L(s) = 1 | + (−0.461 − 0.0730i)2-s + (−0.743 − 0.241i)4-s + (−0.760 + 0.649i)5-s + (0.741 + 0.377i)8-s + (0.398 − 0.243i)10-s + (−1.17 − 1.61i)11-s + (0.156 + 0.987i)13-s + (0.318 + 0.231i)16-s + (0.722 − 0.299i)20-s + (0.422 + 0.829i)22-s + (0.156 − 0.987i)25-s − 0.466i·26-s + (−0.718 − 0.718i)32-s + (−0.809 + 0.194i)40-s + (−0.614 + 0.845i)41-s + ⋯ |
L(s) = 1 | + (−0.461 − 0.0730i)2-s + (−0.743 − 0.241i)4-s + (−0.760 + 0.649i)5-s + (0.741 + 0.377i)8-s + (0.398 − 0.243i)10-s + (−1.17 − 1.61i)11-s + (0.156 + 0.987i)13-s + (0.318 + 0.231i)16-s + (0.722 − 0.299i)20-s + (0.422 + 0.829i)22-s + (0.156 − 0.987i)25-s − 0.466i·26-s + (−0.718 − 0.718i)32-s + (−0.809 + 0.194i)40-s + (−0.614 + 0.845i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5696415760\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5696415760\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.760 - 0.649i)T \) |
| 13 | \( 1 + (-0.156 - 0.987i)T \) |
good | 2 | \( 1 + (0.461 + 0.0730i)T + (0.951 + 0.309i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (1.17 + 1.61i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (0.614 - 0.845i)T + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
| 47 | \( 1 + (-0.931 + 0.474i)T + (0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (-1.05 - 0.763i)T + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.734 + 0.533i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 71 | \( 1 + (-0.149 - 0.0484i)T + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (-1.34 - 0.437i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-1.73 - 0.882i)T + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (0.619 - 0.449i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.808949295480594318004388810974, −8.248366014674403043214233049174, −7.73785346273120610393590581334, −6.76776488642395339495387080161, −5.89804241076467530135288473666, −5.08638508051315036752775439348, −4.15400728573948968196399627618, −3.40168192539108610341832366809, −2.37338172860503366987617537481, −0.76458652220314564498361116430,
0.69236501133584199395071474841, 2.19819316873381458487311555881, 3.47608312808591782013532114261, 4.31057538772623307052777559879, 4.98032884239859981523349450956, 5.58753438213124056390143638107, 7.13173639729071621427104755198, 7.59349880403432923548803906670, 8.115060104341664182685704539232, 8.878081763210151211884101469965