L(s) = 1 | − 2·2-s − 3·3-s + 4·4-s − 15·5-s + 6·6-s − 8·8-s + 9·9-s + 30·10-s − 9·11-s − 12·12-s − 88·13-s + 45·15-s + 16·16-s − 84·17-s − 18·18-s + 104·19-s − 60·20-s + 18·22-s − 84·23-s + 24·24-s + 100·25-s + 176·26-s − 27·27-s + 51·29-s − 90·30-s + 185·31-s − 32·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.246·11-s − 0.288·12-s − 1.87·13-s + 0.774·15-s + 1/4·16-s − 1.19·17-s − 0.235·18-s + 1.25·19-s − 0.670·20-s + 0.174·22-s − 0.761·23-s + 0.204·24-s + 4/5·25-s + 1.32·26-s − 0.192·27-s + 0.326·29-s − 0.547·30-s + 1.07·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4403604748\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4403604748\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + p T \) |
| 3 | \( 1 + p T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3 p T + p^{3} T^{2} \) |
| 11 | \( 1 + 9 T + p^{3} T^{2} \) |
| 13 | \( 1 + 88 T + p^{3} T^{2} \) |
| 17 | \( 1 + 84 T + p^{3} T^{2} \) |
| 19 | \( 1 - 104 T + p^{3} T^{2} \) |
| 23 | \( 1 + 84 T + p^{3} T^{2} \) |
| 29 | \( 1 - 51 T + p^{3} T^{2} \) |
| 31 | \( 1 - 185 T + p^{3} T^{2} \) |
| 37 | \( 1 - 44 T + p^{3} T^{2} \) |
| 41 | \( 1 + 168 T + p^{3} T^{2} \) |
| 43 | \( 1 - 326 T + p^{3} T^{2} \) |
| 47 | \( 1 + 138 T + p^{3} T^{2} \) |
| 53 | \( 1 - 639 T + p^{3} T^{2} \) |
| 59 | \( 1 - 159 T + p^{3} T^{2} \) |
| 61 | \( 1 - 722 T + p^{3} T^{2} \) |
| 67 | \( 1 + 166 T + p^{3} T^{2} \) |
| 71 | \( 1 - 1086 T + p^{3} T^{2} \) |
| 73 | \( 1 - 218 T + p^{3} T^{2} \) |
| 79 | \( 1 + 583 T + p^{3} T^{2} \) |
| 83 | \( 1 + 597 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1038 T + p^{3} T^{2} \) |
| 97 | \( 1 + 169 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.56596781409439137732147752254, −10.36667715505423493958030194388, −9.586033762930345402568021951402, −8.311615210475905818810168784598, −7.49089621844068345015943072954, −6.80029112178917897706587837891, −5.23585305309818977553594612369, −4.15905706586965222923754467924, −2.55103126657328652305575389491, −0.50486537372711924433979769729,
0.50486537372711924433979769729, 2.55103126657328652305575389491, 4.15905706586965222923754467924, 5.23585305309818977553594612369, 6.80029112178917897706587837891, 7.49089621844068345015943072954, 8.311615210475905818810168784598, 9.586033762930345402568021951402, 10.36667715505423493958030194388, 11.56596781409439137732147752254