Properties

Label 2-2800-5.4-c1-0-23
Degree $2$
Conductor $2800$
Sign $0.447 - 0.894i$
Analytic cond. $22.3581$
Root an. cond. $4.72843$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·3-s i·7-s − 6·9-s + 5·11-s − 6i·13-s + i·17-s − 3·19-s + 3·21-s − 9i·27-s + 6·29-s + 4·31-s + 15i·33-s − 8i·37-s + 18·39-s + 11·41-s + ⋯
L(s)  = 1  + 1.73i·3-s − 0.377i·7-s − 2·9-s + 1.50·11-s − 1.66i·13-s + 0.242i·17-s − 0.688·19-s + 0.654·21-s − 1.73i·27-s + 1.11·29-s + 0.718·31-s + 2.61i·33-s − 1.31i·37-s + 2.88·39-s + 1.71·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2800\)    =    \(2^{4} \cdot 5^{2} \cdot 7\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(22.3581\)
Root analytic conductor: \(4.72843\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2800} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2800,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.919762498\)
\(L(\frac12)\) \(\approx\) \(1.919762498\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + iT \)
good3 \( 1 - 3iT - 3T^{2} \)
11 \( 1 - 5T + 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 - iT - 17T^{2} \)
19 \( 1 + 3T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 8iT - 37T^{2} \)
41 \( 1 - 11T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 2iT - 47T^{2} \)
53 \( 1 - 4iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 9iT - 67T^{2} \)
71 \( 1 - 10T + 71T^{2} \)
73 \( 1 + 7iT - 73T^{2} \)
79 \( 1 + 2T + 79T^{2} \)
83 \( 1 + 11iT - 83T^{2} \)
89 \( 1 - 11T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.076235760795153340601652790456, −8.416205533675640242505669875373, −7.60162871113490771013261133864, −6.35568638090845137880446584403, −5.81915723962884947796499165911, −4.80025853461378712326735180606, −4.19450755223027610189939265590, −3.53629591371083024295916370386, −2.66749320425673017600255589050, −0.849514495136806981317882134586, 0.930520821249209750120031638115, 1.81937509470877097482148290782, 2.54685890465382673269306460434, 3.83965706151057570278237292129, 4.77994703781332761587988288891, 6.04844473627330597333054081040, 6.60881873513603227130121832174, 6.85712782025260333711457713729, 7.85526139618735009564756144543, 8.680502964898596526145521334914

Graph of the $Z$-function along the critical line