Properties

Label 605.2.b.g.364.3
Level $605$
Weight $2$
Character 605.364
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(364,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1480160000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 27x^{4} + 31x^{2} + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 364.3
Root \(-1.23399i\) of defining polynomial
Character \(\chi\) \(=\) 605.364
Dual form 605.2.b.g.364.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.23399i q^{2} -0.363982i q^{3} +0.477260 q^{4} +(1.29496 - 1.82293i) q^{5} -0.449152 q^{6} -2.58558i q^{7} -3.05692i q^{8} +2.86752 q^{9} +(-2.24948 - 1.59798i) q^{10} -0.173714i q^{12} +2.75929i q^{13} -3.19059 q^{14} +(-0.663514 - 0.471344i) q^{15} -2.81770 q^{16} +3.85124i q^{17} -3.53850i q^{18} +0.277591 q^{19} +(0.618034 - 0.870011i) q^{20} -0.941105 q^{21} +8.40180i q^{23} -1.11267 q^{24} +(-1.64614 - 4.72125i) q^{25} +3.40495 q^{26} -2.13567i q^{27} -1.23399i q^{28} -3.32307 q^{29} +(-0.581635 + 0.818772i) q^{30} +0.564263 q^{31} -2.63682i q^{32} +4.75241 q^{34} +(-4.71333 - 3.34823i) q^{35} +1.36855 q^{36} -0.522583i q^{37} -0.342546i q^{38} +1.00433 q^{39} +(-5.57255 - 3.95860i) q^{40} -5.11188 q^{41} +1.16132i q^{42} -2.54457i q^{43} +(3.71333 - 5.22728i) q^{45} +10.3678 q^{46} -4.92477i q^{47} +1.02559i q^{48} +0.314780 q^{49} +(-5.82599 + 2.03133i) q^{50} +1.40178 q^{51} +1.31690i q^{52} +8.72086i q^{53} -2.63541 q^{54} -7.90392 q^{56} -0.101038i q^{57} +4.10065i q^{58} -7.50726 q^{59} +(-0.316669 - 0.224953i) q^{60} +14.1791 q^{61} -0.696297i q^{62} -7.41419i q^{63} -8.88922 q^{64} +(5.03000 + 3.57318i) q^{65} +3.20618i q^{67} +1.83804i q^{68} +3.05810 q^{69} +(-4.13169 + 5.81622i) q^{70} -8.40099 q^{71} -8.76578i q^{72} +13.0353i q^{73} -0.644864 q^{74} +(-1.71845 + 0.599167i) q^{75} +0.132483 q^{76} -1.23934i q^{78} -9.70425 q^{79} +(-3.64882 + 5.13647i) q^{80} +7.82520 q^{81} +6.30802i q^{82} -3.29699i q^{83} -0.449152 q^{84} +(7.02054 + 4.98721i) q^{85} -3.13998 q^{86} +1.20954i q^{87} -2.48823 q^{89} +(-6.45043 - 4.58222i) q^{90} +7.13437 q^{91} +4.00984i q^{92} -0.205382i q^{93} -6.07713 q^{94} +(0.359470 - 0.506029i) q^{95} -0.959755 q^{96} -10.9014i q^{97} -0.388437i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{5} + 6 q^{6} - 4 q^{9} + 4 q^{14} - 8 q^{15} - 22 q^{16} - 12 q^{19} - 4 q^{20} + 4 q^{21} - 2 q^{24} - 8 q^{25} + 10 q^{26} - 24 q^{29} - 22 q^{30} + 14 q^{31} - 8 q^{34} - 14 q^{35}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23399i 0.872565i −0.899810 0.436283i \(-0.856295\pi\)
0.899810 0.436283i \(-0.143705\pi\)
\(3\) 0.363982i 0.210145i −0.994465 0.105073i \(-0.966492\pi\)
0.994465 0.105073i \(-0.0335075\pi\)
\(4\) 0.477260 0.238630
\(5\) 1.29496 1.82293i 0.579125 0.815239i
\(6\) −0.449152 −0.183365
\(7\) 2.58558i 0.977257i −0.872492 0.488629i \(-0.837497\pi\)
0.872492 0.488629i \(-0.162503\pi\)
\(8\) 3.05692i 1.08079i
\(9\) 2.86752 0.955839
\(10\) −2.24948 1.59798i −0.711349 0.505324i
\(11\) 0 0
\(12\) 0.173714i 0.0501470i
\(13\) 2.75929i 0.765290i 0.923895 + 0.382645i \(0.124987\pi\)
−0.923895 + 0.382645i \(0.875013\pi\)
\(14\) −3.19059 −0.852721
\(15\) −0.663514 0.471344i −0.171319 0.121700i
\(16\) −2.81770 −0.704426
\(17\) 3.85124i 0.934063i 0.884241 + 0.467031i \(0.154677\pi\)
−0.884241 + 0.467031i \(0.845323\pi\)
\(18\) 3.53850i 0.834032i
\(19\) 0.277591 0.0636838 0.0318419 0.999493i \(-0.489863\pi\)
0.0318419 + 0.999493i \(0.489863\pi\)
\(20\) 0.618034 0.870011i 0.138197 0.194540i
\(21\) −0.941105 −0.205366
\(22\) 0 0
\(23\) 8.40180i 1.75190i 0.482406 + 0.875948i \(0.339763\pi\)
−0.482406 + 0.875948i \(0.660237\pi\)
\(24\) −1.11267 −0.227122
\(25\) −1.64614 4.72125i −0.329228 0.944250i
\(26\) 3.40495 0.667766
\(27\) 2.13567i 0.411010i
\(28\) 1.23399i 0.233203i
\(29\) −3.32307 −0.617079 −0.308539 0.951212i \(-0.599840\pi\)
−0.308539 + 0.951212i \(0.599840\pi\)
\(30\) −0.581635 + 0.818772i −0.106192 + 0.149487i
\(31\) 0.564263 0.101345 0.0506723 0.998715i \(-0.483864\pi\)
0.0506723 + 0.998715i \(0.483864\pi\)
\(32\) 2.63682i 0.466128i
\(33\) 0 0
\(34\) 4.75241 0.815031
\(35\) −4.71333 3.34823i −0.796698 0.565954i
\(36\) 1.36855 0.228092
\(37\) 0.522583i 0.0859121i −0.999077 0.0429560i \(-0.986322\pi\)
0.999077 0.0429560i \(-0.0136775\pi\)
\(38\) 0.342546i 0.0555682i
\(39\) 1.00433 0.160822
\(40\) −5.57255 3.95860i −0.881098 0.625910i
\(41\) −5.11188 −0.798341 −0.399170 0.916877i \(-0.630702\pi\)
−0.399170 + 0.916877i \(0.630702\pi\)
\(42\) 1.16132i 0.179195i
\(43\) 2.54457i 0.388043i −0.980997 0.194022i \(-0.937847\pi\)
0.980997 0.194022i \(-0.0621532\pi\)
\(44\) 0 0
\(45\) 3.71333 5.22728i 0.553550 0.779237i
\(46\) 10.3678 1.52864
\(47\) 4.92477i 0.718351i −0.933270 0.359176i \(-0.883058\pi\)
0.933270 0.359176i \(-0.116942\pi\)
\(48\) 1.02559i 0.148032i
\(49\) 0.314780 0.0449686
\(50\) −5.82599 + 2.03133i −0.823920 + 0.287273i
\(51\) 1.40178 0.196289
\(52\) 1.31690i 0.182621i
\(53\) 8.72086i 1.19790i 0.800786 + 0.598951i \(0.204416\pi\)
−0.800786 + 0.598951i \(0.795584\pi\)
\(54\) −2.63541 −0.358633
\(55\) 0 0
\(56\) −7.90392 −1.05621
\(57\) 0.101038i 0.0133828i
\(58\) 4.10065i 0.538441i
\(59\) −7.50726 −0.977362 −0.488681 0.872463i \(-0.662522\pi\)
−0.488681 + 0.872463i \(0.662522\pi\)
\(60\) −0.316669 0.224953i −0.0408818 0.0290414i
\(61\) 14.1791 1.81544 0.907721 0.419573i \(-0.137820\pi\)
0.907721 + 0.419573i \(0.137820\pi\)
\(62\) 0.696297i 0.0884298i
\(63\) 7.41419i 0.934100i
\(64\) −8.88922 −1.11115
\(65\) 5.03000 + 3.57318i 0.623894 + 0.443199i
\(66\) 0 0
\(67\) 3.20618i 0.391698i 0.980634 + 0.195849i \(0.0627462\pi\)
−0.980634 + 0.195849i \(0.937254\pi\)
\(68\) 1.83804i 0.222895i
\(69\) 3.05810 0.368153
\(70\) −4.13169 + 5.81622i −0.493832 + 0.695171i
\(71\) −8.40099 −0.997014 −0.498507 0.866886i \(-0.666118\pi\)
−0.498507 + 0.866886i \(0.666118\pi\)
