241 + 0.911737i
\(315\) −5.29092 + 15.7117i −0.298110 + 0.885254i
\(316\) −3.74692 2.72230i −0.210781 0.153141i
\(317\) 16.6211 5.40051i 0.933531 0.303323i 0.197525 0.980298i \(-0.436710\pi\)
0.736006 + 0.676975i \(0.236710\pi\)
\(318\) 3.91699i 0.219654i
\(319\) 0 0
\(320\) −11.5112 16.2044i −0.643496 0.905855i
\(321\) −1.15394 3.55148i −0.0644069 0.198224i
\(322\) 15.7566 21.6870i 0.878079 1.20857i
\(323\) 0.628384 + 0.864896i 0.0349642 + 0.0481241i
\(324\) 1.15407 3.55187i 0.0641151 0.197326i
\(325\) −8.34554 + 10.9861i −0.462927 + 0.609399i
\(326\) −8.92593 + 6.48507i −0.494361 + 0.359175i
\(327\) −1.05744 + 1.45544i −0.0584766 + 0.0804861i
\(328\) 14.8618 4.82889i 0.820605 0.266631i
\(329\) 12.7334 0.702014
\(330\) 0 0
\(331\) 12.6193 0.693620 0.346810 0.937935i \(-0.387265\pi\)
0.346810 + 0.937935i \(0.387265\pi\)
\(332\) 1.49651 0.486245i 0.0821315 0.0266862i
\(333\) 0.880805 1.21232i 0.0482678 0.0664350i
\(334\) 16.8898 12.2711i 0.924167 0.671447i
\(335\) −2.14259 6.84159i −0.117062 0.373796i
\(336\) −0.819437 + 2.52197i −0.0447040 + 0.137585i
\(337\) 6.97105 + 9.59482i 0.379737 + 0.522663i 0.955515 0.294943i \(-0.0953006\pi\)
−0.575778 + 0.817606i \(0.695301\pi\)
\(338\) −3.90681 + 5.37726i −0.212502 + 0.292484i
\(339\) 1.11623 + 3.43540i 0.0606252 + 0.186585i
\(340\) −3.35062 + 2.38020i −0.181713 + 0.129084i
\(341\) 0 0
\(342\) 0.982255i 0.0531143i
\(343\) 17.9873 5.84442i 0.971222 0.315569i
\(344\) 6.29298 + 4.57212i 0.339295 + 0.246512i
\(345\) −6.48055 2.18233i −0.348901 0.117493i
\(346\) −1.28884 + 3.96664i −0.0692884 + 0.213248i
\(347\) −21.2124 6.89233i −1.13874 0.370000i −0.321850 0.946791i \(-0.604305\pi\)
−0.816892 + 0.576791i \(0.804305\pi\)
\(348\) −0.339308 0.467017i −0.0181888 0.0250347i
\(349\) −12.9183 9.38568i −0.691499 0.502404i 0.185653 0.982615i \(-0.440560\pi\)
−0.877153 + 0.480212i \(0.840560\pi\)
\(350\) 15.9493 + 0.340204i 0.852527 + 0.0181847i
\(351\) −5.89295 −0.314542
\(352\) 0 0
\(353\) 24.1406i 1.28488i 0.766337 + 0.642439i \(0.222077\pi\)
−0.766337 + 0.642439i \(0.777923\pi\)
\(354\) −1.04197 3.20687i −0.0553803 0.170443i
\(355\) −0.200313 + 18.7841i −0.0106315 + 0.996958i
\(356\) 0.960734 0.698014i 0.0509188 0.0369947i
\(357\) 3.44703 + 1.12001i 0.182436 + 0.0592771i
\(358\) 16.2237 + 5.27141i 0.857451 + 0.278603i
\(359\) −16.4864 + 11.9781i −0.870121 + 0.632180i −0.930619 0.365989i \(-0.880731\pi\)
0.0604986 + 0.998168i \(0.480731\pi\)
\(360\) −19.5998 0.209011i −1.03300 0.0110158i
\(361\) −5.84751 17.9968i −0.307764 0.947199i
\(362\) 3.20716i 0.168564i
\(363\) 0 0
\(364\) 3.40495 0.178468
\(365\) −23.3970 17.3831i −1.22465 0.909872i
\(366\) 5.15227 + 3.74334i 0.269313 + 0.195668i
\(367\) −3.17657 4.37217i −0.165815 0.228225i 0.718021 0.696021i \(-0.245048\pi\)
−0.883836 + 0.467796i \(0.845048\pi\)
\(368\) 22.5151 + 7.31560i 1.17368 + 0.381352i
\(369\) 4.52969 13.9410i 0.235806 0.725737i
\(370\) −1.36656 0.460188i −0.0710438 0.0239240i
\(371\) 18.2421 + 13.2537i 0.947083 + 0.688096i
\(372\) −0.0932230 + 0.0302900i −0.00483339 + 0.00157046i
\(373\) 17.0982i 0.885311i −0.896692 0.442656i \(-0.854036\pi\)
0.896692 0.442656i \(-0.145964\pi\)
\(374\) 0 0
\(375\) −1.13309 3.90852i −0.0585127 0.201835i
\(376\) 4.65214 + 14.3178i 0.239916 + 0.738385i
\(377\) 5.38960 7.41814i 0.277578 0.382054i
\(378\) 4.00520 + 5.51268i 0.206005 + 0.283542i
\(379\) 2.65506 8.17144i 0.136381 0.419739i −0.859421 0.511269i \(-0.829176\pi\)
0.995802 + 0.0915300i \(0.0291757\pi\)
\(380\) −0.282702 + 0.0885341i −0.0145023 + 0.00454170i
\(381\) 3.27912 2.38242i 0.167994 0.122055i
\(382\) −1.60900 + 2.21460i −0.0823235 + 0.113309i
\(383\) −9.19632 + 2.98807i −0.469910 + 0.152683i −0.534394 0.845236i \(-0.679460\pi\)
0.0644836 + 0.997919i \(0.479460\pi\)
\(384\) −2.07310 −0.105792
\(385\) 0 0
\(386\) 12.9279 0.658012
\(387\) 6.93948 2.25477i 0.352754 0.114617i
\(388\) 3.05814 4.20917i 0.155254 0.213688i
\(389\) −22.1423 + 16.0873i −1.12266 + 0.815658i −0.984610 0.174767i \(-0.944083\pi\)
−0.138048 + 0.990426i \(0.544083\pi\)
\(390\) 0.828211 + 2.64460i 0.0419381 + 0.133914i
\(391\) 9.99897 30.7737i 0.505669 1.55629i
\(392\) 0.565602 + 0.778484i 0.0285672 + 0.0393194i
\(393\) −2.17472 + 2.99324i −0.109700 + 0.150989i
\(394\) −0.505891 1.55697i −0.0254864 0.0784391i
\(395\) 12.5666 + 17.6902i 0.632296 + 0.890088i
\(396\) 0 0
\(397\) 10.6518i 0.534596i −0.963614 0.267298i \(-0.913869\pi\)
0.963614 0.267298i \(-0.0861308\pi\)
\(398\) 6.10648 1.98411i 0.306090 0.0994547i
\(399\) 0.211350 + 0.153554i 0.0105807 + 0.00768734i
\(400\) 4.06686 + 13.4888i 0.203343 + 0.674438i
\(401\) 4.23805 13.0434i 0.211638 0.651355i −0.787737 0.616011i \(-0.788748\pi\)
0.999375 0.0353433i \(-0.0112525\pi\)
\(402\) −1.36958 0.445004i −0.0683085 0.0221948i
\(403\) −0.915163 1.25961i −0.0455875 0.0627458i
\(404\) 5.34310 + 3.88199i 0.265829 + 0.193136i
