L(s) = 1 | − 3i·3-s + i·7-s − 6·9-s + 5·11-s + 6i·13-s − i·17-s − 3·19-s + 3·21-s + 9i·27-s + 6·29-s + 4·31-s − 15i·33-s + 8i·37-s + 18·39-s + 11·41-s + ⋯ |
L(s) = 1 | − 1.73i·3-s + 0.377i·7-s − 2·9-s + 1.50·11-s + 1.66i·13-s − 0.242i·17-s − 0.688·19-s + 0.654·21-s + 1.73i·27-s + 1.11·29-s + 0.718·31-s − 2.61i·33-s + 1.31i·37-s + 2.88·39-s + 1.71·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.919762498\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.919762498\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - iT \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 11 | \( 1 - 5T + 11T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 19 | \( 1 + 3T + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 - 11T + 41T^{2} \) |
| 43 | \( 1 + 8iT - 43T^{2} \) |
| 47 | \( 1 + 2iT - 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 9iT - 67T^{2} \) |
| 71 | \( 1 - 10T + 71T^{2} \) |
| 73 | \( 1 - 7iT - 73T^{2} \) |
| 79 | \( 1 + 2T + 79T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 - 11T + 89T^{2} \) |
| 97 | \( 1 + 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.680502964898596526145521334914, −7.85526139618735009564756144543, −6.85712782025260333711457713729, −6.60881873513603227130121832174, −6.04844473627330597333054081040, −4.77994703781332761587988288891, −3.83965706151057570278237292129, −2.54685890465382673269306460434, −1.81937509470877097482148290782, −0.930520821249209750120031638115,
0.849514495136806981317882134586, 2.66749320425673017600255589050, 3.53629591371083024295916370386, 4.19450755223027610189939265590, 4.80025853461378712326735180606, 5.81915723962884947796499165911, 6.35568638090845137880446584403, 7.60162871113490771013261133864, 8.416205533675640242505669875373, 9.076235760795153340601652790456