\(72\) 8.76578i 1.03306i
\(73\) 13.0353i 1.52566i 0.646598 + 0.762831i \(0.276191\pi\)
−0.646598 + 0.762831i \(0.723809\pi\)
\(74\) −0.644864 −0.0749639
\(75\) −1.71845 + 0.599167i −0.198430 + 0.0691858i
\(76\) 0.132483 0.0151969
\(77\) 0 0
\(78\) 1.23934i 0.140328i
\(79\) −9.70425 −1.09181 −0.545907 0.837846i \(-0.683815\pi\)
−0.545907 + 0.837846i \(0.683815\pi\)
\(80\) −3.64882 + 5.13647i −0.407951 + 0.574275i
\(81\) 7.82520 0.869467
\(82\) 6.30802i 0.696604i
\(83\) 3.29699i 0.361892i −0.983493 0.180946i \(-0.942084\pi\)
0.983493 0.180946i \(-0.0579159\pi\)
\(84\) −0.449152 −0.0490065
\(85\) 7.02054 + 4.98721i 0.761484 + 0.540939i
\(86\) −3.13998 −0.338593
\(87\) 1.20954i 0.129676i
\(88\) 0 0
\(89\) −2.48823 −0.263752 −0.131876 0.991266i \(-0.542100\pi\)
−0.131876 + 0.991266i \(0.542100\pi\)
\(90\) −6.45043 4.58222i −0.679935 0.483009i
\(91\) 7.13437 0.747885
\(92\) 4.00984i 0.418055i
\(93\) 0.205382i 0.0212971i
\(94\) −6.07713 −0.626808
\(95\) 0.359470 0.506029i 0.0368809 0.0519175i
\(96\) −0.959755 −0.0979546
\(97\) 10.9014i 1.10687i −0.832891 0.553437i \(-0.813316\pi\)
0.832891 0.553437i \(-0.186684\pi\)
\(98\) 0.388437i 0.0392380i
\(99\) 0 0
\(100\) −0.785638 2.25326i −0.0785638 0.225326i
\(101\) 13.8382 1.37696 0.688478 0.725257i \(-0.258279\pi\)
0.688478 + 0.725257i \(0.258279\pi\)
\(102\) 1.72979i 0.171275i
\(103\) 13.3899i 1.31935i −0.751553 0.659673i \(-0.770695\pi\)
0.751553 0.659673i \(-0.229305\pi\)
\(104\) 8.43495 0.827115
\(105\) −1.21870 + 1.71557i −0.118933 + 0.167422i
\(106\) 10.7615 1.04525
\(107\) 10.2594i 0.991815i 0.868375 + 0.495907i \(0.165164\pi\)
−0.868375 + 0.495907i \(0.834836\pi\)
\(108\) 1.01927i 0.0980794i
\(109\) 4.94262 0.473417 0.236708 0.971581i \(-0.423931\pi\)
0.236708 + 0.971581i \(0.423931\pi\)
\(110\) 0 0
\(111\) −0.190211 −0.0180540
\(112\) 7.28539i 0.688405i
\(113\) 9.92408i 0.933579i 0.884369 + 0.466789i \(0.154589\pi\)
−0.884369 + 0.466789i \(0.845411\pi\)
\(114\) −0.124681 −0.0116774
\(115\) 15.3159 + 10.8800i 1.42821 + 1.01457i
\(116\) −1.58597 −0.147254
\(117\) 7.91232i 0.731494i
\(118\) 9.26391i 0.852812i
\(119\) 9.95769 0.912820
\(120\) −1.44086 + 2.02831i −0.131532 + 0.185159i
\(121\) 0 0
\(122\) 17.4969i 1.58409i
\(123\) 1.86063i 0.167768i
\(124\) 0.269300 0.0241839
\(125\) −10.7382 3.11304i −0.960454 0.278439i
\(126\) −9.14906 −0.815063
\(127\) 11.1357i 0.988138i 0.869423 + 0.494069i \(0.164491\pi\)
−0.869423 + 0.494069i \(0.835509\pi\)
\(128\) 5.69561i 0.503425i
\(129\) −0.926179 −0.0815455
\(130\) 4.40928 6.20698i 0.386720 0.544388i
\(131\) 10.1649 0.888114 0.444057 0.895999i \(-0.353539\pi\)
0.444057 + 0.895999i \(0.353539\pi\)
\(132\) 0 0
\(133\) 0.717734i 0.0622354i
\(134\) 3.95641 0.341782
\(135\) −3.89318 2.76562i −0.335072 0.238026i
\(136\) 11.7729 1.00952
\(137\) 4.34606i 0.371309i −0.982615 0.185655i \(-0.940559\pi\)
0.982615 0.185655i \(-0.0594406\pi\)
\(138\) 3.77368i 0.321237i
\(139\) 8.30246 0.704206 0.352103 0.935961i \(-0.385467\pi\)
0.352103 + 0.935961i \(0.385467\pi\)
\(140\) −2.24948 1.59798i −0.190116 0.135054i
\(141\) −1.79253 −0.150958
\(142\) 10.3668i 0.869960i
\(143\) 0 0
\(144\) −8.07981 −0.673318
\(145\) −4.30325 + 6.05772i −0.357366 + 0.503067i
\(146\) 16.0854 1.33124
\(147\) 0.114574i 0.00944994i
\(148\) 0.249408i 0.0205012i
\(149\) −8.46690 −0.693636 −0.346818 0.937933i \(-0.612738\pi\)
−0.346818 + 0.937933i \(0.612738\pi\)
\(150\) 0.739368 + 2.12056i 0.0603691 + 0.173143i
\(151\) 11.1023 0.903493 0.451746 0.892146i \(-0.350801\pi\)
0.451746 + 0.892146i \(0.350801\pi\)
\(152\) 0.848575i 0.0688285i
\(153\) 11.0435i 0.892814i
\(154\) 0 0
\(155\) 0.730700 1.02861i 0.0586912 0.0826201i
\(156\) 0.479328 0.0383770
\(157\) 13.7662i 1.09867i 0.835604 + 0.549333i \(0.185118\pi\)
−0.835604 + 0.549333i \(0.814882\pi\)
\(158\) 11.9750i 0.952678i
\(159\) 3.17424 0.251734
\(160\) −4.80673 3.41458i −0.380006 0.269946i
\(161\) 21.7235 1.71205
\(162\) 9.65625i 0.758667i
\(163\) 8.94093i 0.700308i −0.936692 0.350154i \(-0.886129\pi\)
0.936692 0.350154i \(-0.113871\pi\)
\(164\) −2.43969 −0.190508
\(165\) 0 0
\(166\) −4.06846 −0.315774
\(167\) 16.9182i 1.30917i −0.755990 0.654583i \(-0.772844\pi\)
0.755990 0.654583i \(-0.227156\pi\)
\(168\) 2.87689i 0.221957i
\(169\) 5.38630 0.414331
\(170\) 6.15419 8.66330i 0.472005 0.664445i
\(171\) 0.795997 0.0608714
\(172\) 1.21442i 0.0925988i
\(173\) 3.37990i 0.256969i −0.991712 0.128484i \(-0.958989\pi\)
0.991712 0.128484i \(-0.0410112\pi\)
\(174\) 1.49256 0.113151
\(175\) −12.2072 + 4.25623i −0.922775 + 0.321741i
\(176\) 0 0
\(177\) 2.73251i 0.205388i
\(178\) 3.07046i 0.230141i
\(179\) −13.8239 −1.03325 −0.516624 0.856212i \(-0.672812\pi\)
−0.516624 + 0.856212i \(0.672812\pi\)
\(180\) 1.77222 2.49477i 0.132094 0.185949i
\(181\) −2.59901 −0.193183 −0.0965913 0.995324i \(-0.530794\pi\)
−0.0965913 + 0.995324i \(0.530794\pi\)
\(182\) 8.80377i 0.652579i
\(183\) 5.16093i 0.381507i
\(184\) 25.6836 1.89342
\(185\) −0.952632 0.676725i −0.0700389 0.0497538i
\(186\) −0.253440 −0.0185831
\(187\) 0 0
\(188\) 2.35039i 0.171420i
\(189\) −5.52195 −0.401663
\(190\) −0.624436 0.443584i −0.0453014 0.0321810i
\(191\) 2.21832 0.160512 0.0802560 0.996774i \(-0.474426\pi\)
0.0802560 + 0.996774i \(0.474426\pi\)
\(192\) 3.23552i 0.233504i
\(193\) 10.4765i 0.754112i 0.926190 + 0.377056i \(0.123064\pi\)
−0.926190 + 0.377056i \(0.876936\pi\)
\(194\) −13.4523 −0.965820
\(195\) 1.30058 1.83083i 0.0931361 0.131108i
\(196\) 0.150232 0.0107309
\(197\) 1.32667i 0.0945210i −0.998883 0.0472605i \(-0.984951\pi\)
0.998883 0.0472605i \(-0.0150491\pi\)
\(198\) 0 0
\(199\) 5.20321 0.368846 0.184423 0.982847i \(-0.440958\pi\)
0.184423 + 0.982847i \(0.440958\pi\)
\(200\) −14.4325 + 5.03213i −1.02053 + 0.355825i
\(201\) 1.16699 0.0823134
\(202\) 17.0763i 1.20148i
\(203\) 8.59206i 0.603045i