\(405\) −10.4352 + 14.0455i −0.518532 + 0.697924i
\(406\) −10.6026 −0.526196
\(407\) 0 0
\(408\) 4.28514i 0.212146i
\(409\) −6.89366 21.2165i −0.340869 1.04909i −0.963758 0.266778i \(-0.914041\pi\)
0.622889 0.782310i \(-0.285959\pi\)
\(410\) −14.1044 0.150408i −0.696565 0.00742813i
\(411\) 1.27978 0.929812i 0.0631267 0.0458642i
\(412\) 6.07769 + 1.97476i 0.299426 + 0.0972895i
\(413\) 18.4606 + 5.99821i 0.908386 + 0.295152i
\(414\) 24.0519 17.4747i 1.18208 0.858834i
\(415\) −7.37187 0.0786132i −0.361871 0.00385897i
\(416\) 2.24833 + 6.91965i 0.110234 + 0.339264i
\(417\) 3.02195i 0.147986i
\(418\) 0 0
\(419\) 0.510725 0.0249506 0.0124753 0.999922i \(-0.496029\pi\)
0.0124753 + 0.999922i \(0.496029\pi\)
\(420\) −0.598963 + 0.806182i −0.0292264 + 0.0393377i
\(421\) −10.6911 7.76757i −0.521054 0.378568i 0.295947 0.955204i \(-0.404365\pi\)
−0.817001 + 0.576636i \(0.804365\pi\)
\(422\) −13.7206 18.8848i −0.667909 0.919297i
\(423\) 13.4307 + 4.36389i 0.653022 + 0.212180i
\(424\) −8.23808 + 25.3542i −0.400077 + 1.23131i
\(425\) 18.4365 5.55859i 0.894300 0.269631i
\(426\) 3.05268 + 2.21790i 0.147903 + 0.107458i
\(427\) −34.8668 + 11.3289i −1.68732 + 0.548244i
\(428\) 4.89641i 0.236677i
\(429\) 0 0
\(430\) −4.06616 5.72397i −0.196088 0.276034i
\(431\) 9.08706 + 27.9671i 0.437708 + 1.34713i 0.890285 + 0.455403i \(0.150505\pi\)
−0.452577 + 0.891725i \(0.649495\pi\)
\(432\) −3.53711 + 4.86841i −0.170179 + 0.234232i
\(433\) 6.00513 + 8.26535i 0.288588 + 0.397207i 0.928555 0.371195i \(-0.121052\pi\)
−0.639967 + 0.768403i \(0.721052\pi\)
\(434\) −0.556333 + 1.71222i −0.0267048 + 0.0821890i
\(435\) 0.808295 + 2.58100i 0.0387548 + 0.123750i
\(436\) 1.90840 1.38653i 0.0913958 0.0664030i
\(437\) 1.37087 1.88684i 0.0655776 0.0902598i
\(438\) −5.56825 + 1.80924i −0.266061 + 0.0864486i
\(439\) −1.53306 −0.0731691 −0.0365846 0.999331i \(-0.511648\pi\)
−0.0365846 + 0.999331i \(0.511648\pi\)
\(440\) 0 0
\(441\) 0.902638 0.0429827
\(442\) −12.4715 + 4.05223i −0.593207 + 0.192745i
\(443\) 1.99409 2.74462i 0.0947419 0.130401i −0.759014 0.651074i \(-0.774319\pi\)
0.853756 + 0.520673i \(0.174319\pi\)
\(444\) 0.0734426 0.0533592i 0.00348543 0.00253231i
\(445\) −5.30957 + 1.66280i −0.251698 + 0.0788243i
\(446\) 8.34044 25.6692i 0.394931 1.21547i
\(447\) −1.81144 2.49323i −0.0856781 0.117926i
\(448\) 13.5095 18.5943i 0.638265 0.878497i
\(449\) 9.99672 + 30.7667i 0.471774 + 1.45197i 0.850259 + 0.526365i \(0.176445\pi\)
−0.378485 + 0.925608i \(0.623555\pi\)
\(450\) 16.7061 + 5.82487i 0.787535 + 0.274587i
\(451\) 0 0
\(452\) 4.73637i 0.222780i
\(453\) 3.84326 1.24875i 0.180572 0.0586714i
\(454\) 2.43456 + 1.76881i 0.114259 + 0.0830143i
\(455\) −15.1187 5.09123i −0.708776 0.238681i
\(456\) −0.0954449 + 0.293749i −0.00446962 + 0.0137561i
\(457\) 11.5772 + 3.76165i 0.541558 + 0.175963i 0.567006 0.823713i \(-0.308101\pi\)
−0.0254487 + 0.999676i \(0.508101\pi\)
\(458\) −5.29572 7.28893i −0.247453 0.340589i
\(459\) 6.65415 + 4.83453i 0.310589 + 0.225656i
\(460\) 7.19726 + 5.34730i 0.335574 + 0.249319i
\(461\) 16.5699 0.771739 0.385869 0.922553i \(-0.373902\pi\)
0.385869 + 0.922553i \(0.373902\pi\)
\(462\) 0 0
\(463\) 14.6302i 0.679924i 0.940439 + 0.339962i \(0.110414\pi\)
−0.940439 + 0.339962i \(0.889586\pi\)
\(464\) −2.89346 8.90515i −0.134325 0.413411i
\(465\) 0.459222 + 0.00489711i 0.0212959 + 0.000227098i
\(466\) 4.45083 3.23371i 0.206180 0.149799i
\(467\) −28.9933 9.42049i −1.34165 0.435928i −0.451774 0.892132i \(-0.649209\pi\)
−0.889875 + 0.456204i \(0.849209\pi\)
\(468\) 3.59141 + 1.16692i 0.166013 + 0.0539409i
\(469\) 6.70662 4.87265i 0.309683 0.224998i
\(470\) 0.144903 13.5881i 0.00668387 0.626773i
\(471\) 1.54838 + 4.76543i 0.0713457 + 0.219579i
\(472\) 22.9491i 1.05632i
\(473\) 0 0
\(474\) 4.35868 0.200201
\(475\) 1.38764 + 0.0295988i 0.0636693 + 0.00135809i
\(476\) −3.84478 2.79339i −0.176225 0.128035i
\(477\) 14.6989 + 20.2313i 0.673015 + 0.926326i
\(478\) −28.3714 9.21843i −1.29768 0.421641i
\(479\) 4.32602 13.3141i 0.197661 0.608337i −0.802275 0.596955i \(-0.796377\pi\)
0.999935 0.0113818i \(-0.00362301\pi\)
\(480\) −2.03385 0.684901i −0.0928323 0.0312613i
\(481\) 1.16657 + 0.847562i 0.0531910 + 0.0386455i
\(482\) 14.1293 4.59090i 0.643573 0.209110i
\(483\) 7.90697i 0.359780i
\(484\) 0 0
\(485\) −19.8726 + 14.1170i −0.902367 + 0.641019i
\(486\) 3.52926 + 10.8619i 0.160090 + 0.492708i
\(487\) −20.0617 + 27.6126i −0.909084 + 1.25125i 0.0583939 + 0.998294i \(0.481402\pi\)
−0.967478 + 0.252954i \(0.918598\pi\)
\(488\) −25.4771 35.0663i −1.15330 1.58738i
\(489\) −1.00565 + 3.09506i −0.0454769 + 0.139964i
\(490\) −0.259579 0.828875i −0.0117266 0.0374448i
\(491\) −2.58425 + 1.87757i −0.116626 + 0.0847335i −0.644569 0.764546i \(-0.722963\pi\)
0.527944 + 0.849279i \(0.322963\pi\)
\(492\) 0.521956 0.718411i 0.0235316 0.0323885i
\(493\) −12.1716 + 3.95478i −0.548180 + 0.178114i
