L(s) = 1 | + (−0.168 − 0.122i)2-s + (−0.585 + 1.80i)3-s + (−0.604 − 1.86i)4-s + (0.319 − 0.231i)6-s + (0.398 + 1.22i)7-s + (−0.254 + 0.783i)8-s + (−0.475 − 0.345i)9-s + (0.898 + 3.19i)11-s + 3.70·12-s + (4.40 + 3.20i)13-s + (0.0829 − 0.255i)14-s + (−3.02 + 2.19i)16-s + (−3.18 + 2.31i)17-s + (0.0378 + 0.116i)18-s + (0.693 − 2.13i)19-s + ⋯ |
L(s) = 1 | + (−0.119 − 0.0865i)2-s + (−0.337 + 1.04i)3-s + (−0.302 − 0.930i)4-s + (0.130 − 0.0946i)6-s + (0.150 + 0.463i)7-s + (−0.0900 + 0.277i)8-s + (−0.158 − 0.115i)9-s + (0.271 + 0.962i)11-s + 1.06·12-s + (1.22 + 0.888i)13-s + (0.0221 − 0.0682i)14-s + (−0.756 + 0.549i)16-s + (−0.771 + 0.560i)17-s + (0.00892 + 0.0274i)18-s + (0.159 − 0.489i)19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(0.324−0.946i)Λ(2−s)
Λ(s)=(=(275s/2ΓC(s+1/2)L(s)(0.324−0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
0.324−0.946i
|
Analytic conductor: |
2.19588 |
Root analytic conductor: |
1.48185 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :1/2), 0.324−0.946i)
|
Particular Values
L(1) |
≈ |
0.819819+0.585730i |
L(21) |
≈ |
0.819819+0.585730i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+(−0.898−3.19i)T |
good | 2 | 1+(0.168+0.122i)T+(0.618+1.90i)T2 |
| 3 | 1+(0.585−1.80i)T+(−2.42−1.76i)T2 |
| 7 | 1+(−0.398−1.22i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−4.40−3.20i)T+(4.01+12.3i)T2 |
| 17 | 1+(3.18−2.31i)T+(5.25−16.1i)T2 |
| 19 | 1+(−0.693+2.13i)T+(−15.3−11.1i)T2 |
| 23 | 1−0.711T+23T2 |
| 29 | 1+(−1.13−3.47i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−5.22−3.79i)T+(9.57+29.4i)T2 |
| 37 | 1+(2.55+7.85i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−3.90+12.0i)T+(−33.1−24.0i)T2 |
| 43 | 1−1.31T+43T2 |
| 47 | 1+(1.39−4.29i)T+(−38.0−27.6i)T2 |
| 53 | 1+(7.86+5.71i)T+(16.3+50.4i)T2 |
| 59 | 1+(−2.75−8.47i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−1.48+1.08i)T+(18.8−58.0i)T2 |
| 67 | 1−4.30T+67T2 |
| 71 | 1+(8.21−5.97i)T+(21.9−67.5i)T2 |
| 73 | 1+(3.70+11.4i)T+(−59.0+42.9i)T2 |
| 79 | 1+(10.3+7.53i)T+(24.4+75.1i)T2 |
| 83 | 1+(−10.1+7.37i)T+(25.6−78.9i)T2 |
| 89 | 1+6.28T+89T2 |
| 97 | 1+(0.245+0.178i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.76006403060297775753920342624, −10.85197263746534306301657259121, −10.33709845733294875981977900234, −9.182445435233214540525893574875, −8.836083485224735536456590503449, −6.95103289334238476626213480848, −5.86546961204584027463472957655, −4.81675724868211974765100346771, −4.04953965490504657232711388367, −1.83205248794830684443086280882,
0.929260523826921530712593046165, 3.05429846024216674251380681545, 4.28824219998324538104520404837, 5.99447440560002467932310493882, 6.80170091433284658409990689806, 7.940617135406213439113178853967, 8.399341839466841746435362970605, 9.714417070911193264880816811016, 11.12841431841414873145985958952, 11.71692477270146857840547150696