\(204\) 0.669015 0.0468404
\(205\) −6.61969 + 9.31859i −0.462339 + 0.650838i
\(206\) −16.5230 −1.15122
\(207\) 24.0923i 1.67453i
\(208\) 7.77487i 0.539090i
\(209\) 0 0
\(210\) 2.11700 + 1.50386i 0.146087 + 0.103776i
\(211\) 18.9165 1.30227 0.651134 0.758963i \(-0.274294\pi\)
0.651134 + 0.758963i \(0.274294\pi\)
\(212\) 4.16212i 0.285855i
\(213\) 3.05781i 0.209518i
\(214\) 12.6600 0.865423
\(215\) −4.63857 3.29512i −0.316348 0.224726i
\(216\) −6.52859 −0.444214
\(217\) 1.45895i 0.0990398i
\(218\) 6.09916i 0.413087i
\(219\) 4.74460 0.320611
\(220\) 0 0
\(221\) −10.6267 −0.714829
\(222\) 0.234719i 0.0157533i
\(223\) 21.8723i 1.46468i −0.680942 0.732338i \(-0.738429\pi\)
0.680942 0.732338i \(-0.261571\pi\)
\(224\) −6.81770 −0.455527
\(225\) −4.72034 13.5383i −0.314689 0.902551i
\(226\) 12.2462 0.814608
\(227\) 2.43865i 0.161859i −0.996720 0.0809294i \(-0.974211\pi\)
0.996720 0.0809294i \(-0.0257888\pi\)
\(228\) 0.0482215i 0.00319355i
\(229\) −7.30119 −0.482476 −0.241238 0.970466i \(-0.577553\pi\)
−0.241238 + 0.970466i \(0.577553\pi\)
\(230\) 13.4259 18.8997i 0.885275 1.24621i
\(231\) 0 0
\(232\) 10.1584i 0.666930i
\(233\) 4.45831i 0.292073i −0.989279 0.146037i \(-0.953348\pi\)
0.989279 0.146037i \(-0.0466518\pi\)
\(234\) 9.76375 0.638276
\(235\) −8.97750 6.37739i −0.585628 0.416015i
\(236\) −3.58291 −0.233228
\(237\) 3.53217i 0.229439i
\(238\) 12.2877i 0.796495i
\(239\) −24.1747 −1.56373 −0.781867 0.623446i \(-0.785732\pi\)
−0.781867 + 0.623446i \(0.785732\pi\)
\(240\) 1.86959 + 1.32811i 0.120681 + 0.0857289i
\(241\) −12.0393 −0.775522 −0.387761 0.921760i \(-0.626751\pi\)
−0.387761 + 0.921760i \(0.626751\pi\)
\(242\) 0 0
\(243\) 9.25525i 0.593725i
\(244\) 6.76710 0.433219
\(245\) 0.407629 0.573822i 0.0260424 0.0366601i
\(246\) 2.29601 0.146388
\(247\) 0.765955i 0.0487366i
\(248\) 1.72491i 0.109532i
\(249\) −1.20005 −0.0760498
\(250\) −3.84148 + 13.2509i −0.242956 + 0.838059i
\(251\) −0.536388 −0.0338565 −0.0169283 0.999857i \(-0.505389\pi\)
−0.0169283 + 0.999857i \(0.505389\pi\)
\(252\) 3.53850i 0.222904i
\(253\) 0 0
\(254\) 13.7414 0.862214
\(255\) 1.81526 2.55535i 0.113676 0.160022i
\(256\) −10.7501 −0.671882
\(257\) 23.7199i 1.47961i 0.672822 + 0.739805i \(0.265082\pi\)
−0.672822 + 0.739805i \(0.734918\pi\)
\(258\) 1.14290i 0.0711538i
\(259\) −1.35118 −0.0839582
\(260\) 2.40062 + 1.70534i 0.148880 + 0.105761i
\(261\) −9.52896 −0.589828
\(262\) 12.5435i 0.774937i
\(263\) 4.97643i 0.306860i 0.988160 + 0.153430i \(0.0490320\pi\)
−0.988160 + 0.153430i \(0.950968\pi\)
\(264\) 0 0
\(265\) 15.8975 + 11.2932i 0.976576 + 0.693735i
\(266\) −0.885679 −0.0543044
\(267\) 0.905671i 0.0554262i
\(268\) 1.53018i 0.0934708i
\(269\) −28.8046 −1.75625 −0.878124 0.478434i \(-0.841205\pi\)
−0.878124 + 0.478434i \(0.841205\pi\)
\(270\) −3.41275 + 4.80416i −0.207694 + 0.292372i
\(271\) −16.0762 −0.976559 −0.488280 0.872687i \(-0.662375\pi\)
−0.488280 + 0.872687i \(0.662375\pi\)
\(272\) 10.8517i 0.657978i
\(273\) 2.59679i 0.157165i
\(274\) −5.36301 −0.323992
\(275\) 0 0
\(276\) 1.45951 0.0878522
\(277\) 18.0038i 1.08174i 0.841105 + 0.540871i \(0.181905\pi\)
−0.841105 + 0.540871i \(0.818095\pi\)
\(278\) 10.2452i 0.614465i
\(279\) 1.61803 0.0968692
\(280\) −10.2353 + 14.4083i −0.611675 + 0.861059i
\(281\) 13.7150 0.818167 0.409084 0.912497i \(-0.365848\pi\)
0.409084 + 0.912497i \(0.365848\pi\)
\(282\) 2.21197i 0.131721i
\(283\) 20.5044i 1.21886i 0.792839 + 0.609431i \(0.208602\pi\)
−0.792839 + 0.609431i \(0.791398\pi\)
\(284\) −4.00946 −0.237918
\(285\) −0.184186 0.130841i −0.0109102 0.00775034i
\(286\) 0 0
\(287\) 13.2172i 0.780184i
\(288\) 7.56112i 0.445543i
\(289\) 2.16795 0.127526
\(290\) 7.47519 + 5.31019i 0.438958 + 0.311825i
\(291\) −3.96793 −0.232604
\(292\) 6.22121i 0.364069i
\(293\) 22.4133i 1.30940i −0.755890 0.654699i \(-0.772796\pi\)
0.755890 0.654699i \(-0.227204\pi\)
\(294\) −0.141384 −0.00824569
\(295\) −9.72162 + 13.6852i −0.566015 + 0.796783i
\(296\) −1.59750 −0.0928525
\(297\) 0 0
\(298\) 10.4481i 0.605242i
\(299\) −23.1830 −1.34071
\(300\) −0.820148 + 0.285958i −0.0473513 + 0.0165098i
\(301\) −6.57919 −0.379218
\(302\) 13.7002i 0.788356i
\(303\) 5.03688i 0.289361i
\(304\) −0.782169 −0.0448605
\(305\) 18.3614 25.8474i 1.05137 1.48002i
\(306\) 13.6276 0.779038
\(307\) 20.3044i 1.15883i −0.815032 0.579416i \(-0.803281\pi\)
0.815032 0.579416i \(-0.196719\pi\)
\(308\) 0 0
\(309\) −4.87369 −0.277254
\(310\) −1.26930 0.901679i −0.0720914 0.0512119i
\(311\) −8.75881 −0.496666 −0.248333 0.968675i \(-0.579883\pi\)
−0.248333 + 0.968675i \(0.579883\pi\)
\(312\) 3.07017i 0.173814i
\(313\) 1.73123i 0.0978550i −0.998802 0.0489275i \(-0.984420\pi\)
0.998802 0.0489275i \(-0.0155803\pi\)
\(314\) 16.9875 0.958657
\(315\) −13.5155 9.60110i −0.761515 0.540961i
\(316\) −4.63145 −0.260539
\(317\) 17.4764i 0.981573i 0.871280 + 0.490786i \(0.163290\pi\)
−0.871280 + 0.490786i \(0.836710\pi\)
\(318\) 3.91699i 0.219654i
\(319\) 0 0
\(320\) −11.5112 + 16.2044i −0.643496 + 0.905855i
\(321\) 3.73424 0.208425
\(322\) 26.8067i 1.49388i
\(323\) 1.06907i 0.0594846i
\(324\) 3.73466 0.207481
\(325\) 13.0273 4.54219i 0.722626 0.251955i
\(326\) −11.0331 −0.611064
\(327\) 1.79902i 0.0994863i
\(328\) 15.6266i 0.862835i
\(329\) −12.7334 −0.702014
\(330\) 0 0
\(331\) 12.6193 0.693620 0.346810 0.937935i \(-0.387265\pi\)
0.346810 + 0.937935i \(0.387265\pi\)
\(332\) 1.57352i 0.0863582i
\(333\) 1.49852i 0.0821181i
\(334\) −20.8769 −1.14233
\(335\) 5.84464 + 4.15189i 0.319327 + 0.226842i
\(336\) 2.65175 0.144665
\(337\) 11.8599i 0.646047i −0.946391 0.323024i \(-0.895301\pi\)
0.946391 0.323024i \(-0.104699\pi\)
\(338\) 6.64666i 0.361531i
\(339\) 3.61219 0.196187
\(340\) 3.35062 + 2.38020i 0.181713 + 0.129084i
\(341\) 0 0
\(342\) 0.982255i 0.0531143i
\(343\) 18.9129i 1.02120i
\(344\) −7.77856 −0.419392
\(345\) 3.96013 5.57471i 0.213206 0.300132i