\(494\) −0.945184 −0.0425258
\(495\) 0 0
\(496\) −1.58993 −0.0713898
\(497\) −20.6583 + 6.71229i −0.926652 + 0.301087i
\(498\) −0.870421 + 1.19803i −0.0390045 + 0.0536851i
\(499\) 5.28166 3.83735i 0.236440 0.171784i −0.463256 0.886225i \(-0.653319\pi\)
0.699696 + 0.714441i \(0.253319\pi\)
\(500\) −0.170671 + 5.33320i −0.00763262 + 0.238508i
\(501\) 1.90290 5.85652i 0.0850153 0.261650i
\(502\) −0.389055 0.535488i −0.0173644 0.0239000i
\(503\) −0.590060 + 0.812148i −0.0263095 + 0.0362119i −0.821969 0.569532i \(-0.807124\pi\)
0.795660 + 0.605744i \(0.207124\pi\)
\(504\) −7.00375 21.5553i −0.311972 0.960151i
\(505\) −17.9200 25.2261i −0.797430 1.12255i
\(506\) 0 0
\(507\) 1.96052i 0.0870697i
\(508\) −5.05453 + 1.64232i −0.224258 + 0.0728660i
\(509\) −3.45775 2.51220i −0.153262 0.111351i 0.508511 0.861055i \(-0.330196\pi\)
−0.661773 + 0.749704i \(0.730196\pi\)
\(510\) 1.23441 3.66567i 0.0546608 0.162318i
\(511\) 10.4150 32.0541i 0.460733 1.41799i
\(512\) 23.4500 + 7.61936i 1.03635 + 0.336731i
\(513\) 0.348465 + 0.479621i 0.0153851 + 0.0211758i
\(514\) 23.6801 + 17.2046i 1.04449 + 0.758863i
\(515\) −24.0335 17.8560i −1.05904 0.786830i
\(516\) 0.442028 0.0194592
\(517\) 0 0
\(518\) 1.66735i 0.0732590i
\(519\) 0.380160 + 1.17001i 0.0166872 + 0.0513578i
\(520\) 0.201122 18.8600i 0.00881980 0.827068i
\(521\) 7.99969 5.81212i 0.350473 0.254634i −0.398594 0.917127i \(-0.630502\pi\)
0.749067 + 0.662494i \(0.230502\pi\)
\(522\) −11.1832 3.63363i −0.489474 0.159040i
\(523\) −42.0053 13.6483i −1.83676 0.596801i −0.998686 0.0512488i \(-0.983680\pi\)
−0.838077 0.545552i \(-0.816320\pi\)
\(524\) 3.92479 2.85153i 0.171455 0.124570i
\(525\) 3.86497 2.68403i 0.168681 0.117141i
\(526\) 1.89764 + 5.84033i 0.0827409 + 0.254650i
\(527\) 2.17311i 0.0946623i
\(528\) 0 0
\(529\) −47.5902 −2.06914
\(530\) 14.3509 19.3158i 0.623364 0.839024i
\(531\) 17.4159 + 12.6534i 0.755784 + 0.549109i
\(532\) −0.201343 0.277125i −0.00872934 0.0120149i
\(533\) 13.4148 + 4.35874i 0.581060 + 0.188798i
\(534\) −0.345355 + 1.06289i −0.0149450 + 0.0459959i
\(535\) 7.32133 21.7411i 0.316529 0.939950i
\(536\) 7.92922 + 5.76091i 0.342490 + 0.248834i
\(537\) 4.78540 1.55487i 0.206505 0.0670976i
\(538\) 35.5447i 1.53244i
\(539\) 0 0
\(540\) −1.85806 + 1.31992i −0.0799581 + 0.0568002i
\(541\) 6.57265 + 20.2285i 0.282580 + 0.869692i 0.987114 + 0.160021i \(0.0511564\pi\)
−0.704533 + 0.709671i \(0.748844\pi\)
\(542\) −11.6604 + 16.0492i −0.500859 + 0.689373i
\(543\) 0.556040 + 0.765324i 0.0238620 + 0.0328432i
\(544\) 3.13807 9.65800i 0.134544 0.414083i
\(545\) −10.5469 + 3.30299i −0.451781 + 0.141484i
\(546\) −2.59243 + 1.88351i −0.110946 + 0.0806067i
\(547\) 2.42987 3.34442i 0.103894 0.142997i −0.753905 0.656984i \(-0.771832\pi\)
0.857798 + 0.513987i \(0.171832\pi\)
\(548\) −1.97268 + 0.640964i −0.0842689 + 0.0273806i
\(549\) −40.6587 −1.73527
\(550\) 0 0
\(551\) −0.922455 −0.0392979
\(552\) 8.89085 2.88881i 0.378420 0.122956i
\(553\) −14.7482 + 20.2991i −0.627156 + 0.863207i
\(554\) −17.9736 + 13.0586i −0.763624 + 0.554805i
\(555\) −0.405886 + 0.127112i −0.0172289 + 0.00539559i
\(556\) −1.22446 + 3.76850i −0.0519286 + 0.159820i
\(557\) −18.6135 25.6192i −0.788678 1.08552i −0.994271 0.106885i \(-0.965912\pi\)
0.205593 0.978637i \(-0.434088\pi\)
\(558\) −1.17360 + 1.61532i −0.0496823 + 0.0683819i
\(559\) 2.16968 + 6.67757i 0.0917675 + 0.282431i
\(560\) −13.2808 + 9.43431i −0.561214 + 0.398673i
\(561\) 0 0
\(562\) 16.9242i 0.713904i
\(563\) −12.1228 + 3.93895i −0.510917 + 0.166007i −0.553119 0.833102i \(-0.686563\pi\)
0.0422024 + 0.999109i \(0.486563\pi\)
\(564\) 0.692116 + 0.502852i 0.0291433 + 0.0211739i
\(565\) −7.08203 + 21.0305i −0.297943 + 0.884759i
\(566\) 7.81885 24.0639i 0.328651 1.01148i
\(567\) −19.2424 6.25224i −0.808106 0.262570i
\(568\) −15.0950 20.7765i −0.633373 0.871763i
\(569\) −12.6491 9.19012i −0.530279 0.385270i 0.290183 0.956971i \(-0.406284\pi\)
−0.820462 + 0.571701i \(0.806284\pi\)
\(570\) 0.166267 0.223789i 0.00696415 0.00937349i
\(571\) 3.61999 0.151492 0.0757460 0.997127i \(-0.475866\pi\)
0.0757460 + 0.997127i \(0.475866\pi\)
\(572\) 0 0
\(573\) 0.807429i 0.0337308i
\(574\) −5.04003 15.5116i −0.210367 0.647443i
\(575\) −23.9619 34.5048i −0.999279 1.43895i
\(576\) 20.6218 14.9826i 0.859243 0.624277i
\(577\) 22.6686 + 7.36548i 0.943707 + 0.306629i 0.740156 0.672435i \(-0.234752\pi\)
0.203551 + 0.979064i \(0.434752\pi\)
\(578\) −2.54430 0.826693i −0.105829 0.0343859i
\(579\) 3.08498 2.24137i 0.128207 0.0931482i
\(580\) 0.0378158 3.54613i 0.00157021 0.147245i
\(581\) −2.63426 8.10740i −0.109287 0.336352i
\(582\) 4.89641i 0.202963i
\(583\) 0 0
\(584\) 39.8478 1.64891
\(585\) −14.2018 10.5514i −0.587173 0.436248i
\(586\) 22.3757 + 16.2569i 0.924330 + 0.671565i
\(587\) −0.732956 1.00883i −0.0302523 0.0416388i 0.793623 0.608410i \(-0.208192\pi\)
−0.823875 + 0.566771i \(0.808192\pi\)
