L(s) = 1 | + 2-s − 3-s − 4-s + 2·5-s − 6-s − 3·8-s + 9-s + 2·10-s + 6.24·11-s + 12-s − 0.828·13-s − 2·15-s − 16-s + 0.828·17-s + 18-s + 19-s − 2·20-s + 6.24·22-s − 2.24·23-s + 3·24-s − 25-s − 0.828·26-s − 27-s − 1.65·29-s − 2·30-s + 0.828·31-s + 5·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 0.5·4-s + 0.894·5-s − 0.408·6-s − 1.06·8-s + 0.333·9-s + 0.632·10-s + 1.88·11-s + 0.288·12-s − 0.229·13-s − 0.516·15-s − 0.250·16-s + 0.200·17-s + 0.235·18-s + 0.229·19-s − 0.447·20-s + 1.33·22-s − 0.467·23-s + 0.612·24-s − 0.200·25-s − 0.162·26-s − 0.192·27-s − 0.307·29-s − 0.365·30-s + 0.148·31-s + 0.883·32-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2793s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.277871513 |
L(21) |
≈ |
2.277871513 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1 |
| 19 | 1−T |
good | 2 | 1−T+2T2 |
| 5 | 1−2T+5T2 |
| 11 | 1−6.24T+11T2 |
| 13 | 1+0.828T+13T2 |
| 17 | 1−0.828T+17T2 |
| 23 | 1+2.24T+23T2 |
| 29 | 1+1.65T+29T2 |
| 31 | 1−0.828T+31T2 |
| 37 | 1−7.65T+37T2 |
| 41 | 1−3.07T+41T2 |
| 43 | 1−1.17T+43T2 |
| 47 | 1+10.4T+47T2 |
| 53 | 1−11.6T+53T2 |
| 59 | 1+5.65T+59T2 |
| 61 | 1+4.24T+61T2 |
| 67 | 1−12.5T+67T2 |
| 71 | 1−5.17T+71T2 |
| 73 | 1−1.41T+73T2 |
| 79 | 1−6.24T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1+16.7T+89T2 |
| 97 | 1−2.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.060706973614027918032371588822, −8.085401829052476169004605324907, −6.94920502701385306542797534032, −6.17695662403297948521129459809, −5.83203985676142917041453773311, −4.89925993194376337297409156597, −4.16137327840218980552045591828, −3.42665088049623629573086463626, −2.07835637568624971126478106384, −0.908061193751690879881029934969,
0.908061193751690879881029934969, 2.07835637568624971126478106384, 3.42665088049623629573086463626, 4.16137327840218980552045591828, 4.89925993194376337297409156597, 5.83203985676142917041453773311, 6.17695662403297948521129459809, 6.94920502701385306542797534032, 8.085401829052476169004605324907, 9.060706973614027918032371588822