Properties

Label 2-2793-1.1-c1-0-36
Degree $2$
Conductor $2793$
Sign $1$
Analytic cond. $22.3022$
Root an. cond. $4.72252$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s + 2·5-s − 6-s − 3·8-s + 9-s + 2·10-s + 6.24·11-s + 12-s − 0.828·13-s − 2·15-s − 16-s + 0.828·17-s + 18-s + 19-s − 2·20-s + 6.24·22-s − 2.24·23-s + 3·24-s − 25-s − 0.828·26-s − 27-s − 1.65·29-s − 2·30-s + 0.828·31-s + 5·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 0.5·4-s + 0.894·5-s − 0.408·6-s − 1.06·8-s + 0.333·9-s + 0.632·10-s + 1.88·11-s + 0.288·12-s − 0.229·13-s − 0.516·15-s − 0.250·16-s + 0.200·17-s + 0.235·18-s + 0.229·19-s − 0.447·20-s + 1.33·22-s − 0.467·23-s + 0.612·24-s − 0.200·25-s − 0.162·26-s − 0.192·27-s − 0.307·29-s − 0.365·30-s + 0.148·31-s + 0.883·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2793\)    =    \(3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(22.3022\)
Root analytic conductor: \(4.72252\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2793,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.277871513\)
\(L(\frac12)\) \(\approx\) \(2.277871513\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - T + 2T^{2} \)
5 \( 1 - 2T + 5T^{2} \)
11 \( 1 - 6.24T + 11T^{2} \)
13 \( 1 + 0.828T + 13T^{2} \)
17 \( 1 - 0.828T + 17T^{2} \)
23 \( 1 + 2.24T + 23T^{2} \)
29 \( 1 + 1.65T + 29T^{2} \)
31 \( 1 - 0.828T + 31T^{2} \)
37 \( 1 - 7.65T + 37T^{2} \)
41 \( 1 - 3.07T + 41T^{2} \)
43 \( 1 - 1.17T + 43T^{2} \)
47 \( 1 + 10.4T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 + 5.65T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 12.5T + 67T^{2} \)
71 \( 1 - 5.17T + 71T^{2} \)
73 \( 1 - 1.41T + 73T^{2} \)
79 \( 1 - 6.24T + 79T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 - 2.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.060706973614027918032371588822, −8.085401829052476169004605324907, −6.94920502701385306542797534032, −6.17695662403297948521129459809, −5.83203985676142917041453773311, −4.89925993194376337297409156597, −4.16137327840218980552045591828, −3.42665088049623629573086463626, −2.07835637568624971126478106384, −0.908061193751690879881029934969, 0.908061193751690879881029934969, 2.07835637568624971126478106384, 3.42665088049623629573086463626, 4.16137327840218980552045591828, 4.89925993194376337297409156597, 5.83203985676142917041453773311, 6.17695662403297948521129459809, 6.94920502701385306542797534032, 8.085401829052476169004605324907, 9.060706973614027918032371588822

Graph of the $Z$-function along the critical line