\(588\) 0.0520055 + 0.0168976i 0.00214467 + 0.000696845i
\(589\) −0.0484027 + 0.148968i −0.00199440 + 0.00613813i
\(590\) 6.61091 19.6315i 0.272167 0.808216i
\(591\) −0.390660 0.283831i −0.0160696 0.0116753i
\(592\) 1.40041 0.455022i 0.0575567 0.0187013i
\(593\) 18.5288i 0.760886i 0.924804 + 0.380443i \(0.124228\pi\)
−0.924804 + 0.380443i \(0.875772\pi\)
\(594\) 0 0
\(595\) 12.8948 + 18.1522i 0.528637 + 0.744166i
\(596\) 1.24871 + 3.84314i 0.0511492 + 0.157421i
\(597\) 1.11319 1.53218i 0.0455600 0.0627079i
\(598\) 16.8152 + 23.1441i 0.687624 + 0.946433i
\(599\) −10.4559 + 32.1798i −0.427215 + 1.31483i 0.473643 + 0.880717i \(0.342939\pi\)
−0.900857 + 0.434115i \(0.857061\pi\)
\(600\) 4.43007 + 3.36528i 0.180857 + 0.137387i
\(601\) −17.2342 + 12.5213i −0.702996 + 0.510756i −0.880907 0.473290i \(-0.843066\pi\)
0.177911 + 0.984047i \(0.443066\pi\)
\(602\) 4.77204 6.56815i 0.194494 0.267698i
\(603\) 8.74381 2.84104i 0.356075 0.115696i
\(604\) −5.29869 −0.215601
\(605\) 0 0
\(606\) −6.21547 −0.252486
\(607\) 35.6267 11.5758i 1.44604 0.469848i 0.522268 0.852781i \(-0.325086\pi\)
0.923776 + 0.382933i \(0.125086\pi\)
\(608\) 0.430234 0.592166i 0.0174483 0.0240155i
\(609\) −2.53009 + 1.83822i −0.102524 + 0.0744883i
\(610\) 11.6926 + 37.3361i 0.473419 + 1.51170i
\(611\) −4.19920 + 12.9238i −0.169881 + 0.522841i
\(612\) −3.09799 4.26402i −0.125229 0.172363i
\(613\) −11.7585 + 16.1842i −0.474920 + 0.653672i −0.977519 0.210848i \(-0.932377\pi\)
0.502598 + 0.864520i \(0.332377\pi\)
\(614\) −7.74257 23.8292i −0.312465 0.961667i
\(615\) −3.39180 + 2.40945i −0.136771 + 0.0971584i
\(616\) 0 0
\(617\) 34.7932i 1.40072i 0.713790 + 0.700360i \(0.246977\pi\)
−0.713790 + 0.700360i \(0.753023\pi\)
\(618\) −5.71975 + 1.85846i −0.230082 + 0.0747582i
\(619\) −37.2827 27.0875i −1.49852 1.08874i −0.970966 0.239217i \(-0.923109\pi\)
−0.527554 0.849522i \(-0.676891\pi\)
\(620\) −0.570684 0.192178i −0.0229192 0.00771806i
\(621\) 5.54484 17.0653i 0.222507 0.684806i
\(622\) 10.2793 + 3.33995i 0.412163 + 0.133920i
\(623\) −3.78152 5.20482i −0.151504 0.208527i
\(624\) −2.28945 1.66338i −0.0916513 0.0665886i
\(625\) 8.73225 23.4254i 0.349290 0.937015i
\(626\) 2.13633 0.0853849
\(627\) 0 0
\(628\) 6.57008i 0.262175i
\(629\) −0.621925 1.91409i −0.0247978 0.0763197i
\(630\) −0.218150 + 20.4568i −0.00869130 + 0.815017i
\(631\) 16.6156 12.0719i 0.661455 0.480575i −0.205699 0.978615i \(-0.565947\pi\)
0.867154 + 0.498040i \(0.165947\pi\)
\(632\) −28.2132 9.16703i −1.12226 0.364645i
\(633\) −6.54830 2.12767i −0.260271 0.0845673i
\(634\) 17.4471 12.6760i 0.692912 0.503430i
\(635\) 24.8989 + 0.265520i 0.988081 + 0.0105368i
\(636\) 0.468141 + 1.44079i 0.0185630 + 0.0571311i
\(637\) 0.868571i 0.0344140i
\(638\) 0 0
\(639\) −24.0900 −0.952985
\(640\) −10.2230 7.59534i −0.404101 0.300232i
\(641\) −12.8711 9.35139i −0.508377 0.369358i 0.303831 0.952726i \(-0.401734\pi\)
−0.812208 + 0.583369i \(0.801734\pi\)
\(642\) −2.70853 3.72798i −0.106897 0.147132i
\(643\) −40.2334 13.0726i −1.58665 0.515534i −0.622891 0.782309i \(-0.714042\pi\)
−0.963759 + 0.266775i \(0.914042\pi\)
\(644\) −3.20381 + 9.86033i −0.126248 + 0.388551i
\(645\) −1.96270 0.660940i −0.0772813 0.0260245i
\(646\) 1.06728 + 0.775421i 0.0419914 + 0.0305085i
\(647\) 7.12238 2.31420i 0.280010 0.0909806i −0.165646 0.986185i \(-0.552971\pi\)
0.445655 + 0.895205i \(0.352971\pi\)
\(648\) 23.9210i 0.939707i
\(649\) 0 0
\(650\) −5.60503 + 16.0756i −0.219847 + 0.630538i
\(651\) 0.164098 + 0.505040i 0.00643149 + 0.0197941i
\(652\) 2.50817 3.45220i 0.0982274 0.135198i
\(653\) 9.68097 + 13.3247i 0.378846 + 0.521436i 0.955278 0.295708i \(-0.0955557\pi\)
−0.576433 + 0.817145i \(0.695556\pi\)
\(654\) −0.686013 + 2.11133i −0.0268252 + 0.0825596i
\(655\) −21.6907 + 6.79288i −0.847525 + 0.265420i
\(656\) 11.6529 8.46631i 0.454968 0.330554i
\(657\) 21.9707 30.2401i 0.857159 1.17978i
\(658\) 14.9439 4.85556i 0.582572 0.189289i
\(659\) 23.7359 0.924619 0.462310 0.886719i \(-0.347021\pi\)
0.462310 + 0.886719i \(0.347021\pi\)
\(660\) 0 0
\(661\) 13.4183 0.521911 0.260956 0.965351i \(-0.415962\pi\)
0.260956 + 0.965351i \(0.415962\pi\)
\(662\) 14.8100 4.81206i 0.575607 0.187026i
\(663\) −2.27351 + 3.12922i −0.0882959 + 0.121529i
\(664\) 8.15379 5.92408i 0.316429 0.229899i
\(665\) 0.479638 + 1.53155i 0.0185995 + 0.0593911i
\(666\) 0.571421 1.75865i 0.0221421 0.0681464i
\(667\) 16.4108 + 22.5876i 0.635430 + 0.874594i
\(668\) −4.74599 + 6.53230i −0.183628 + 0.252742i
\(669\) −2.46012 7.57147i −0.0951138 0.292730i
\(670\) −5.12340 7.21225i −0.197934 0.278634i
\(671\) 0 0
\(672\) 2.48152i 0.0957268i
\(673\) −45.9237 + 14.9215i −1.77023 + 0.575182i −0.998176 0.0603771i \(-0.980770\pi\)
−0.772052 + 0.635559i \(0.780770\pi\)
\(674\) 11.8399 + 8.60223i 0.456058 + 0.331345i
\(675\) 10.2238 3.08247i 0.393514 0.118644i
\(676\) 0.794379 2.44485i 0.0305531 0.0940326i
