Properties

Label 294.6.e.r
Level 294294
Weight 66
Character orbit 294.e
Analytic conductor 47.15347.153
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 294.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 47.152843025047.1528430250
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4ζ6q2+(9ζ6+9)q3+(16ζ616)q4+54ζ6q5+36q664q881ζ6q9+(216ζ6216)q10+(216ζ6216)q11++17496q99+O(q100) q + 4 \zeta_{6} q^{2} + ( - 9 \zeta_{6} + 9) q^{3} + (16 \zeta_{6} - 16) q^{4} + 54 \zeta_{6} q^{5} + 36 q^{6} - 64 q^{8} - 81 \zeta_{6} q^{9} + (216 \zeta_{6} - 216) q^{10} + (216 \zeta_{6} - 216) q^{11} + \cdots + 17496 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+9q316q4+54q5+72q6128q881q9216q10216q11+144q12+1996q13+972q15256q161302q17+324q18884q191728q20++34992q99+O(q100) 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} + 54 q^{5} + 72 q^{6} - 128 q^{8} - 81 q^{9} - 216 q^{10} - 216 q^{11} + 144 q^{12} + 1996 q^{13} + 972 q^{15} - 256 q^{16} - 1302 q^{17} + 324 q^{18} - 884 q^{19} - 1728 q^{20}+ \cdots + 34992 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/294Z)×\left(\mathbb{Z}/294\mathbb{Z}\right)^\times.

nn 197197 199199
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
0.500000 + 0.866025i
0.500000 0.866025i
2.00000 + 3.46410i 4.50000 7.79423i −8.00000 + 13.8564i 27.0000 + 46.7654i 36.0000 0 −64.0000 −40.5000 70.1481i −108.000 + 187.061i
79.1 2.00000 3.46410i 4.50000 + 7.79423i −8.00000 13.8564i 27.0000 46.7654i 36.0000 0 −64.0000 −40.5000 + 70.1481i −108.000 187.061i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.6.e.r 2
7.b odd 2 1 294.6.e.h 2
7.c even 3 1 42.6.a.a 1
7.c even 3 1 inner 294.6.e.r 2
7.d odd 6 1 294.6.a.h 1
7.d odd 6 1 294.6.e.h 2
21.g even 6 1 882.6.a.o 1
21.h odd 6 1 126.6.a.k 1
28.g odd 6 1 336.6.a.j 1
35.j even 6 1 1050.6.a.n 1
35.l odd 12 2 1050.6.g.o 2
84.n even 6 1 1008.6.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.a 1 7.c even 3 1
126.6.a.k 1 21.h odd 6 1
294.6.a.h 1 7.d odd 6 1
294.6.e.h 2 7.b odd 2 1
294.6.e.h 2 7.d odd 6 1
294.6.e.r 2 1.a even 1 1 trivial
294.6.e.r 2 7.c even 3 1 inner
336.6.a.j 1 28.g odd 6 1
882.6.a.o 1 21.g even 6 1
1008.6.a.x 1 84.n even 6 1
1050.6.a.n 1 35.j even 6 1
1050.6.g.o 2 35.l odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(294,[χ])S_{6}^{\mathrm{new}}(294, [\chi]):

T5254T5+2916 T_{5}^{2} - 54T_{5} + 2916 Copy content Toggle raw display
T112+216T11+46656 T_{11}^{2} + 216T_{11} + 46656 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
33 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
55 T254T+2916 T^{2} - 54T + 2916 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+216T+46656 T^{2} + 216T + 46656 Copy content Toggle raw display
1313 (T998)2 (T - 998)^{2} Copy content Toggle raw display
1717 T2+1302T+1695204 T^{2} + 1302 T + 1695204 Copy content Toggle raw display
1919 T2+884T+781456 T^{2} + 884T + 781456 Copy content Toggle raw display
2323 T22268T+5143824 T^{2} - 2268 T + 5143824 Copy content Toggle raw display
2929 (T+1482)2 (T + 1482)^{2} Copy content Toggle raw display
3131 T2+8360T+69889600 T^{2} + 8360 T + 69889600 Copy content Toggle raw display
3737 T24714T+22221796 T^{2} - 4714 T + 22221796 Copy content Toggle raw display
4141 (T+9786)2 (T + 9786)^{2} Copy content Toggle raw display
4343 (T19436)2 (T - 19436)^{2} Copy content Toggle raw display
4747 T2+22200T+492840000 T^{2} + 22200 T + 492840000 Copy content Toggle raw display
5353 T2+26790T+717704100 T^{2} + 26790 T + 717704100 Copy content Toggle raw display
5959 T2+28092T+789160464 T^{2} + 28092 T + 789160464 Copy content Toggle raw display
6161 T2++1510565956 T^{2} + \cdots + 1510565956 Copy content Toggle raw display
6767 T2+23948T+573506704 T^{2} + 23948 T + 573506704 Copy content Toggle raw display
7171 (T+20628)2 (T + 20628)^{2} Copy content Toggle raw display
7373 T2+290T+84100 T^{2} + 290T + 84100 Copy content Toggle raw display
7979 T2++9909007936 T^{2} + \cdots + 9909007936 Copy content Toggle raw display
8383 (T19308)2 (T - 19308)^{2} Copy content Toggle raw display
8989 T2++1324232100 T^{2} + \cdots + 1324232100 Copy content Toggle raw display
9797 (T+79078)2 (T + 79078)^{2} Copy content Toggle raw display
show more
show less