L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 − 0.642i)3-s + (−0.939 + 0.342i)4-s + (−0.766 − 0.642i)6-s + (0.5 − 0.866i)7-s + (0.5 + 0.866i)8-s + (−0.499 + 0.866i)12-s + (0.766 + 0.642i)13-s + (−0.939 − 0.342i)14-s + (0.766 − 0.642i)16-s + (−0.173 − 0.984i)17-s + (−0.173 − 0.984i)21-s + (0.939 − 0.342i)23-s + (0.939 + 0.342i)24-s + (0.766 + 0.642i)25-s + (0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.173 − 0.984i)2-s + (0.766 − 0.642i)3-s + (−0.939 + 0.342i)4-s + (−0.766 − 0.642i)6-s + (0.5 − 0.866i)7-s + (0.5 + 0.866i)8-s + (−0.499 + 0.866i)12-s + (0.766 + 0.642i)13-s + (−0.939 − 0.342i)14-s + (0.766 − 0.642i)16-s + (−0.173 − 0.984i)17-s + (−0.173 − 0.984i)21-s + (0.939 − 0.342i)23-s + (0.939 + 0.342i)24-s + (0.766 + 0.642i)25-s + (0.5 − 0.866i)26-s + ⋯ |
Λ(s)=(=(2888s/2ΓC(s)L(s)(−0.486+0.873i)Λ(1−s)
Λ(s)=(=(2888s/2ΓC(s)L(s)(−0.486+0.873i)Λ(1−s)
Degree: |
2 |
Conductor: |
2888
= 23⋅192
|
Sign: |
−0.486+0.873i
|
Analytic conductor: |
1.44129 |
Root analytic conductor: |
1.20054 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2888(333,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2888, ( :0), −0.486+0.873i)
|
Particular Values
L(21) |
≈ |
1.464353218 |
L(21) |
≈ |
1.464353218 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.173+0.984i)T |
| 19 | 1 |
good | 3 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 5 | 1+(−0.766−0.642i)T2 |
| 7 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(−0.766−0.642i)T+(0.173+0.984i)T2 |
| 17 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 23 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 29 | 1+(−0.173+0.984i)T+(−0.939−0.342i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+2T+T2 |
| 41 | 1+(−0.173+0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(−0.347+1.96i)T+(−0.939−0.342i)T2 |
| 53 | 1+(0.939−0.342i)T+(0.766−0.642i)T2 |
| 59 | 1+(−0.173−0.984i)T+(−0.939+0.342i)T2 |
| 61 | 1+(−0.766+0.642i)T2 |
| 67 | 1+(−0.173+0.984i)T+(−0.939−0.342i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(0.766−0.642i)T+(0.173−0.984i)T2 |
| 79 | 1+(−0.173+0.984i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(0.939−0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.790313952760150193080725258882, −8.137465274611785809562582949402, −7.30987085699735184612785784076, −6.83663449704211842075884705688, −5.31555142184851558962619040473, −4.60737062821258431640247222085, −3.69305731388831612042068609434, −2.87267701004437449148950403320, −1.92355779555376609970812347106, −1.07024134356112830537930207254,
1.44297436389906666318456100720, 2.96246869729841012150783096854, 3.70344844579570696876026231640, 4.67363137297238249845688515887, 5.37636818290611009874821690400, 6.17090498530175976737027423460, 6.91957598483210618002447179928, 7.989347371110957873463749916554, 8.599408087440597694476867418251, 8.827693263426732243548797903977