\(677\) −23.1713 7.52881i −0.890545 0.289356i −0.172216 0.985059i \(-0.555093\pi\)
−0.718329 + 0.695704i \(0.755093\pi\)
\(678\) 2.62000 + 3.60613i 0.100621 + 0.138492i
\(679\) −22.8034 16.5676i −0.875114 0.635808i
\(680\) −15.6997 + 21.1312i −0.602057 + 0.810346i
\(681\) 0.887625 0.0340139
\(682\) 0 0
\(683\) 38.9856i 1.49174i −0.666090 0.745871i \(-0.732034\pi\)
0.666090 0.745871i \(-0.267966\pi\)
\(684\) −0.117395 0.361304i −0.00448870 0.0138148i
\(685\) 9.71754 + 0.103627i 0.371288 + 0.00395940i
\(686\) 18.8812 13.7180i 0.720888 0.523756i
\(687\) −2.52743 0.821213i −0.0964277 0.0313312i
\(688\) 6.81893 + 2.21560i 0.259969 + 0.0844691i
\(689\) −19.4677 + 14.1441i −0.741661 + 0.538848i
\(690\) −8.43773 0.0899794i −0.321219 0.00342546i
\(691\) 1.82893 + 5.62887i 0.0695758 + 0.214132i 0.979799 0.199987i \(-0.0640898\pi\)
−0.910223 + 0.414119i \(0.864090\pi\)
\(692\) 1.61309i 0.0613205i
\(693\) 0 0
\(694\) −27.5230 −1.04476
\(695\) 11.0717 14.9021i 0.419973 0.565268i
\(696\) −2.99131 2.17332i −0.113385 0.0823794i
\(697\) −11.5718 15.9272i −0.438312 0.603284i
\(698\) −18.7398 6.08895i −0.709314 0.230470i
\(699\) 0.501456 1.54332i 0.0189668 0.0583738i
\(700\) −5.90731 + 1.78105i −0.223275 + 0.0673175i
\(701\) 9.68170 + 7.03416i 0.365673 + 0.265677i 0.755414 0.655248i \(-0.227436\pi\)
−0.389742 + 0.920924i \(0.627436\pi\)
\(702\) −6.91595 + 2.24713i −0.261026 + 0.0848124i
\(703\) 0.145064i 0.00547120i
\(704\) 0 0
\(705\) −2.32126 3.26765i −0.0874236 0.123067i
\(706\) 9.20543 + 28.3314i 0.346451 + 1.06627i
\(707\) 21.0309 28.9465i 0.790948 1.08865i
\(708\) 0.766541 + 1.05505i 0.0288084 + 0.0396513i
\(709\) −2.10394 + 6.47527i −0.0790152 + 0.243184i −0.982759 0.184889i \(-0.940807\pi\)
0.903744 + 0.428073i \(0.140807\pi\)
\(710\) 6.92777 + 22.1214i 0.259995 + 0.830201i
\(711\) −22.5126 + 16.3564i −0.844288 + 0.613411i
\(712\) 4.47089 6.15365i 0.167554 0.230618i
\(713\) 4.50879 1.46499i 0.168856 0.0548645i
\(714\) 4.47251 0.167380
\(715\) 0 0
\(716\) −6.59761 −0.246564
\(717\) −8.36851 + 2.71909i −0.312528 + 0.101546i
\(718\) −14.7809 + 20.3442i −0.551618 + 0.759237i
\(719\) −7.49482 + 5.44531i −0.279510 + 0.203076i −0.718703 0.695317i \(-0.755264\pi\)
0.439194 + 0.898392i \(0.355264\pi\)
\(720\) −17.2413 + 5.39947i −0.642545 + 0.201226i
\(721\) 10.6984 32.9262i 0.398428 1.22624i
\(722\) −13.7252 18.8912i −0.510801 0.703057i
\(723\) 2.57574 3.54520i 0.0957927 0.131847i
\(724\) −0.383305 1.17969i −0.0142454 0.0438429i
\(725\) −5.47025 + 15.6891i −0.203160 + 0.582677i
\(726\) 0 0
\(727\) 19.4121i 0.719956i 0.932961 + 0.359978i \(0.117216\pi\)
−0.932961 + 0.359978i \(0.882784\pi\)
\(728\) 20.7418 6.73942i 0.768742 0.249780i
\(729\) −16.2668 11.8185i −0.602474 0.437723i
\(730\) −34.0872 11.4789i −1.26162 0.424853i
\(731\) 3.02829 9.32012i 0.112005 0.344717i
\(732\) −2.34255 0.761141i −0.0865832 0.0281326i
\(733\) −6.79600 9.35389i −0.251016 0.345494i 0.664851 0.746976i \(-0.268495\pi\)
−0.915867 + 0.401482i \(0.868495\pi\)
\(734\) −5.39523 3.91986i −0.199142 0.144685i
\(735\) −0.205650 0.152790i −0.00758550 0.00563574i
\(736\) −22.1540 −0.816608
\(737\) 0 0
\(738\) 18.0884i 0.665842i
\(739\) 2.81433 + 8.66162i 0.103527 + 0.318623i 0.989382 0.145339i \(-0.0464274\pi\)
−0.885855 + 0.463962i \(0.846427\pi\)
\(740\) 0.557661 + 0.00594687i 0.0205000 + 0.000218611i
\(741\) −0.225549 + 0.163871i −0.00828576 + 0.00601995i
\(742\) 26.4628 + 8.59830i 0.971481 + 0.315653i
\(743\) 0.0695230 + 0.0225894i 0.00255055 + 0.000828724i 0.310292 0.950641i \(-0.399573\pi\)
−0.307741 + 0.951470i \(0.599573\pi\)
\(744\) −0.507930 + 0.369033i −0.0186216 + 0.0135294i
\(745\) 0.201884 18.9315i 0.00739647 0.693596i
\(746\) −6.51997 20.0664i −0.238713 0.734683i
\(747\) 9.45417i 0.345910i
\(748\) 0 0
\(749\) 26.5265 0.969258
\(750\) −2.82021 4.15495i −0.102980 0.151717i
\(751\) 31.1665 + 22.6438i 1.13728 + 0.826283i 0.986738 0.162320i \(-0.0518978\pi\)
0.150543 + 0.988603i \(0.451898\pi\)
\(752\) 8.15642 + 11.2264i 0.297434 + 0.409383i
\(753\) −0.185680 0.0603312i −0.00676656 0.00219859i
\(754\) 3.49649 10.7611i 0.127335 0.391896i
\(755\) 23.5273 + 7.92284i 0.856247 + 0.288341i
\(756\) −2.13209 1.54905i −0.0775433 0.0563385i
\(757\) −26.7834 + 8.70244i −0.973458 + 0.316296i −0.752211 0.658922i \(-0.771013\pi\)
−0.221247 + 0.975218i \(0.571013\pi\)
\(758\) 10.6024i 0.385097i
\(759\) 0 0
\(760\) −1.54689 + 1.09887i −0.0561116 + 0.0398603i
\(761\) 9.11274 + 28.0461i 0.330336 + 1.01667i 0.968974 + 0.247163i \(0.0794984\pi\)
−0.638637 + 0.769508i \(0.720502\pi\)
\(762\) 2.93989 4.04641i 0.106501 0.146586i
\(763\) −7.51162 10.3389i −0.271939 0.374292i
\(764\) 0.327161 1.00690i 0.0118363 0.0364283i
\(765\) 7.38000 + 23.5654i 0.266825 + 0.852010i
\(766\) −9.65336 + 7.01357i −0.348790 + 0.253411i
\(767\) −12.1758 + 16.7586i −0.439643 + 0.605117i
\(768\) 3.72134 1.20914i 0.134282 0.0436310i