\(346\) −4.17077 −0.224222
\(347\) 22.3040i 1.19734i −0.800994 0.598672i \(-0.795695\pi\)
0.800994 0.598672i \(-0.204305\pi\)
\(348\) 0.577265i 0.0309446i
\(349\) −15.9679 −0.854740 −0.427370 0.904077i \(-0.640560\pi\)
−0.427370 + 0.904077i \(0.640560\pi\)
\(350\) 5.25216 + 15.0636i 0.280740 + 0.805182i
\(351\) 5.89295 0.314542
\(352\) 0 0
\(353\) 24.1406i 1.28488i −0.766337 0.642439i \(-0.777923\pi\)
0.766337 0.642439i \(-0.222077\pi\)
\(354\) 3.37190 0.179214
\(355\) −10.8790 + 15.3144i −0.577396 + 0.812805i
\(356\) −1.18753 −0.0629391
\(357\) 3.62442i 0.191825i
\(358\) 17.0586i 0.901577i
\(359\) −20.3784 −1.07553 −0.537764 0.843095i \(-0.680731\pi\)
−0.537764 + 0.843095i \(0.680731\pi\)
\(360\) −15.9794 11.3514i −0.842188 0.598269i
\(361\) −18.9229 −0.995944
\(362\) 3.20716i 0.168564i
\(363\) 0 0
\(364\) 3.40495 0.178468
\(365\) 23.7624 + 16.8802i 1.24378 + 0.883549i
\(366\) −6.36855 −0.332889
\(367\) 5.40430i 0.282102i −0.990002 0.141051i \(-0.954952\pi\)
0.990002 0.141051i \(-0.0450482\pi\)
\(368\) 23.6738i 1.23408i
\(369\) −14.6584 −0.763085
\(370\) −0.835075 + 1.17554i −0.0434135 + 0.0611135i
\(371\) 22.5485 1.17066
\(372\) 0.0980205i 0.00508213i
\(373\) 17.0982i 0.885311i −0.896692 0.442656i \(-0.854036\pi\)
0.896692 0.442656i \(-0.145964\pi\)
\(374\) 0 0
\(375\) −1.13309 + 3.90852i −0.0585127 + 0.201835i
\(376\) −15.0546 −0.776384
\(377\) 9.16933i 0.472244i
\(378\) 6.81405i 0.350477i
\(379\) 8.59196 0.441339 0.220670 0.975349i \(-0.429176\pi\)
0.220670 + 0.975349i \(0.429176\pi\)
\(380\) 0.171561 0.241507i 0.00880088 0.0123891i
\(381\) 4.05321 0.207652
\(382\) 2.73739i 0.140057i
\(383\) 9.66958i 0.494093i −0.969004 0.247046i \(-0.920540\pi\)
0.969004 0.247046i \(-0.0794600\pi\)
\(384\) 2.07310 0.105792
\(385\) 0 0
\(386\) 12.9279 0.658012
\(387\) 7.29660i 0.370907i
\(388\) 5.20283i 0.264133i
\(389\) 27.3693 1.38768 0.693841 0.720129i \(-0.255917\pi\)
0.693841 + 0.720129i \(0.255917\pi\)
\(390\) −2.25923 1.60490i −0.114401 0.0812673i
\(391\) −32.3573 −1.63638
\(392\) 0.962259i 0.0486014i
\(393\) 3.69985i 0.186633i
\(394\) −1.63710 −0.0824758
\(395\) −12.5666 + 17.6902i −0.632296 + 0.890088i
\(396\) 0 0
\(397\) 10.6518i 0.534596i 0.963614 + 0.267298i \(0.0861308\pi\)
−0.963614 + 0.267298i \(0.913869\pi\)
\(398\) 6.42073i 0.321842i
\(399\) −0.261242 −0.0130785
\(400\) 4.63834 + 13.3031i 0.231917 + 0.665154i
\(401\) 13.7146 0.684875 0.342437 0.939541i \(-0.388748\pi\)
0.342437 + 0.939541i \(0.388748\pi\)
\(402\) 1.44006i 0.0718238i
\(403\) 1.55697i 0.0775581i
\(404\) 6.60444 0.328583
\(405\) 10.1333 14.2648i 0.503530 0.708823i
\(406\) 10.6026 0.526196
\(407\) 0 0
\(408\) 4.28514i 0.212146i
\(409\) 22.3083 1.10308 0.551538 0.834150i \(-0.314041\pi\)
0.551538 + 0.834150i \(0.314041\pi\)
\(410\) 11.4991 + 8.16865i 0.567899 + 0.403421i
\(411\) −1.58189 −0.0780289
\(412\) 6.39046i 0.314836i
\(413\) 19.4106i 0.955134i
\(414\) 29.7297 1.46114
\(415\) −6.01018 4.26948i −0.295028 0.209581i
\(416\) 7.27576 0.356723
\(417\) 3.02195i 0.147986i
\(418\) 0 0
\(419\) 0.510725 0.0249506 0.0124753 0.999922i \(-0.496029\pi\)
0.0124753 + 0.999922i \(0.496029\pi\)
\(420\) −0.581635 + 0.818772i −0.0283809 + 0.0399520i
\(421\) 13.2150 0.644058 0.322029 0.946730i \(-0.395635\pi\)
0.322029 + 0.946730i \(0.395635\pi\)
\(422\) 23.3429i 1.13631i
\(423\) 14.1219i 0.686628i
\(424\) 26.6590 1.29468
\(425\) 18.1827 6.33969i 0.881989 0.307520i
\(426\) 3.77332 0.182818
\(427\) 36.6611i 1.77415i
\(428\) 4.89641i 0.236677i
\(429\) 0 0
\(430\) −4.06616 + 5.72397i −0.196088 + 0.276034i
\(431\) −29.4064 −1.41645 −0.708227 0.705985i \(-0.750505\pi\)
−0.708227 + 0.705985i \(0.750505\pi\)
\(432\) 6.01769i 0.289526i
\(433\) 10.2165i 0.490975i 0.969400 + 0.245488i \(0.0789481\pi\)
−0.969400 + 0.245488i \(0.921052\pi\)
\(434\) −1.80033 −0.0864187
\(435\) 2.20490 + 1.56631i 0.105717 + 0.0750987i
\(436\) 2.35891 0.112971
\(437\) 2.33226i 0.111567i
\(438\) 5.85481i 0.279754i
\(439\) 1.53306 0.0731691 0.0365846 0.999331i \(-0.488352\pi\)
0.0365846 + 0.999331i \(0.488352\pi\)
\(440\) 0 0
\(441\) 0.902638 0.0429827
\(442\) 13.1133i 0.623735i
\(443\) 3.39254i 0.161185i −0.996747 0.0805923i \(-0.974319\pi\)
0.996747 0.0805923i \(-0.0256812\pi\)
\(444\) −0.0907801 −0.00430823
\(445\) −3.22216 + 4.53587i −0.152745 + 0.215021i
\(446\) −26.9902 −1.27802
\(447\) 3.08180i 0.145764i
\(448\) 22.9838i 1.08588i
\(449\) 32.3501 1.52669 0.763347 0.645989i \(-0.223555\pi\)
0.763347 + 0.645989i \(0.223555\pi\)
\(450\) −16.7061 + 5.82487i −0.787535 + 0.274587i
\(451\) 0 0
\(452\) 4.73637i 0.222780i
\(453\) 4.04104i 0.189865i
\(454\) −3.00928 −0.141232
\(455\) 9.23875 13.0055i 0.433119 0.609705i
\(456\) −0.308866 −0.0144640
\(457\) 12.1730i 0.569427i 0.958613 + 0.284714i \(0.0918985\pi\)
−0.958613 + 0.284714i \(0.908101\pi\)
\(458\) 9.00962i 0.420992i
\(459\) 8.22499 0.383910
\(460\) 7.30966 + 5.19260i 0.340814 + 0.242106i
\(461\) −16.5699 −0.771739 −0.385869 0.922553i \(-0.626098\pi\)
−0.385869 + 0.922553i \(0.626098\pi\)
\(462\) 0 0
\(463\) 14.6302i 0.679924i −0.940439 0.339962i \(-0.889586\pi\)
0.940439 0.339962i \(-0.110414\pi\)
\(464\) 9.36343 0.434686
\(465\) −0.374396 0.265962i −0.0173622 0.0123337i
\(466\) −5.50152 −0.254853
\(467\) 30.4853i 1.41069i 0.708862 + 0.705347i \(0.249209\pi\)
−0.708862 + 0.705347i \(0.750791\pi\)
\(468\) 3.77623i 0.174556i
\(469\) 8.28984 0.382789
\(470\) −7.86966 + 11.0782i −0.363000 + 0.510998i
\(471\) 5.01067 0.230879
\(472\) 22.9491i 1.05632i
\(473\) 0 0
\(474\) 4.35868 0.200201
\(475\) −0.456954 1.31058i −0.0209665 0.0601334i
\(476\) 4.75241 0.217826
\(477\) 25.0072i 1.14500i
\(478\) 29.8315i 1.36446i
\(479\) −13.9993 −0.639643 −0.319822 0.947478i \(-0.603623\pi\)
−0.319822 + 0.947478i \(0.603623\pi\)
\(480\) −1.24285 + 1.74957i −0.0567280 + 0.0798564i
\(481\) 1.44196 0.0657477
\(482\) 14.8565i 0.676693i
