Properties

Label 42.6.a.a
Level 4242
Weight 66
Character orbit 42.a
Self dual yes
Analytic conductor 6.7366.736
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(1,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 42.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.736120432156.73612043215
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q4q29q3+16q454q5+36q6+49q764q8+81q9+216q10+216q11144q12+998q13196q14+486q15+256q16+1302q17324q18++17496q99+O(q100) q - 4 q^{2} - 9 q^{3} + 16 q^{4} - 54 q^{5} + 36 q^{6} + 49 q^{7} - 64 q^{8} + 81 q^{9} + 216 q^{10} + 216 q^{11} - 144 q^{12} + 998 q^{13} - 196 q^{14} + 486 q^{15} + 256 q^{16} + 1302 q^{17} - 324 q^{18}+ \cdots + 17496 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 −9.00000 16.0000 −54.0000 36.0000 49.0000 −64.0000 81.0000 216.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.6.a.a 1
3.b odd 2 1 126.6.a.k 1
4.b odd 2 1 336.6.a.j 1
5.b even 2 1 1050.6.a.n 1
5.c odd 4 2 1050.6.g.o 2
7.b odd 2 1 294.6.a.h 1
7.c even 3 2 294.6.e.r 2
7.d odd 6 2 294.6.e.h 2
12.b even 2 1 1008.6.a.x 1
21.c even 2 1 882.6.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.a 1 1.a even 1 1 trivial
126.6.a.k 1 3.b odd 2 1
294.6.a.h 1 7.b odd 2 1
294.6.e.h 2 7.d odd 6 2
294.6.e.r 2 7.c even 3 2
336.6.a.j 1 4.b odd 2 1
882.6.a.o 1 21.c even 2 1
1008.6.a.x 1 12.b even 2 1
1050.6.a.n 1 5.b even 2 1
1050.6.g.o 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+54 T_{5} + 54 acting on S6new(Γ0(42))S_{6}^{\mathrm{new}}(\Gamma_0(42)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T+9 T + 9 Copy content Toggle raw display
55 T+54 T + 54 Copy content Toggle raw display
77 T49 T - 49 Copy content Toggle raw display
1111 T216 T - 216 Copy content Toggle raw display
1313 T998 T - 998 Copy content Toggle raw display
1717 T1302 T - 1302 Copy content Toggle raw display
1919 T884 T - 884 Copy content Toggle raw display
2323 T+2268 T + 2268 Copy content Toggle raw display
2929 T+1482 T + 1482 Copy content Toggle raw display
3131 T8360 T - 8360 Copy content Toggle raw display
3737 T+4714 T + 4714 Copy content Toggle raw display
4141 T+9786 T + 9786 Copy content Toggle raw display
4343 T19436 T - 19436 Copy content Toggle raw display
4747 T22200 T - 22200 Copy content Toggle raw display
5353 T26790 T - 26790 Copy content Toggle raw display
5959 T28092 T - 28092 Copy content Toggle raw display
6161 T+38866 T + 38866 Copy content Toggle raw display
6767 T23948 T - 23948 Copy content Toggle raw display
7171 T+20628 T + 20628 Copy content Toggle raw display
7373 T290 T - 290 Copy content Toggle raw display
7979 T+99544 T + 99544 Copy content Toggle raw display
8383 T19308 T - 19308 Copy content Toggle raw display
8989 T36390 T - 36390 Copy content Toggle raw display
9797 T+79078 T + 79078 Copy content Toggle raw display
show more
show less