\(769\) 8.42410 0.303781 0.151890 0.988397i \(-0.451464\pi\)
0.151890 + 0.988397i \(0.451464\pi\)
\(770\) 0 0
\(771\) 8.63364 0.310933
\(772\) −4.75528 + 1.54508i −0.171146 + 0.0556088i
\(773\) −0.527527 + 0.726079i −0.0189738 + 0.0261153i −0.818399 0.574651i \(-0.805138\pi\)
0.799425 + 0.600766i \(0.205138\pi\)
\(774\) 7.28435 5.29239i 0.261831 0.190231i
\(775\) 2.24661 + 1.70663i 0.0807006 + 0.0613038i
\(776\) 10.2980 31.6939i 0.369675 1.13774i
\(777\) −0.289076 0.397879i −0.0103705 0.0142738i
\(778\) −19.8516 + 27.3234i −0.711715 + 0.979592i
\(779\) −0.438499 1.34956i −0.0157108 0.0483530i
\(780\) −0.620713 0.873782i −0.0222251 0.0312864i
\(781\) 0 0
\(782\) 39.9287i 1.42785i
\(783\) −6.74964 + 2.19309i −0.241212 + 0.0783747i
\(784\) 0.717563 + 0.521340i 0.0256273 + 0.0186193i
\(785\) −9.82387 + 29.1726i −0.350629 + 1.04121i
\(786\) −1.41085 + 4.34214i −0.0503232 + 0.154879i
\(787\) 35.9506 + 11.6811i 1.28150 + 0.416385i 0.869108 0.494622i \(-0.164694\pi\)
0.412392 + 0.911007i \(0.364694\pi\)
\(788\) 0.372165 + 0.512241i 0.0132578 + 0.0182478i
\(789\) 1.46540 + 1.06468i 0.0521696 + 0.0379034i
\(790\) 21.4939 + 15.9692i 0.764718 + 0.568157i
\(791\) −25.6595 −0.912346
\(792\) 0 0
\(793\) 39.1242i 1.38934i
\(794\) −4.06178 12.5009i −0.144147 0.443639i
\(795\) 0.0756864 7.09741i 0.00268432 0.251719i
\(796\) −2.00902 + 1.45964i −0.0712078 + 0.0517355i
\(797\) 14.4471 + 4.69415i 0.511743 + 0.166275i 0.553495 0.832853i \(-0.313294\pi\)
−0.0417519 + 0.999128i \(0.513294\pi\)
\(798\) 0.306593 + 0.0996182i 0.0108533 + 0.00352645i
\(799\) 15.3442 11.1482i 0.542839 0.394395i
\(800\) −7.52019 10.8290i −0.265879 0.382863i
\(801\) −2.20485 6.78583i −0.0779045 0.239765i
\(802\) 16.9237i 0.597598i
\(803\) 0 0
\(804\) 0.556959 0.0196424
\(805\) 28.9692 38.9915i 1.02103 1.37427i
\(806\) −1.55435 1.12930i −0.0547498 0.0397781i
\(807\) 6.16255 + 8.48203i 0.216932 + 0.298582i
\(808\) 40.2320 + 13.0722i 1.41536 + 0.459877i
\(809\) −12.2713 + 37.7673i −0.431437 + 1.32783i 0.465256 + 0.885176i \(0.345962\pi\)
−0.896694 + 0.442652i \(0.854038\pi\)
\(810\) −6.89090 + 20.4629i −0.242122 + 0.718994i
\(811\) 7.13293 + 5.18238i 0.250471 + 0.181978i 0.705936 0.708276i \(-0.250527\pi\)
−0.455464 + 0.890254i \(0.650527\pi\)
\(812\) 3.89995 1.26717i 0.136861 0.0444689i
\(813\) 5.85145i 0.205219i
\(814\) 0 0
\(815\) −16.2987 + 11.5782i −0.570918 + 0.405566i
\(816\) 1.22056 + 3.75649i 0.0427281 + 0.131504i
\(817\) 0.415182 0.571449i 0.0145254 0.0199925i
\(818\) −16.1808 22.2709i −0.565747 0.778684i
\(819\) 6.32185 19.4566i 0.220903 0.679870i
\(820\) 5.20600 1.63037i 0.181801 0.0569349i
\(821\) −6.81249 + 4.94956i −0.237758 + 0.172741i −0.700284 0.713865i \(-0.746943\pi\)
0.462526 + 0.886606i \(0.346943\pi\)
\(822\) 1.14738 1.57924i 0.0400195 0.0550822i
\(823\) 22.7341 7.38675i 0.792460 0.257486i 0.115309 0.993330i \(-0.463214\pi\)
0.677151 + 0.735844i \(0.263214\pi\)
\(824\) 40.9319 1.42593
\(825\) 0 0
\(826\) 23.9526 0.833416
\(827\) −45.1865 + 14.6820i −1.57129 + 0.510542i −0.959793 0.280707i \(-0.909431\pi\)
−0.611494 + 0.791249i \(0.709431\pi\)
\(828\) −6.75852 + 9.30231i −0.234875 + 0.323278i
\(829\) −22.8145 + 16.5757i −0.792381 + 0.575699i −0.908669 0.417517i \(-0.862900\pi\)
0.116288 + 0.993216i \(0.462900\pi\)
\(830\) −8.68159 + 2.71882i −0.301342 + 0.0943716i
\(831\) −2.02501 + 6.23233i −0.0702467 + 0.216197i
\(832\) 14.4172 + 19.8435i 0.499826 + 0.687951i
\(833\) 0.712569 0.980767i 0.0246890 0.0339816i
\(834\) −1.15234 3.54655i −0.0399024 0.122807i
\(835\) 30.8406 21.9084i 1.06728 0.758171i
\(836\) 0 0
\(837\) 1.20508i 0.0416537i
\(838\) 0.599386 0.194752i 0.0207054 0.00672761i
\(839\) 18.0739 + 13.1315i 0.623982 + 0.453349i 0.854310 0.519764i \(-0.173980\pi\)
−0.230328 + 0.973113i \(0.573980\pi\)
\(840\) −2.05300 + 6.09652i −0.0708354 + 0.210350i
\(841\) −5.54908 + 17.0783i −0.191348 + 0.588907i
\(842\) −15.5091 5.03920i −0.534477 0.173662i
\(843\) 2.93423 + 4.03862i 0.101060 + 0.139098i
\(844\) 7.30389 + 5.30659i 0.251410 + 0.182660i
\(845\) −7.18286 + 9.66786i −0.247098 + 0.332585i
\(846\) 17.4263 0.599128
\(847\) 0 0
\(848\) 24.5728i 0.843833i
\(849\) −2.30627 7.09797i −0.0791510 0.243602i
\(850\) 19.5174 13.5538i 0.669440 0.464893i
\(851\) −3.55210 + 2.58075i −0.121764 + 0.0884670i
\(852\) −1.38795 0.450971i −0.0475502 0.0154500i
\(853\) −7.75363 2.51931i −0.265479 0.0862594i 0.173253 0.984877i \(-0.444572\pi\)
−0.438732 + 0.898618i \(0.644572\pi\)
\(854\) −36.5996 + 26.5911i −1.25241 + 0.909930i
\(855\) −0.0189797 + 1.77980i −0.000649092 + 0.0608680i
\(856\) 9.69146 + 29.8272i 0.331247 + 1.01947i
\(857\) 4.42433i 0.151132i −0.997141 0.0755662i \(-0.975924\pi\)
0.997141 0.0755662i \(-0.0240764\pi\)
\(858\) 0 0
\(859\) −2.90501 −0.0991176 −0.0495588 0.998771i \(-0.515782\pi\)
−0.0495588 + 0.998771i \(0.515782\pi\)
\(860\) 2.17976 + 1.61948i 0.0743294 + 0.0552239i