\(483\) 7.90697i 0.359780i
\(484\) 0 0
\(485\) −19.8726 14.1170i −0.902367 0.641019i
\(486\) −11.4209 −0.518064
\(487\) 34.1311i 1.54663i 0.634024 + 0.773313i \(0.281402\pi\)
−0.634024 + 0.773313i \(0.718598\pi\)
\(488\) 43.3443i 1.96210i
\(489\) −3.25434 −0.147166
\(490\) −0.708093 0.503011i −0.0319884 0.0227237i
\(491\) −3.19431 −0.144157 −0.0720786 0.997399i \(-0.522963\pi\)
−0.0720786 + 0.997399i \(0.522963\pi\)
\(492\) 0.888005i 0.0400344i
\(493\) 12.7979i 0.576390i
\(494\) 0.945184 0.0425258
\(495\) 0 0
\(496\) −1.58993 −0.0713898
\(497\) 21.7214i 0.974339i
\(498\) 1.48085i 0.0663584i
\(499\) −6.52850 −0.292256 −0.146128 0.989266i \(-0.546681\pi\)
−0.146128 + 0.989266i \(0.546681\pi\)
\(500\) −5.12491 1.48573i −0.229193 0.0664439i
\(501\) −6.15791 −0.275115
\(502\) 0.661899i 0.0295420i
\(503\) 1.00387i 0.0447603i −0.999750 0.0223802i \(-0.992876\pi\)
0.999750 0.0223802i \(-0.00712442\pi\)
\(504\) −22.6646 −1.00956
\(505\) 17.9200 25.2261i 0.797430 1.12255i
\(506\) 0 0
\(507\) 1.96052i 0.0870697i
\(508\) 5.31465i 0.235799i
\(509\) 4.27401 0.189442 0.0947211 0.995504i \(-0.469804\pi\)
0.0947211 + 0.995504i \(0.469804\pi\)
\(510\) −3.15329 2.24002i −0.139630 0.0991896i
\(511\) 33.7037 1.49096
\(512\) 24.6568i 1.08969i
\(513\) 0.592844i 0.0261747i
\(514\) 29.2703 1.29106
\(515\) −24.4088 17.3394i −1.07558 0.764066i
\(516\) −0.442028 −0.0194592
\(517\) 0 0
\(518\) 1.66735i 0.0732590i
\(519\) −1.23022 −0.0540008
\(520\) 10.9229 15.3763i 0.479003 0.674296i
\(521\) −9.88817 −0.433208 −0.216604 0.976259i \(-0.569498\pi\)
−0.216604 + 0.976259i \(0.569498\pi\)
\(522\) 11.7587i 0.514663i
\(523\) 44.1670i 1.93129i −0.259870 0.965644i \(-0.583680\pi\)
0.259870 0.965644i \(-0.416320\pi\)
\(524\) 4.85131 0.211931
\(525\) 1.54919 + 4.44319i 0.0676123 + 0.193917i
\(526\) 6.14089 0.267755
\(527\) 2.17311i 0.0946623i
\(528\) 0 0
\(529\) −47.5902 −2.06914
\(530\) 13.9357 19.6174i 0.605329 0.852127i
\(531\) −21.5272 −0.934200
\(532\) 0.342546i 0.0148512i
\(533\) 14.1052i 0.610963i
\(534\) 1.11759 0.0483630
\(535\) 18.7022 + 13.2856i 0.808566 + 0.574385i
\(536\) 9.80105 0.423341
\(537\) 5.03166i 0.217132i
\(538\) 35.5447i 1.53244i
\(539\) 0 0
\(540\) −1.85806 1.31992i −0.0799581 0.0568002i
\(541\) −21.2695 −0.914449 −0.457224 0.889351i \(-0.651156\pi\)
−0.457224 + 0.889351i \(0.651156\pi\)
\(542\) 19.8379i 0.852112i
\(543\) 0.945992i 0.0405964i
\(544\) 10.1550 0.435393
\(545\) 6.40050 9.01004i 0.274168 0.385948i
\(546\) −3.20442 −0.137136
\(547\) 4.13393i 0.176754i 0.996087 + 0.0883771i \(0.0281681\pi\)
−0.996087 + 0.0883771i \(0.971832\pi\)
\(548\) 2.07420i 0.0886055i
\(549\) 40.6587 1.73527
\(550\) 0 0
\(551\) −0.922455 −0.0392979
\(552\) 9.34839i 0.397894i
\(553\) 25.0911i 1.06698i
\(554\) 22.2166 0.943891
\(555\) −0.246316 + 0.346741i −0.0104555 + 0.0147183i
\(556\) 3.96243 0.168045
\(557\) 31.6671i 1.34178i 0.741557 + 0.670890i \(0.234088\pi\)
−0.741557 + 0.670890i \(0.765912\pi\)
\(558\) 1.99664i 0.0845247i
\(559\) 7.02122 0.296966
\(560\) 13.2808 + 9.43431i 0.561214 + 0.398673i
\(561\) 0 0
\(562\) 16.9242i 0.713904i
\(563\) 12.7467i 0.537210i 0.963250 + 0.268605i \(0.0865626\pi\)
−0.963250 + 0.268605i \(0.913437\pi\)
\(564\) −0.855502 −0.0360231
\(565\) 18.0909 + 12.8513i 0.761090 + 0.540659i
\(566\) 25.3023 1.06354
\(567\) 20.2327i 0.849693i
\(568\) 25.6812i 1.07756i
\(569\) −15.6352 −0.655461 −0.327730 0.944771i \(-0.606284\pi\)
−0.327730 + 0.944771i \(0.606284\pi\)
\(570\) −0.161457 + 0.227284i −0.00676268 + 0.00951987i
\(571\) −3.61999 −0.151492 −0.0757460 0.997127i \(-0.524134\pi\)
−0.0757460 + 0.997127i \(0.524134\pi\)
\(572\) 0 0
\(573\) 0.807429i 0.0337308i
\(574\) 16.3099 0.680762
\(575\) 39.6670 13.8305i 1.65423 0.576774i
\(576\) −25.4900 −1.06208
\(577\) 23.8352i 0.992273i −0.868245 0.496136i \(-0.834752\pi\)
0.868245 0.496136i \(-0.165248\pi\)
\(578\) 2.67523i 0.111275i
\(579\) 3.81325 0.158473
\(580\) −2.05377 + 2.89111i −0.0852782 + 0.120047i
\(581\) −8.52463 −0.353661
\(582\) 4.89641i 0.202963i
\(583\) 0 0
\(584\) 39.8478 1.64891
\(585\) 14.4236 + 10.2462i 0.596342 + 0.423627i
\(586\) −27.6578 −1.14253
\(587\) 1.24698i 0.0514684i −0.999669 0.0257342i \(-0.991808\pi\)
0.999669 0.0257342i \(-0.00819235\pi\)
\(588\) 0.0546818i 0.00225504i
\(589\) 0.156634 0.00645401
\(590\) 16.8874 + 11.9964i 0.695245 + 0.493885i
\(591\) −0.482883 −0.0198631
\(592\) 1.47248i 0.0605187i
\(593\) 18.5288i 0.760886i 0.924804 + 0.380443i \(0.124228\pi\)
−0.924804 + 0.380443i \(0.875772\pi\)
\(594\) 0 0
\(595\) 12.8948 18.1522i 0.528637 0.744166i
\(596\) −4.04091 −0.165522
\(597\) 1.89388i 0.0775112i
\(598\) 28.6077i 1.16986i
\(599\) −33.8359 −1.38250 −0.691248 0.722617i \(-0.742939\pi\)
−0.691248 + 0.722617i \(0.742939\pi\)
\(600\) 1.83161 + 5.25318i 0.0747750 + 0.214460i
\(601\) −21.3026 −0.868951 −0.434475 0.900684i \(-0.643066\pi\)
−0.434475 + 0.900684i \(0.643066\pi\)
\(602\) 8.11868i 0.330893i
\(603\) 9.19378i 0.374400i
\(604\) 5.29869 0.215601
\(605\) 0 0
\(606\) −6.21547 −0.252486
\(607\) 37.4601i 1.52046i −0.649654 0.760230i \(-0.725086\pi\)
0.649654 0.760230i \(-0.274914\pi\)
\(608\) 0.731957i 0.0296848i
\(609\) 3.12736 0.126727
\(610\) −31.8956 22.6578i −1.29141 0.917387i
\(611\) 13.5889 0.549747
\(612\) 5.27062i 0.213052i
\(613\) 20.0047i 0.807983i −0.914763 0.403991i \(-0.867623\pi\)
0.914763 0.403991i \(-0.132377\pi\)
\(614\) −25.0555 −1.01116
\(615\) 3.39180 + 2.40945i 0.136771 + 0.0971584i
\(616\) 0 0
\(617\) 34.7932i 1.40072i −0.713790 0.700360i \(-0.753023\pi\)
0.713790 0.700360i \(-0.246977\pi\)
\(618\) 6.01410i 0.241922i
\(619\) 46.0840 1.85227 0.926136 0.377189i \(-0.123109\pi\)
0.926136 + 0.377189i \(0.123109\pi\)
\(620\) 0.348734 0.490915i 0.0140055 0.0197156i
\(621\) 17.9435 0.720047
\(622\) 10.8083i 0.433374i
\(623\) 6.43351i 0.257753i
\(624\) −2.82991 −0.113287
