L(s) = 1 | + (2 − 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (27 − 46.7i)5-s + 36·6-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (−108 − 187. i)10-s + (−108 − 187. i)11-s + (72 − 124. i)12-s + 998·13-s + 486·15-s + (−128 + 221. i)16-s + (−651 − 1.12e3i)17-s + (162 + 280. i)18-s + (−442 + 765. i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.482 − 0.836i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.341 − 0.591i)10-s + (−0.269 − 0.466i)11-s + (0.144 − 0.249i)12-s + 1.63·13-s + 0.557·15-s + (−0.125 + 0.216i)16-s + (−0.546 − 0.946i)17-s + (0.117 + 0.204i)18-s + (−0.280 + 0.486i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.534924110\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.534924110\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 + 3.46i)T \) |
| 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-27 + 46.7i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (108 + 187. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 998T + 3.71e5T^{2} \) |
| 17 | \( 1 + (651 + 1.12e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (442 - 765. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.13e3 + 1.96e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 1.48e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (4.18e3 + 7.23e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.35e3 + 4.08e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 9.78e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.94e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.11e4 - 1.92e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.33e4 + 2.32e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.40e4 + 2.43e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.94e4 + 3.36e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.19e4 + 2.07e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.06e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (145 + 251. i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-4.97e4 + 8.62e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.93e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (1.81e4 - 3.15e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 7.90e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85363310507144890709078205602, −9.530602274619590207947066410621, −8.995551550810860137681579070708, −8.053958179005049953078064103361, −6.28863286125263926998960559170, −5.35918646702774859097254865919, −4.34013109654423931777922691208, −3.26540448826440233691957047575, −1.89096844518616541336303696200, −0.57657508620634342274860678255,
1.53132886602871700989228006059, 2.89067461929700961009475227067, 4.01337010848736189811143009692, 5.56895972083949796888448728596, 6.47601181357573177289999655947, 7.13167683553929894505578171864, 8.318955084854022451046612049041, 9.086986168092864346785400502169, 10.45887107207067981584825193373, 11.17712706293237382766537884692