\(861\) −3.89203 2.82772i −0.132640 0.0963686i
\(862\) 21.3291 + 29.3570i 0.726472 + 0.999904i
\(863\) 16.8433 + 5.47271i 0.573352 + 0.186293i 0.581320 0.813675i \(-0.302536\pi\)
−0.00796833 + 0.999968i \(0.502536\pi\)
\(864\) 1.74019 5.35576i 0.0592025 0.182207i
\(865\) −2.41196 + 7.16247i −0.0820092 + 0.243531i
\(866\) 10.1994 + 7.41029i 0.346589 + 0.251812i
\(867\) −0.750474 + 0.243844i −0.0254874 + 0.00828137i
\(868\) 0.696297i 0.0236339i
\(869\) 0 0
\(870\) 1.93281 + 2.72084i 0.0655285 + 0.0922450i
\(871\) 2.73381 + 8.41381i 0.0926317 + 0.285091i
\(872\) 8.88096 12.2236i 0.300747 0.413943i
\(873\) −18.3742 25.2899i −0.621873 0.855935i
\(874\) 0.889350 2.73714i 0.0300827 0.0925851i
\(875\) 28.8929 + 0.924616i 0.976757 + 0.0312577i
\(876\) 1.83195 1.33099i 0.0618957 0.0449699i
\(877\) −30.2003 + 41.5671i −1.01979 + 1.40362i −0.107442 + 0.994211i \(0.534266\pi\)
−0.912350 + 0.409411i \(0.865734\pi\)
\(878\) −1.79920 + 0.584595i −0.0607200 + 0.0197291i
\(879\) 8.15803 0.275164
\(880\) 0 0
\(881\) 33.6727 1.13446 0.567231 0.823559i \(-0.308015\pi\)
0.567231 + 0.823559i \(0.308015\pi\)
\(882\) 1.05933 0.344198i 0.0356696 0.0115898i
\(883\) 8.17643 11.2539i 0.275159 0.378724i −0.648964 0.760819i \(-0.724797\pi\)
0.924123 + 0.382095i \(0.124797\pi\)
\(884\) 4.10309 2.98107i 0.138002 0.100264i
\(885\) −1.82604 5.83083i −0.0613818 0.196001i
\(886\) 1.29366 3.98148i 0.0434614 0.133760i
\(887\) 26.2744 + 36.1636i 0.882207 + 1.21425i 0.975805 + 0.218644i \(0.0701632\pi\)
−0.0935978 + 0.995610i \(0.529837\pi\)
\(888\) 0.341774 0.470411i 0.0114692 0.0157860i
\(889\) 8.89733 + 27.3832i 0.298407 + 0.918401i
\(890\) −5.59723 + 3.97613i −0.187620 + 0.133280i
\(891\) 0 0
\(892\) 10.4388i 0.349516i
\(893\) 1.30016 0.422448i 0.0435083 0.0141367i
\(894\) −3.07663 2.23530i −0.102898 0.0747597i
\(895\) 29.2948 + 9.86504i 0.979217 + 0.329752i
\(896\) 4.55072 14.0057i 0.152029 0.467897i
\(897\) 8.02521 + 2.60755i 0.267954 + 0.0870636i
\(898\) 23.4643 + 32.2958i 0.783012 + 1.07772i
\(899\) −1.51698 1.10215i −0.0505940 0.0367587i
\(900\) −6.84120 0.145925i −0.228040 0.00486416i
\(901\) 33.5861 1.11892
\(902\) 0 0
\(903\) 2.39471i 0.0796909i
\(904\) −9.37469 28.8523i −0.311798 0.959614i
\(905\) −0.0619706 + 5.81123i −0.00205997 + 0.193172i
\(906\) 4.03426 2.93106i 0.134029 0.0973780i
\(907\) 21.6822 + 7.04496i 0.719945 + 0.233924i 0.645999 0.763338i \(-0.276441\pi\)
0.0739454 + 0.997262i \(0.476441\pi\)
\(908\) −1.10691 0.359656i −0.0367340 0.0119356i
\(909\) 32.1029 23.3241i 1.06479 0.773613i
\(910\) −19.6847 0.209917i −0.652542 0.00695867i
\(911\) 11.6074 + 35.7240i 0.384572 + 1.18359i 0.936791 + 0.349891i \(0.113781\pi\)
−0.552219 + 0.833699i \(0.686219\pi\)
\(912\) 0.284696i 0.00942722i
\(913\) 0 0
\(914\) 15.0214 0.496863
\(915\) 9.26334 + 6.88232i 0.306237 + 0.227522i
\(916\) 2.81907 + 2.04818i 0.0931447 + 0.0676736i
\(917\) −15.4483 21.2628i −0.510148 0.702158i
\(918\) 9.65283 + 3.13639i 0.318591 + 0.103516i
\(919\) 12.2718 37.7688i 0.404810 1.24588i −0.516244 0.856442i \(-0.672670\pi\)
0.921054 0.389435i \(-0.127330\pi\)
\(920\) 54.4272 + 18.3284i 1.79441 + 0.604269i
\(921\) −5.97899 4.34399i −0.197014 0.143139i
\(922\) 19.4464 6.31853i 0.640434 0.208090i
\(923\) 23.1808i 0.763005i
\(924\) 0 0
\(925\) −2.46724 0.860246i −0.0811225 0.0282847i
\(926\) 5.57887 + 17.1700i 0.183333 + 0.564241i
\(927\) 22.5685 31.0628i 0.741246 1.02024i
\(928\) 5.15037 + 7.08888i 0.169069 + 0.232704i
\(929\) −6.40586 + 19.7152i −0.210169 + 0.646835i 0.789292 + 0.614018i \(0.210448\pi\)
−0.999461 + 0.0328169i \(0.989552\pi\)
\(930\) 0.540809 0.169365i 0.0177338 0.00555371i
\(931\) 0.0706921 0.0513608i 0.00231684 0.00168328i
\(932\) −1.25067 + 1.72140i −0.0409672 + 0.0563864i
\(933\) 3.03202 0.985162i 0.0992638 0.0322528i
\(934\) −37.6187 −1.23092
\(935\) 0 0
\(936\) 24.1874 0.790588
\(937\) 53.1171 17.2588i 1.73526 0.563820i 0.741066 0.671432i \(-0.234320\pi\)
0.994193 + 0.107612i \(0.0343205\pi\)
\(938\) 6.01281 8.27593i 0.196325 0.270219i
\(939\) 0.509792 0.370386i 0.0166364 0.0120871i
\(940\) 1.57069 + 5.01545i 0.0512303 + 0.163586i
\(941\) 4.12983 12.7103i 0.134629 0.414344i −0.860903 0.508768i \(-0.830101\pi\)
0.995532 + 0.0944240i \(0.0301009\pi\)
\(942\) 3.63435 + 5.00226i 0.118414 + 0.162982i
\(943\) −25.2447 + 34.7464i −0.822082 + 1.13150i
\(944\) 6.53670 + 20.1179i 0.212752 + 0.654782i
\(945\) 7.15072 + 10.0661i 0.232613 + 0.327451i
\(946\) 0 0
\(947\) 42.2245i 1.37211i −0.727550 0.686055i \(-0.759341\pi\)
0.727550 0.686055i \(-0.240659\pi\)
\(948\) −1.60326 + 0.520930i −0.0520714 + 0.0169190i
\(949\) 29.0988 + 21.1415i 0.944587 + 0.686283i
\(950\) 1.63982 0.494405i 0.0532027 0.0160406i
\(951\) 1.96569 6.04977i 0.0637418 0.196177i
\(952\) −28.9500 9.40644i −0.938276 0.304864i
\(953\) −8.65152 11.9078i −0.280250 0.385731i 0.645567 0.763704i \(-0.276621\pi\)