\(625\) −19.5804 + 15.5437i −0.783217 + 0.621748i
\(626\) −2.13633 −0.0853849
\(627\) 0 0
\(628\) 6.57008i 0.262175i
\(629\) 2.01259 0.0802473
\(630\) −11.8477 + 16.6781i −0.472024 + 0.664471i
\(631\) −20.5380 −0.817604 −0.408802 0.912623i \(-0.634053\pi\)
−0.408802 + 0.912623i \(0.634053\pi\)
\(632\) 29.6651i 1.18002i
\(633\) 6.88529i 0.273666i
\(634\) 21.5658 0.856486
\(635\) 20.2997 + 14.4204i 0.805568 + 0.572255i
\(636\) 1.51494 0.0600712
\(637\) 0.868571i 0.0344140i
\(638\) 0 0
\(639\) −24.0900 −0.952985
\(640\) 10.3827 + 7.37560i 0.410412 + 0.291546i
\(641\) 15.9095 0.628389 0.314194 0.949359i \(-0.398266\pi\)
0.314194 + 0.949359i \(0.398266\pi\)
\(642\) 4.60803i 0.181865i
\(643\) 42.3039i 1.66830i 0.551536 + 0.834151i \(0.314042\pi\)
−0.551536 + 0.834151i \(0.685958\pi\)
\(644\) 10.3678 0.408547
\(645\) −1.19937 + 1.68836i −0.0472250 + 0.0664790i
\(646\) 1.31923 0.0519042
\(647\) 7.48891i 0.294419i 0.989105 + 0.147210i \(0.0470292\pi\)
−0.989105 + 0.147210i \(0.952971\pi\)
\(648\) 23.9210i 0.939707i
\(649\) 0 0
\(650\) −5.60503 16.0756i −0.219847 0.630538i
\(651\) −0.531031 −0.0208127
\(652\) 4.26715i 0.167114i
\(653\) 16.4702i 0.644531i 0.946649 + 0.322265i \(0.104444\pi\)
−0.946649 + 0.322265i \(0.895556\pi\)
\(654\) −2.21999 −0.0868083
\(655\) 13.1632 18.5299i 0.514329 0.724025i
\(656\) 14.4037 0.562372
\(657\) 37.3788i 1.45829i
\(658\) 15.7129i 0.612553i
\(659\) −23.7359 −0.924619 −0.462310 0.886719i \(-0.652979\pi\)
−0.462310 + 0.886719i \(0.652979\pi\)
\(660\) 0 0
\(661\) 13.4183 0.521911 0.260956 0.965351i \(-0.415962\pi\)
0.260956 + 0.965351i \(0.415962\pi\)
\(662\) 15.5721i 0.605229i
\(663\) 3.86793i 0.150218i
\(664\) −10.0786 −0.391127
\(665\) −1.30838 0.929439i −0.0507367 0.0360421i
\(666\) −1.84916 −0.0716534
\(667\) 27.9198i 1.08106i
\(668\) 8.07436i 0.312407i
\(669\) −7.96112 −0.307795
\(670\) 5.12340 7.21225i 0.197934 0.278634i
\(671\) 0 0
\(672\) 2.48152i 0.0957268i
\(673\) 48.2870i 1.86133i 0.365875 + 0.930664i \(0.380770\pi\)
−0.365875 + 0.930664i \(0.619230\pi\)
\(674\) −14.6350 −0.563718
\(675\) −10.0830 + 3.51562i −0.388097 + 0.135316i
\(676\) 2.57067 0.0988718
\(677\) 24.3637i 0.936374i −0.883629 0.468187i \(-0.844907\pi\)
0.883629 0.468187i \(-0.155093\pi\)
\(678\) 4.45742i 0.171186i
\(679\) −28.1866 −1.08170
\(680\) 15.2455 21.4612i 0.584639 0.823001i
\(681\) −0.887625 −0.0340139
\(682\) 0 0
\(683\) 38.9856i 1.49174i 0.666090 + 0.745871i \(0.267966\pi\)
−0.666090 + 0.745871i \(0.732034\pi\)
\(684\) 0.379898 0.0145257
\(685\) −7.92257 5.62799i −0.302706 0.215034i
\(686\) −23.3384 −0.891066
\(687\) 2.65750i 0.101390i
\(688\) 7.16984i 0.273348i
\(689\) −24.0634 −0.916743
\(690\) −6.87915 4.88678i −0.261885 0.186036i
\(691\) 5.91854 0.225152 0.112576 0.993643i \(-0.464090\pi\)
0.112576 + 0.993643i \(0.464090\pi\)
\(692\) 1.61309i 0.0613205i
\(693\) 0 0
\(694\) −27.5230 −1.04476
\(695\) 10.7514 15.1348i 0.407823 0.574096i
\(696\) 3.69747 0.140152
\(697\) 19.6871i 0.745701i
\(698\) 19.7042i 0.745817i
\(699\) −1.62275 −0.0613779
\(700\) −5.82599 + 2.03133i −0.220202 + 0.0767770i
\(701\) 11.9672 0.451996 0.225998 0.974128i \(-0.427436\pi\)
0.225998 + 0.974128i \(0.427436\pi\)
\(702\) 7.27186i 0.274459i
\(703\) 0.145064i 0.00547120i
\(704\) 0 0
\(705\) −2.32126 + 3.26765i −0.0874236 + 0.123067i
\(706\) −29.7894 −1.12114
\(707\) 35.7799i 1.34564i
\(708\) 1.30412i 0.0490117i
\(709\) −6.80850 −0.255699 −0.127849 0.991794i \(-0.540807\pi\)
−0.127849 + 0.991794i \(0.540807\pi\)
\(710\) 18.8979 + 13.4246i 0.709225 + 0.503816i
\(711\) −27.8271 −1.04360
\(712\) 7.60633i 0.285059i
\(713\) 4.74082i 0.177545i
\(714\) −4.47251 −0.167380
\(715\) 0 0
\(716\) −6.59761 −0.246564
\(717\) 8.79917i 0.328611i
\(718\) 25.1468i 0.938469i
\(719\) 9.26411 0.345493 0.172746 0.984966i \(-0.444736\pi\)
0.172746 + 0.984966i \(0.444736\pi\)
\(720\) −10.4631 + 14.7289i −0.389935 + 0.548915i
\(721\) −34.6206 −1.28934
\(722\) 23.3508i 0.869026i
\(723\) 4.38210i 0.162972i
\(724\) −1.24040 −0.0460992
\(725\) 5.47025 + 15.6891i 0.203160 + 0.582677i
\(726\) 0 0
\(727\) 19.4121i 0.719956i −0.932961 0.359978i \(-0.882784\pi\)
0.932961 0.359978i \(-0.117216\pi\)
\(728\) 21.8092i 0.808304i
\(729\) 20.1069 0.744699
\(730\) 20.8300 29.3226i 0.770954 1.08528i
\(731\) 9.79975 0.362457
\(732\) 2.46310i 0.0910390i
\(733\) 11.5620i 0.427054i 0.976937 + 0.213527i \(0.0684951\pi\)
−0.976937 + 0.213527i \(0.931505\pi\)
\(734\) −6.66887 −0.246153
\(735\) −0.208861 0.148370i −0.00770396 0.00547270i
\(736\) 22.1540 0.816608
\(737\) 0 0
\(738\) 18.0884i 0.665842i
\(739\) −9.10736 −0.335020 −0.167510 0.985870i \(-0.553573\pi\)
−0.167510 + 0.985870i \(0.553573\pi\)
\(740\) −0.454653 0.322974i −0.0167134 0.0118728i
\(741\) 0.278794 0.0102418
\(742\) 27.8247i 1.02148i
\(743\) 0.0731008i 0.00268181i 0.999999 + 0.00134090i \(0.000426823\pi\)
−0.999999 + 0.00134090i \(0.999573\pi\)
\(744\) −0.627836 −0.0230176
\(745\) −10.9643 + 15.4346i −0.401702 + 0.565479i
\(746\) −21.0991 −0.772492
\(747\) 9.45417i 0.345910i
\(748\) 0 0
\(749\) 26.5265 0.969258
\(750\) 4.82308 + 1.39823i 0.176114 + 0.0510561i
\(751\) −38.5239 −1.40576 −0.702878 0.711310i \(-0.748102\pi\)
−0.702878 + 0.711310i \(0.748102\pi\)
\(752\) 13.8765i 0.506025i
\(753\) 0.195236i 0.00711479i
\(754\) −11.3149 −0.412064
\(755\) 14.3771 20.2387i 0.523235 0.736562i
\(756\) −2.63541 −0.0958488
\(757\) 28.1617i 1.02355i −0.859118 0.511777i \(-0.828987\pi\)
0.859118 0.511777i \(-0.171013\pi\)
\(758\) 10.6024i 0.385097i
\(759\) 0 0
\(760\) −1.54689 1.09887i −0.0561116 0.0398603i
\(761\) −29.4894 −1.06899 −0.534496 0.845171i \(-0.679498\pi\)
−0.534496 + 0.845171i \(0.679498\pi\)
\(762\) 5.00164i 0.181190i
\(763\) 12.7795i 0.462650i
\(764\) 1.05871 0.0383030
\(765\) 20.1315 + 14.3009i 0.727856 + 0.517051i
\(766\) −11.9322 −0.431128
\(767\) 20.7147i 0.747965i
