L(s) = 1 | + (2 + 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (27 + 46.7i)5-s + 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (−108 + 187. i)10-s + (−108 + 187. i)11-s + (72 + 124. i)12-s + 998·13-s + 486·15-s + (−128 − 221. i)16-s + (−651 + 1.12e3i)17-s + (162 − 280. i)18-s + (−442 − 765. i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.482 + 0.836i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.341 + 0.591i)10-s + (−0.269 + 0.466i)11-s + (0.144 + 0.249i)12-s + 1.63·13-s + 0.557·15-s + (−0.125 − 0.216i)16-s + (−0.546 + 0.946i)17-s + (0.117 − 0.204i)18-s + (−0.280 − 0.486i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.534924110\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.534924110\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 3.46i)T \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-27 - 46.7i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (108 - 187. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 998T + 3.71e5T^{2} \) |
| 17 | \( 1 + (651 - 1.12e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (442 + 765. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.13e3 - 1.96e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 1.48e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (4.18e3 - 7.23e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-2.35e3 - 4.08e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 9.78e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.94e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.11e4 + 1.92e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.33e4 - 2.32e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.40e4 - 2.43e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.94e4 - 3.36e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.19e4 - 2.07e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.06e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (145 - 251. i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-4.97e4 - 8.62e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.93e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (1.81e4 + 3.15e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 7.90e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17712706293237382766537884692, −10.45887107207067981584825193373, −9.086986168092864346785400502169, −8.318955084854022451046612049041, −7.13167683553929894505578171864, −6.47601181357573177289999655947, −5.56895972083949796888448728596, −4.01337010848736189811143009692, −2.89067461929700961009475227067, −1.53132886602871700989228006059,
0.57657508620634342274860678255, 1.89096844518616541336303696200, 3.26540448826440233691957047575, 4.34013109654423931777922691208, 5.35918646702774859097254865919, 6.28863286125263926998960559170, 8.053958179005049953078064103361, 8.995551550810860137681579070708, 9.530602274619590207947066410621, 10.85363310507144890709078205602