L(s) = 1 | + (−0.781 − 0.623i)2-s + (−0.580 + 1.63i)3-s + (0.222 + 0.974i)4-s + (−3.14 − 1.51i)5-s + (1.47 − 0.913i)6-s + (2.47 − 0.926i)7-s + (0.433 − 0.900i)8-s + (−2.32 − 1.89i)9-s + (1.51 + 3.14i)10-s + (1.47 + 1.17i)11-s + (−1.72 − 0.202i)12-s + (−0.731 − 0.583i)13-s + (−2.51 − 0.820i)14-s + (4.30 − 4.25i)15-s + (−0.900 + 0.433i)16-s + (1.24 − 5.43i)17-s + ⋯ |
L(s) = 1 | + (−0.552 − 0.440i)2-s + (−0.335 + 0.942i)3-s + (0.111 + 0.487i)4-s + (−1.40 − 0.678i)5-s + (0.600 − 0.373i)6-s + (0.936 − 0.350i)7-s + (0.153 − 0.318i)8-s + (−0.775 − 0.631i)9-s + (0.479 + 0.996i)10-s + (0.445 + 0.355i)11-s + (−0.496 − 0.0585i)12-s + (−0.202 − 0.161i)13-s + (−0.672 − 0.219i)14-s + (1.11 − 1.09i)15-s + (−0.225 + 0.108i)16-s + (0.301 − 1.31i)17-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.243+0.969i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(0.243+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.243+0.969i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), 0.243+0.969i)
|
Particular Values
L(1) |
≈ |
0.498257−0.388685i |
L(21) |
≈ |
0.498257−0.388685i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.781+0.623i)T |
| 3 | 1+(0.580−1.63i)T |
| 7 | 1+(−2.47+0.926i)T |
good | 5 | 1+(3.14+1.51i)T+(3.11+3.90i)T2 |
| 11 | 1+(−1.47−1.17i)T+(2.44+10.7i)T2 |
| 13 | 1+(0.731+0.583i)T+(2.89+12.6i)T2 |
| 17 | 1+(−1.24+5.43i)T+(−15.3−7.37i)T2 |
| 19 | 1+6.71iT−19T2 |
| 23 | 1+(−5.84+1.33i)T+(20.7−9.97i)T2 |
| 29 | 1+(−0.519−0.118i)T+(26.1+12.5i)T2 |
| 31 | 1+5.34iT−31T2 |
| 37 | 1+(−0.612+2.68i)T+(−33.3−16.0i)T2 |
| 41 | 1+(1.61+0.777i)T+(25.5+32.0i)T2 |
| 43 | 1+(9.41−4.53i)T+(26.8−33.6i)T2 |
| 47 | 1+(7.08−8.88i)T+(−10.4−45.8i)T2 |
| 53 | 1+(5.46−1.24i)T+(47.7−22.9i)T2 |
| 59 | 1+(−0.981+0.472i)T+(36.7−46.1i)T2 |
| 61 | 1+(−4.27−0.975i)T+(54.9+26.4i)T2 |
| 67 | 1+9.15T+67T2 |
| 71 | 1+(−5.70+1.30i)T+(63.9−30.8i)T2 |
| 73 | 1+(−1.01+0.808i)T+(16.2−71.1i)T2 |
| 79 | 1−15.3T+79T2 |
| 83 | 1+(9.92+12.4i)T+(−18.4+80.9i)T2 |
| 89 | 1+(6.59+8.26i)T+(−19.8+86.7i)T2 |
| 97 | 1−7.02iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.44947925990528168429847592386, −10.93242132426393762104400484456, −9.598919014796610654428323728251, −8.892247687688822880825720066494, −7.939643819978705402786835378509, −7.01579240093803431488456989334, −4.87730489534937937848323494401, −4.52602556208582595280854484064, −3.15639485500433124885669418187, −0.63894086524695306657206939858,
1.56383304850974682905679116151, 3.50769482688225769727492445708, 5.15278803020394189002166341833, 6.38886125704584341150272421176, 7.23662883521428122109256628088, 8.180306922487351239671132643403, 8.474585320008620934760324513639, 10.33905364253900924564896339794, 11.21137825767593250102309621648, 11.78484288559739730392795366238