L(s) = 1 | + (1.92 + 0.304i)2-s + (2.64 + 0.859i)4-s + (−0.649 − 0.760i)5-s + (3.08 + 1.57i)8-s + (−1.01 − 1.65i)10-s + (−0.0922 − 0.126i)11-s + (−0.156 − 0.987i)13-s + (3.20 + 2.32i)16-s + (−1.06 − 2.57i)20-s + (−0.138 − 0.271i)22-s + (−0.156 + 0.987i)25-s − 1.94i·26-s + (2.99 + 2.99i)32-s + (−0.809 − 3.36i)40-s + (−1.00 + 1.37i)41-s + ⋯ |
L(s) = 1 | + (1.92 + 0.304i)2-s + (2.64 + 0.859i)4-s + (−0.649 − 0.760i)5-s + (3.08 + 1.57i)8-s + (−1.01 − 1.65i)10-s + (−0.0922 − 0.126i)11-s + (−0.156 − 0.987i)13-s + (3.20 + 2.32i)16-s + (−1.06 − 2.57i)20-s + (−0.138 − 0.271i)22-s + (−0.156 + 0.987i)25-s − 1.94i·26-s + (2.99 + 2.99i)32-s + (−0.809 − 3.36i)40-s + (−1.00 + 1.37i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.699262657\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.699262657\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.649 + 0.760i)T \) |
| 13 | \( 1 + (0.156 + 0.987i)T \) |
good | 2 | \( 1 + (-1.92 - 0.304i)T + (0.951 + 0.309i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.0922 + 0.126i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (1.00 - 1.37i)T + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
| 47 | \( 1 + (1.51 - 0.774i)T + (0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (1.23 + 0.893i)T + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.734 - 0.533i)T + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 71 | \( 1 + (1.89 + 0.616i)T + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (1.34 + 0.437i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.416 - 0.211i)T + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (-1.49 + 1.08i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.593177431068747762846139085420, −7.82289782207495030240247397767, −7.43219969975256470041909858019, −6.33178673840538279710459379803, −5.78505863202268077465146510474, −4.80267594742388566495220687363, −4.58067070367058596427726237318, −3.42809822405306462350921356127, −2.94389952604154027207391387652, −1.55631836423140476632283919818,
1.78806721620637459676360570761, 2.65252083549243619513702456760, 3.49970872888261452367921825424, 4.15842071747390554684499980602, 4.83319618748365289819059567679, 5.77446026257248302450187348052, 6.50473652021456805916772589684, 7.14025390320300323835625997377, 7.66094136680378497075648456872, 8.929851869462109058544003722430