L(s) = 1 | + (−0.173 + 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 − 0.342i)4-s + (−0.766 + 0.642i)6-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)8-s + (−0.499 − 0.866i)12-s + (0.766 − 0.642i)13-s + (−0.939 + 0.342i)14-s + (0.766 + 0.642i)16-s + (−0.173 + 0.984i)17-s + (−0.173 + 0.984i)21-s + (0.939 + 0.342i)23-s + (0.939 − 0.342i)24-s + (0.766 − 0.642i)25-s + (0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (0.766 + 0.642i)3-s + (−0.939 − 0.342i)4-s + (−0.766 + 0.642i)6-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)8-s + (−0.499 − 0.866i)12-s + (0.766 − 0.642i)13-s + (−0.939 + 0.342i)14-s + (0.766 + 0.642i)16-s + (−0.173 + 0.984i)17-s + (−0.173 + 0.984i)21-s + (0.939 + 0.342i)23-s + (0.939 − 0.342i)24-s + (0.766 − 0.642i)25-s + (0.5 + 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.486 - 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.464353218\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.464353218\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.766 - 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.347 - 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.173 + 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.827693263426732243548797903977, −8.599408087440597694476867418251, −7.989347371110957873463749916554, −6.91957598483210618002447179928, −6.17090498530175976737027423460, −5.37636818290611009874821690400, −4.67363137297238249845688515887, −3.70344844579570696876026231640, −2.96246869729841012150783096854, −1.44297436389906666318456100720,
1.07024134356112830537930207254, 1.92355779555376609970812347106, 2.87267701004437449148950403320, 3.69305731388831612042068609434, 4.60737062821258431640247222085, 5.31555142184851558962619040473, 6.83663449704211842075884705688, 7.30987085699735184612785784076, 8.137465274611785809562582949402, 8.790313952760150193080725258882