\(768\) 3.91285i 0.141193i
\(769\) −8.42410 −0.303781 −0.151890 0.988397i \(-0.548536\pi\)
−0.151890 + 0.988397i \(0.548536\pi\)
\(770\) 0 0
\(771\) 8.63364 0.310933
\(772\) 5.00000i 0.179954i
\(773\) 0.897483i 0.0322802i 0.999870 + 0.0161401i \(0.00513778\pi\)
−0.999870 + 0.0161401i \(0.994862\pi\)
\(774\) −9.00396 −0.323641
\(775\) −0.928857 2.66403i −0.0333655 0.0956947i
\(776\) −33.3249 −1.19629
\(777\) 0.491805i 0.0176434i
\(778\) 33.7736i 1.21084i
\(779\) −1.41901 −0.0508413
\(780\) 0.620713 0.873782i 0.0222251 0.0312864i
\(781\) 0 0
\(782\) 39.9287i 1.42785i
\(783\) 7.09699i 0.253626i
\(784\) −0.886957 −0.0316770
\(785\) 25.0949 + 17.8268i 0.895675 + 0.636265i
\(786\) −4.56559 −0.162849
\(787\) 37.8007i 1.34745i 0.738983 + 0.673724i \(0.235306\pi\)
−0.738983 + 0.673724i \(0.764694\pi\)
\(788\) 0.633165i 0.0225556i
\(789\) 1.81133 0.0644852
\(790\) 21.8295 + 15.5072i 0.776660 + 0.551720i
\(791\) 25.6595 0.912346
\(792\) 0 0
\(793\) 39.1242i 1.38934i
\(794\) 13.1442 0.466470
\(795\) 4.11052 5.78641i 0.145785 0.205223i
\(796\) 2.48329 0.0880177
\(797\) 15.1906i 0.538078i −0.963129 0.269039i \(-0.913294\pi\)
0.963129 0.269039i \(-0.0867061\pi\)
\(798\) 0.322371i 0.0114118i
\(799\) 18.9665 0.670985
\(800\) −12.4491 + 4.34058i −0.440142 + 0.153463i
\(801\) −7.13504 −0.252104
\(802\) 16.9237i 0.597598i
\(803\) 0 0
\(804\) 0.556959 0.0196424
\(805\) 28.1311 39.6004i 0.991492 1.39573i
\(806\) 1.92129 0.0676745
\(807\) 10.4844i 0.369067i
\(808\) 42.3024i 1.48819i
\(809\) 39.7109 1.39616 0.698080 0.716020i \(-0.254038\pi\)
0.698080 + 0.716020i \(0.254038\pi\)
\(810\) −17.6027 12.5045i −0.618494 0.439363i
\(811\) 8.81679 0.309599 0.154800 0.987946i \(-0.450527\pi\)
0.154800 + 0.987946i \(0.450527\pi\)
\(812\) 4.10065i 0.143905i
\(813\) 5.85145i 0.205219i
\(814\) 0 0
\(815\) −16.2987 11.5782i −0.570918 0.405566i
\(816\) −3.94981 −0.138271
\(817\) 0.706350i 0.0247121i
\(818\) 27.5283i 0.962506i
\(819\) 20.4579 0.714858
\(820\) −3.15931 + 4.44739i −0.110328 + 0.155310i
\(821\) −8.42070 −0.293884 −0.146942 0.989145i \(-0.546943\pi\)
−0.146942 + 0.989145i \(0.546943\pi\)
\(822\) 1.95204i 0.0680853i
\(823\) 23.9040i 0.833241i 0.909080 + 0.416621i \(0.136786\pi\)
−0.909080 + 0.416621i \(0.863214\pi\)
\(824\) −40.9319 −1.42593
\(825\) 0 0
\(826\) 23.9526 0.833416
\(827\) 47.5118i 1.65215i 0.563561 + 0.826074i \(0.309431\pi\)
−0.563561 + 0.826074i \(0.690569\pi\)
\(828\) 11.4983i 0.399593i
\(829\) 28.2003 0.979437 0.489718 0.871881i \(-0.337100\pi\)
0.489718 + 0.871881i \(0.337100\pi\)
\(830\) −5.26851 + 7.41652i −0.182873 + 0.257431i
\(831\) 6.55306 0.227323
\(832\) 24.5280i 0.850354i
\(833\) 1.21229i 0.0420035i
\(834\) −3.72907 −0.129127
\(835\) −30.8406 21.9084i −1.06728 0.758171i
\(836\) 0 0
\(837\) 1.20508i 0.0416537i
\(838\) 0.630232i 0.0217710i
\(839\) −22.3406 −0.771284 −0.385642 0.922648i \(-0.626020\pi\)
−0.385642 + 0.922648i \(0.626020\pi\)
\(840\) 5.24436 + 3.72546i 0.180948 + 0.128541i
\(841\) −17.9572 −0.619214
\(842\) 16.3072i 0.561983i
\(843\) 4.99201i 0.171934i
\(844\) 9.02811 0.310760
\(845\) 6.97506 9.81884i 0.239949 0.337778i
\(846\) −17.4263 −0.599128
\(847\) 0 0
\(848\) 24.5728i 0.843833i
\(849\) 7.46325 0.256138
\(850\) −7.82314 22.4373i −0.268331 0.769593i
\(851\) 4.39063 0.150509
\(852\) 1.45937i 0.0499973i
\(853\) 8.15265i 0.279141i −0.990212 0.139571i \(-0.955428\pi\)
0.990212 0.139571i \(-0.0445723\pi\)
\(854\) −45.2395 −1.54807
\(855\) 1.03079 1.45105i 0.0352522 0.0496247i
\(856\) 31.3622 1.07194
\(857\) 4.42433i 0.151132i −0.997141 0.0755662i \(-0.975924\pi\)
0.997141 0.0755662i \(-0.0240764\pi\)
\(858\) 0 0
\(859\) −2.90501 −0.0991176 −0.0495588 0.998771i \(-0.515782\pi\)
−0.0495588 + 0.998771i \(0.515782\pi\)
\(860\) −2.21381 1.57263i −0.0754901 0.0536263i
\(861\) 4.81081 0.163952
\(862\) 36.2873i 1.23595i
\(863\) 17.7101i 0.602858i −0.953489 0.301429i \(-0.902536\pi\)
0.953489 0.301429i \(-0.0974636\pi\)
\(864\) −5.63138 −0.191583
\(865\) −6.16131 4.37684i −0.209491 0.148817i
\(866\) 12.6071 0.428408
\(867\) 0.789095i 0.0267991i
\(868\) 0.696297i 0.0236339i
\(869\) 0 0
\(870\) 1.93281 2.72084i 0.0655285 0.0922450i
\(871\) −8.84680 −0.299762
\(872\) 15.1092i 0.511662i
\(873\) 31.2601i 1.05799i
\(874\) 2.87800 0.0973497
\(875\) −8.04902 + 27.7645i −0.272107 + 0.938610i
\(876\) 2.26441 0.0765073
\(877\) 51.3798i 1.73497i −0.497461 0.867487i \(-0.665734\pi\)
0.497461 0.867487i \(-0.334266\pi\)
\(878\) 1.89179i 0.0638448i
\(879\) −8.15803 −0.275164
\(880\) 0 0
\(881\) 33.6727 1.13446 0.567231 0.823559i \(-0.308015\pi\)
0.567231 + 0.823559i \(0.308015\pi\)
\(882\) 1.11385i 0.0375052i
\(883\) 13.9106i 0.468128i −0.972221 0.234064i \(-0.924797\pi\)
0.972221 0.234064i \(-0.0752026\pi\)
\(884\) −5.07170 −0.170580
\(885\) 4.98117 + 3.53850i 0.167440 + 0.118945i
\(886\) −4.18638 −0.140644
\(887\) 44.7006i 1.50090i −0.660927 0.750450i \(-0.729837\pi\)
0.660927 0.750450i \(-0.270163\pi\)
\(888\) 0.581460i 0.0195125i
\(889\) 28.7923 0.965664
\(890\) 5.59723 + 3.97613i 0.187620 + 0.133280i
\(891\) 0 0
\(892\) 10.4388i 0.349516i
\(893\) 1.36707i 0.0457473i
\(894\) 3.80292 0.127189
\(895\) −17.9015 + 25.2000i −0.598380 + 0.842344i
\(896\) 14.7264 0.491976
\(897\) 8.43821i 0.281744i
\(898\) 39.9198i 1.33214i
\(899\) −1.87509 −0.0625376
\(900\) −2.25283 6.46127i −0.0750943 0.215376i
\(901\) −33.5861 −1.11892
\(902\) 0 0
\(903\) 2.39471i 0.0796909i
\(904\) 30.3371 1.00900
\(905\) −3.36562 + 4.73781i −0.111877 + 0.157490i
\(906\) −4.98662 −0.165669
\(907\) 22.7980i 0.756994i −0.925602 0.378497i \(-0.876441\pi\)
0.925602 0.378497i \(-0.123559\pi\)
\(908\) 1.16387i 0.0386244i
\(909\) 39.6814 1.31615
\(910\) −16.0486 11.4006i −0.532007 0.377925i
\(911\) 37.5625 1.24450 0.622250 0.782819i \(-0.286219\pi\)
0.622250 + 0.782819i \(0.286219\pi\)
\(912\) 0.284696i 0.00942722i
\(913\) 0 0