−0.925817 + 0.377973i \(0.876621\pi\)
\(954\) 24.9652 + 18.1383i 0.808280 + 0.587250i
\(955\) −2.95822 + 3.98166i −0.0957259 + 0.128843i
\(956\) 11.5376 0.373154
\(957\) 0 0
\(958\) 17.2750i 0.558131i
\(959\) 3.47245 + 10.6871i 0.112131 + 0.345105i
\(960\) −7.23443 0.0771475i −0.233490 0.00248993i
\(961\) 24.8219 18.0342i 0.800708 0.581748i
\(962\) 1.69228 + 0.549855i 0.0545613 + 0.0177280i
\(963\) 27.9792 + 9.09098i 0.901616 + 0.292953i
\(964\) −4.64852 + 3.37735i −0.149719 + 0.108777i
\(965\) 23.4248 + 0.249800i 0.754069 + 0.00804135i
\(966\) −3.01513 9.27960i −0.0970101 0.298566i
\(967\) 32.2786i 1.03801i 0.854771 + 0.519005i \(0.173697\pi\)
−0.854771 + 0.519005i \(0.826303\pi\)
\(968\) 0 0
\(969\) 0.389123 0.0125004
\(970\) −17.9392 + 24.1456i −0.575995 + 0.775267i
\(971\) 34.6266 + 25.1577i 1.11122 + 0.807348i 0.982855 0.184379i \(-0.0590274\pi\)
0.128364 + 0.991727i \(0.459027\pi\)
\(972\) −2.59634 3.57356i −0.0832777 0.114622i
\(973\) 20.4160 + 6.63357i 0.654508 + 0.212662i
\(974\) −13.0150 + 40.0562i −0.417029 + 1.28348i
\(975\) 1.44958 + 4.80790i 0.0464237 + 0.153976i
\(976\) −32.3222 23.4834i −1.03461 0.751686i
\(977\) −11.6002 + 3.76913i −0.371123 + 0.120585i −0.488640 0.872486i \(-0.662507\pi\)
0.117516 + 0.993071i \(0.462507\pi\)
\(978\) 4.01584i 0.128412i
\(979\) 0 0
\(980\) 0.194545 + 0.273862i 0.00621451 + 0.00874821i
\(981\) −4.37971 13.4794i −0.139833 0.430363i
\(982\) −2.31691 + 3.18895i −0.0739355 + 0.101764i
\(983\) 8.26843 + 11.3805i 0.263722 + 0.362982i 0.920258 0.391313i \(-0.127979\pi\)
−0.656536 + 0.754295i \(0.727979\pi\)
\(984\) 1.75763 5.40943i 0.0560312 0.172446i
\(985\) −0.886567 2.83094i −0.0282484 0.0902012i
\(986\) −12.7765 + 9.28265i −0.406886 + 0.295620i
\(987\) 2.72422 3.74957i 0.0867130 0.119350i
\(988\) 0.347668 0.112964i 0.0110608 0.00359387i
\(989\) −21.3790 −0.679811
\(990\) 0 0
\(991\) −22.9455 −0.728887 −0.364444 0.931225i \(-0.618741\pi\)
−0.364444 + 0.931225i \(0.618741\pi\)
\(992\) 1.41504 0.459774i 0.0449275 0.0145978i
\(993\) 2.69982 3.71598i 0.0856762 0.117923i
\(994\) −21.6850 + 15.7551i −0.687806 + 0.499720i
\(995\) 11.1030 3.47713i 0.351989 0.110233i
\(996\) 0.176985 0.544702i 0.00560797 0.0172596i
\(997\) 2.13629 + 2.94035i 0.0676570 + 0.0931219i 0.841505 0.540250i \(-0.181670\pi\)
−0.773848 + 0.633372i \(0.781670\pi\)
\(998\) 4.73527 6.51754i 0.149892 0.206309i
\(999\) −0.344883 1.06144i −0.0109116 0.0335825i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.g.269.3 16
5.4 even 2 inner 605.2.j.g.269.2 16
11.2 odd 10 605.2.j.h.9.3 16
11.3 even 5 605.2.b.f.364.3 8
11.4 even 5 605.2.j.d.124.3 16
11.5 even 5 605.2.j.d.444.2 16
11.6 odd 10 55.2.j.a.4.3 yes 16
11.7 odd 10 55.2.j.a.14.2 yes 16
11.8 odd 10 605.2.b.g.364.6 8
11.9 even 5 inner 605.2.j.g.9.2 16
11.10 odd 2 605.2.j.h.269.2 16
33.17 even 10 495.2.ba.a.334.2 16
33.29 even 10 495.2.ba.a.289.3 16
44.7 even 10 880.2.cd.c.289.3 16
44.39 even 10 880.2.cd.c.609.2 16
55.3 odd 20 3025.2.a.bk.1.3 8
55.4 even 10 605.2.j.d.124.2 16
55.7 even 20 275.2.h.d.201.3 16
55.8 even 20 3025.2.a.bl.1.6 8
55.9 even 10 inner 605.2.j.g.9.3 16
55.14 even 10 605.2.b.f.364.6 8
55.17 even 20 275.2.h.d.26.3 16
55.18 even 20 275.2.h.d.201.2 16
55.19 odd 10 605.2.b.g.364.3 8
55.24 odd 10 605.2.j.h.9.2 16
55.28 even 20 275.2.h.d.26.2 16
55.29 odd 10 55.2.j.a.14.3 yes 16
55.39 odd 10 55.2.j.a.4.2 16
55.47 odd 20 3025.2.a.bk.1.6 8
55.49 even 10 605.2.j.d.444.3 16
55.52 even 20 3025.2.a.bl.1.3 8
55.54 odd 2 605.2.j.h.269.3 16
165.29 even 10 495.2.ba.a.289.2 16
165.149 even 10 495.2.ba.a.334.3 16
220.39 even 10 880.2.cd.c.609.3 16
220.139 even 10 880.2.cd.c.289.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.2 16 55.39 odd 10
55.2.j.a.4.3 yes 16 11.6 odd 10
55.2.j.a.14.2 yes 16 11.7 odd 10
55.2.j.a.14.3 yes 16 55.29 odd 10
275.2.h.d.26.2 16 55.28 even 20
275.2.h.d.26.3 16 55.17 even 20
275.2.h.d.201.2 16 55.18 even 20
275.2.h.d.201.3 16 55.7 even 20
495.2.ba.a.289.2 16 165.29 even 10
495.2.ba.a.289.3 16 33.29 even 10
495.2.ba.a.334.2 16 33.17 even 10
495.2.ba.a.334.3 16 165.149 even 10
605.2.b.f.364.3 8 11.3 even 5
605.2.b.f.364.6 8 55.14 even 10
605.2.b.g.364.3 8 55.19 odd 10
605.2.b.g.364.6 8 11.8 odd 10
605.2.j.d.124.2 16 55.4 even 10
605.2.j.d.124.3 16 11.4 even 5
605.2.j.d.444.2 16 11.5 even 5
605.2.j.d.444.3 16 55.49 even 10
605.2.j.g.9.2 16 11.9 even 5 inner
605.2.j.g.9.3 16 55.9 even 10 inner
605.2.j.g.269.2 16 5.4 even 2 inner
605.2.j.g.269.3 16 1.1 even 1 trivial
605.2.j.h.9.2 16 55.24 odd 10
605.2.j.h.9.3 16 11.2 odd 10
605.2.j.h.269.2 16 11.10 odd 2
605.2.j.h.269.3 16 55.54 odd 2
880.2.cd.c.289.2 16 220.139 even 10
880.2.cd.c.289.3 16 44.7 even 10
880.2.cd.c.609.2 16 44.39 even 10
880.2.cd.c.609.3 16 220.39 even 10
3025.2.a.bk.1.3 8 55.3 odd 20
3025.2.a.bk.1.6 8 55.47 odd 20
3025.2.a.bl.1.3 8 55.52 even 20
3025.2.a.bl.1.6 8 55.8 even 20