Properties

Label 2-2912-56.27-c1-0-34
Degree $2$
Conductor $2912$
Sign $-0.687 - 0.726i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.44i·3-s + 3.85·5-s + (−2.49 − 0.886i)7-s − 2.96·9-s + 1.81·11-s − 13-s + 9.40i·15-s + 3.46i·17-s + 4.50i·19-s + (2.16 − 6.08i)21-s + 0.813i·23-s + 9.83·25-s + 0.0798i·27-s − 2.95i·29-s − 7.74·31-s + ⋯
L(s)  = 1  + 1.41i·3-s + 1.72·5-s + (−0.942 − 0.335i)7-s − 0.989·9-s + 0.546·11-s − 0.277·13-s + 2.42i·15-s + 0.839i·17-s + 1.03i·19-s + (0.472 − 1.32i)21-s + 0.169i·23-s + 1.96·25-s + 0.0153i·27-s − 0.549i·29-s − 1.39·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.687 - 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.687 - 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-0.687 - 0.726i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (2575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -0.687 - 0.726i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.072331885\)
\(L(\frac12)\) \(\approx\) \(2.072331885\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (2.49 + 0.886i)T \)
13 \( 1 + T \)
good3 \( 1 - 2.44iT - 3T^{2} \)
5 \( 1 - 3.85T + 5T^{2} \)
11 \( 1 - 1.81T + 11T^{2} \)
17 \( 1 - 3.46iT - 17T^{2} \)
19 \( 1 - 4.50iT - 19T^{2} \)
23 \( 1 - 0.813iT - 23T^{2} \)
29 \( 1 + 2.95iT - 29T^{2} \)
31 \( 1 + 7.74T + 31T^{2} \)
37 \( 1 + 0.986iT - 37T^{2} \)
41 \( 1 - 3.45iT - 41T^{2} \)
43 \( 1 + 5.13T + 43T^{2} \)
47 \( 1 - 12.5T + 47T^{2} \)
53 \( 1 - 1.21iT - 53T^{2} \)
59 \( 1 - 12.8iT - 59T^{2} \)
61 \( 1 + 4.69T + 61T^{2} \)
67 \( 1 - 2.12T + 67T^{2} \)
71 \( 1 - 3.99iT - 71T^{2} \)
73 \( 1 - 9.25iT - 73T^{2} \)
79 \( 1 - 11.8iT - 79T^{2} \)
83 \( 1 + 17.6iT - 83T^{2} \)
89 \( 1 - 0.651iT - 89T^{2} \)
97 \( 1 - 10.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.237285634259864142082844221563, −8.792517312585363118053782562146, −7.45921077347927423320289588704, −6.47123995903467204092864586962, −5.85417157649742183266084463223, −5.34051506510781979743958061609, −4.20175049634948669610207098231, −3.63300832301343378219063949310, −2.59493095629427049241255571345, −1.47436792954783208183760608498, 0.62907907517034221351934672243, 1.82163000498080711372117224316, 2.39861591436398034590259478323, 3.28324363551168003344290170533, 4.90102768024174758523174437329, 5.69872434963407708167004442438, 6.30952186064886984291454065545, 6.91411928612519299484400087605, 7.35206529368157983684113598540, 8.689575813559155849160464516403

Graph of the $Z$-function along the critical line