L(s) = 1 | + 3i·3-s − i·7-s − 6·9-s + 5·11-s − 6i·13-s + i·17-s − 3·19-s + 3·21-s − 9i·27-s + 6·29-s + 4·31-s + 15i·33-s − 8i·37-s + 18·39-s + 11·41-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − 0.377i·7-s − 2·9-s + 1.50·11-s − 1.66i·13-s + 0.242i·17-s − 0.688·19-s + 0.654·21-s − 1.73i·27-s + 1.11·29-s + 0.718·31-s + 2.61i·33-s − 1.31i·37-s + 2.88·39-s + 1.71·41-s + ⋯ |
Λ(s)=(=(2800s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(2800s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2800
= 24⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
22.3581 |
Root analytic conductor: |
4.72843 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2800(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2800, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.919762498 |
L(21) |
≈ |
1.919762498 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+iT |
good | 3 | 1−3iT−3T2 |
| 11 | 1−5T+11T2 |
| 13 | 1+6iT−13T2 |
| 17 | 1−iT−17T2 |
| 19 | 1+3T+19T2 |
| 23 | 1−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−11T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1−4iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−9iT−67T2 |
| 71 | 1−10T+71T2 |
| 73 | 1+7iT−73T2 |
| 79 | 1+2T+79T2 |
| 83 | 1+11iT−83T2 |
| 89 | 1−11T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.076235760795153340601652790456, −8.416205533675640242505669875373, −7.60162871113490771013261133864, −6.35568638090845137880446584403, −5.81915723962884947796499165911, −4.80025853461378712326735180606, −4.19450755223027610189939265590, −3.53629591371083024295916370386, −2.66749320425673017600255589050, −0.849514495136806981317882134586,
0.930520821249209750120031638115, 1.81937509470877097482148290782, 2.54685890465382673269306460434, 3.83965706151057570278237292129, 4.77994703781332761587988288891, 6.04844473627330597333054081040, 6.60881873513603227130121832174, 6.85712782025260333711457713729, 7.85526139618735009564756144543, 8.680502964898596526145521334914