\(914\) 15.0214 0.496863
\(915\) −9.40801 6.68321i −0.311019 0.220940i
\(916\) −3.48456 −0.115133
\(917\) 26.2822i 0.867915i
\(918\) 10.1496i 0.334986i
\(919\) −39.7124 −1.30999 −0.654996 0.755632i \(-0.727330\pi\)
−0.654996 + 0.755632i \(0.727330\pi\)
\(920\) 33.2594 46.8195i 1.09653 1.54359i
\(921\) −7.39044 −0.243523
\(922\) 20.4472i 0.673392i
\(923\) 23.1808i 0.763005i
\(924\) 0 0
\(925\) −2.46724 + 0.860246i −0.0811225 + 0.0282847i
\(926\) −18.0536 −0.593278
\(927\) 38.3958i 1.26108i
\(928\) 8.76234i 0.287638i
\(929\) −20.7298 −0.680123 −0.340061 0.940403i \(-0.610448\pi\)
−0.340061 + 0.940403i \(0.610448\pi\)
\(930\) −0.328195 + 0.462003i −0.0107619 + 0.0151497i
\(931\) 0.0873802 0.00286377
\(932\) 2.12777i 0.0696975i
\(933\) 3.18805i 0.104372i
\(934\) 37.6187 1.23092
\(935\) 0 0
\(936\) 24.1874 0.790588
\(937\) 55.8506i 1.82456i −0.409568 0.912280i \(-0.634320\pi\)
0.409568 0.912280i \(-0.365680\pi\)
\(938\) 10.2296i 0.334009i
\(939\) −0.630138 −0.0205638
\(940\) −4.28460 3.04367i −0.139748 0.0992737i
\(941\) −13.3644 −0.435667 −0.217834 0.975986i \(-0.569899\pi\)
−0.217834 + 0.975986i \(0.569899\pi\)
\(942\) 6.18313i 0.201457i
\(943\) 42.9489i 1.39861i
\(944\) 21.1532 0.688479
\(945\) −7.15072 + 10.0661i −0.232613 + 0.327451i
\(946\) 0 0
\(947\) 42.2245i 1.37211i 0.727550 + 0.686055i \(0.240659\pi\)
−0.727550 + 0.686055i \(0.759341\pi\)
\(948\) 1.68577i 0.0547511i
\(949\) −35.9681 −1.16757
\(950\) −1.61724 + 0.563879i −0.0524703 + 0.0182946i
\(951\) 6.36110 0.206273
\(952\) 30.4399i 0.986562i
\(953\) 14.7188i 0.476790i 0.971168 + 0.238395i \(0.0766213\pi\)
−0.971168 + 0.238395i \(0.923379\pi\)
\(954\) 30.8587 0.999089
\(955\) 2.87264 4.04384i 0.0929565 0.130856i
\(956\) −11.5376 −0.373154
\(957\) 0 0
\(958\) 17.2750i 0.558131i
\(959\) −11.2371 −0.362865
\(960\) 5.89812 + 4.18988i 0.190361 + 0.135228i
\(961\) −30.6816 −0.989729
\(962\) 1.77937i 0.0573691i
\(963\) 29.4190i 0.948015i
\(964\) −5.74589 −0.185063
\(965\) 19.0979 + 13.5666i 0.614782 + 0.436725i
\(966\) −9.75715 −0.313931
\(967\) 32.2786i 1.03801i 0.854771 + 0.519005i \(0.173697\pi\)
−0.854771 + 0.519005i \(0.826303\pi\)
\(968\) 0 0
\(969\) 0.389123 0.0125004
\(970\) −17.4203 + 24.5226i −0.559331 + 0.787374i
\(971\) −42.8008 −1.37354 −0.686771 0.726874i \(-0.740973\pi\)
−0.686771 + 0.726874i \(0.740973\pi\)
\(972\) 4.41716i 0.141681i
\(973\) 21.4667i 0.688190i
\(974\) 42.1175 1.34953
\(975\) −1.65328 4.74171i −0.0529472 0.151856i
\(976\) −39.9524 −1.27884
\(977\) 12.1972i 0.390222i −0.980781 0.195111i \(-0.937493\pi\)
0.980781 0.195111i \(-0.0625067\pi\)
\(978\) 4.01584i 0.128412i
\(979\) 0 0
\(980\) 0.194545 0.273862i 0.00621451 0.00874821i
\(981\) 14.1730 0.452510
\(982\) 3.94176i 0.125787i
\(983\) 14.0671i 0.448670i 0.974512 + 0.224335i \(0.0720211\pi\)
−0.974512 + 0.224335i \(0.927979\pi\)
\(984\) 5.68781 0.181321
\(985\) −2.41842 1.71798i −0.0770572 0.0547395i
\(986\) −15.7926 −0.502938
\(987\) 4.63472i 0.147525i
\(988\) 0.365560i 0.0116300i
\(989\) 21.3790 0.679811
\(990\) 0 0
\(991\) −22.9455 −0.728887 −0.364444 0.931225i \(-0.618741\pi\)
−0.364444 + 0.931225i \(0.618741\pi\)
\(992\) 1.48786i 0.0472396i
\(993\) 4.59321i 0.145761i
\(994\) 26.8041 0.850175
\(995\) 6.73797 9.48509i 0.213608 0.300698i
\(996\) −0.572734 −0.0181478
\(997\) 3.63447i 0.115105i −0.998342 0.0575525i \(-0.981670\pi\)
0.998342 0.0575525i \(-0.0183297\pi\)
\(998\) 8.05612i 0.255012i
\(999\) −1.11607 −0.0353108
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.b.g.364.3 8
5.2 odd 4 3025.2.a.bl.1.6 8
5.3 odd 4 3025.2.a.bl.1.3 8
5.4 even 2 inner 605.2.b.g.364.6 8
11.2 odd 10 605.2.j.d.444.3 16
11.3 even 5 605.2.j.h.9.2 16
11.4 even 5 605.2.j.h.269.3 16
11.5 even 5 55.2.j.a.14.3 yes 16
11.6 odd 10 605.2.j.d.124.2 16
11.7 odd 10 605.2.j.g.269.2 16
11.8 odd 10 605.2.j.g.9.3 16
11.9 even 5 55.2.j.a.4.2 16
11.10 odd 2 605.2.b.f.364.6 8
33.5 odd 10 495.2.ba.a.289.2 16
33.20 odd 10 495.2.ba.a.334.3 16
44.27 odd 10 880.2.cd.c.289.2 16
44.31 odd 10 880.2.cd.c.609.3 16
55.4 even 10 605.2.j.h.269.2 16
55.9 even 10 55.2.j.a.4.3 yes 16
55.14 even 10 605.2.j.h.9.3 16
55.19 odd 10 605.2.j.g.9.2 16
55.24 odd 10 605.2.j.d.444.2 16
55.27 odd 20 275.2.h.d.201.2 16
55.29 odd 10 605.2.j.g.269.3 16
55.32 even 4 3025.2.a.bk.1.3 8
55.38 odd 20 275.2.h.d.201.3 16
55.39 odd 10 605.2.j.d.124.3 16
55.42 odd 20 275.2.h.d.26.2 16
55.43 even 4 3025.2.a.bk.1.6 8
55.49 even 10 55.2.j.a.14.2 yes 16
55.53 odd 20 275.2.h.d.26.3 16
55.54 odd 2 605.2.b.f.364.3 8
165.104 odd 10 495.2.ba.a.289.3 16
165.119 odd 10 495.2.ba.a.334.2 16
220.119 odd 10 880.2.cd.c.609.2 16
220.159 odd 10 880.2.cd.c.289.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.2 16 11.9 even 5
55.2.j.a.4.3 yes 16 55.9 even 10
55.2.j.a.14.2 yes 16 55.49 even 10
55.2.j.a.14.3 yes 16 11.5 even 5
275.2.h.d.26.2 16 55.42 odd 20
275.2.h.d.26.3 16 55.53 odd 20
275.2.h.d.201.2 16 55.27 odd 20
275.2.h.d.201.3 16 55.38 odd 20
495.2.ba.a.289.2 16 33.5 odd 10
495.2.ba.a.289.3 16 165.104 odd 10
495.2.ba.a.334.2 16 165.119 odd 10
495.2.ba.a.334.3 16 33.20 odd 10
605.2.b.f.364.3 8 55.54 odd 2
605.2.b.f.364.6 8 11.10 odd 2
605.2.b.g.364.3 8 1.1 even 1 trivial
605.2.b.g.364.6 8 5.4 even 2 inner
605.2.j.d.124.2 16 11.6 odd 10
605.2.j.d.124.3 16 55.39 odd 10
605.2.j.d.444.2 16 55.24 odd 10
605.2.j.d.444.3 16 11.2 odd 10
605.2.j.g.9.2 16 55.19 odd 10
605.2.j.g.9.3 16 11.8 odd 10
605.2.j.g.269.2 16 11.7 odd 10
605.2.j.g.269.3 16 55.29 odd 10
605.2.j.h.9.2 16 11.3 even 5
605.2.j.h.9.3 16 55.14 even 10
605.2.j.h.269.2 16 55.4 even 10
605.2.j.h.269.3 16 11.4 even 5
880.2.cd.c.289.2 16 44.27 odd 10
880.2.cd.c.289.3 16 220.159 odd 10
880.2.cd.c.609.2 16 220.119 odd 10
880.2.cd.c.609.3 16 44.31 odd 10
3025.2.a.bk.1.3 8 55.32 even 4
3025.2.a.bk.1.6 8 55.43 even 4
3025.2.a.bl.1.3 8 5.3 odd 4
3025.2.a.bl.1.6 8 5.2 odd 4