Properties

Label 2800.2.g.a
Level 28002800
Weight 22
Character orbit 2800.g
Analytic conductor 22.35822.358
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2800,2,Mod(449,2800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2800.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2800=24527 2800 = 2^{4} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2800.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.358112566022.3581125660
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 350)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq3iq76q9+5q116iq13+iq173q19+3q219iq27+6q29+4q31+15iq338iq37+18q39+11q41+8iq43+2iq47+30q99+O(q100) q + 3 i q^{3} - i q^{7} - 6 q^{9} + 5 q^{11} - 6 i q^{13} + i q^{17} - 3 q^{19} + 3 q^{21} - 9 i q^{27} + 6 q^{29} + 4 q^{31} + 15 i q^{33} - 8 i q^{37} + 18 q^{39} + 11 q^{41} + 8 i q^{43} + 2 i q^{47} + \cdots - 30 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q12q9+10q116q19+6q21+12q29+8q31+36q39+22q412q496q51+8q594q61+20q714q79+18q81+22q8912q9160q99+O(q100) 2 q - 12 q^{9} + 10 q^{11} - 6 q^{19} + 6 q^{21} + 12 q^{29} + 8 q^{31} + 36 q^{39} + 22 q^{41} - 2 q^{49} - 6 q^{51} + 8 q^{59} - 4 q^{61} + 20 q^{71} - 4 q^{79} + 18 q^{81} + 22 q^{89} - 12 q^{91} - 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2800Z)×\left(\mathbb{Z}/2800\mathbb{Z}\right)^\times.

nn 351351 801801 21012101 25772577
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
1.00000i
1.00000i
0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
449.2 0 3.00000i 0 0 0 1.00000i 0 −6.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2800.2.g.a 2
4.b odd 2 1 350.2.c.a 2
5.b even 2 1 inner 2800.2.g.a 2
5.c odd 4 1 2800.2.a.b 1
5.c odd 4 1 2800.2.a.bg 1
12.b even 2 1 3150.2.g.v 2
20.d odd 2 1 350.2.c.a 2
20.e even 4 1 350.2.a.c 1
20.e even 4 1 350.2.a.d yes 1
28.d even 2 1 2450.2.c.r 2
60.h even 2 1 3150.2.g.v 2
60.l odd 4 1 3150.2.a.j 1
60.l odd 4 1 3150.2.a.bq 1
140.c even 2 1 2450.2.c.r 2
140.j odd 4 1 2450.2.a.a 1
140.j odd 4 1 2450.2.a.bg 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.2.a.c 1 20.e even 4 1
350.2.a.d yes 1 20.e even 4 1
350.2.c.a 2 4.b odd 2 1
350.2.c.a 2 20.d odd 2 1
2450.2.a.a 1 140.j odd 4 1
2450.2.a.bg 1 140.j odd 4 1
2450.2.c.r 2 28.d even 2 1
2450.2.c.r 2 140.c even 2 1
2800.2.a.b 1 5.c odd 4 1
2800.2.a.bg 1 5.c odd 4 1
2800.2.g.a 2 1.a even 1 1 trivial
2800.2.g.a 2 5.b even 2 1 inner
3150.2.a.j 1 60.l odd 4 1
3150.2.a.bq 1 60.l odd 4 1
3150.2.g.v 2 12.b even 2 1
3150.2.g.v 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2800,[χ])S_{2}^{\mathrm{new}}(2800, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T115 T_{11} - 5 Copy content Toggle raw display
T132+36 T_{13}^{2} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 (T5)2 (T - 5)^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+1 T^{2} + 1 Copy content Toggle raw display
1919 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 (T11)2 (T - 11)^{2} Copy content Toggle raw display
4343 T2+64 T^{2} + 64 Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+16 T^{2} + 16 Copy content Toggle raw display
5959 (T4)2 (T - 4)^{2} Copy content Toggle raw display
6161 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
6767 T2+81 T^{2} + 81 Copy content Toggle raw display
7171 (T10)2 (T - 10)^{2} Copy content Toggle raw display
7373 T2+49 T^{2} + 49 Copy content Toggle raw display
7979 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
8383 T2+121 T^{2} + 121 Copy content Toggle raw display
8989 (T11)2 (T - 11)^{2} Copy content Toggle raw display
9797 T2+100 T^{2} + 100 Copy content Toggle raw display
show more
show less