L(s) = 1 | + 0.0419·2-s − 3.02·3-s − 1.99·4-s − 1.74·5-s − 0.126·6-s + 2.05·7-s − 0.167·8-s + 6.16·9-s − 0.0730·10-s + 1.85·11-s + 6.05·12-s + 2.57·13-s + 0.0861·14-s + 5.27·15-s + 3.98·16-s − 5.23·17-s + 0.258·18-s − 0.379·19-s + 3.48·20-s − 6.21·21-s + 0.0776·22-s + 3.63·23-s + 0.507·24-s − 1.96·25-s + 0.108·26-s − 9.58·27-s − 4.10·28-s + ⋯ |
L(s) = 1 | + 0.0296·2-s − 1.74·3-s − 0.999·4-s − 0.779·5-s − 0.0518·6-s + 0.776·7-s − 0.0592·8-s + 2.05·9-s − 0.0231·10-s + 0.558·11-s + 1.74·12-s + 0.714·13-s + 0.0230·14-s + 1.36·15-s + 0.997·16-s − 1.26·17-s + 0.0609·18-s − 0.0869·19-s + 0.778·20-s − 1.35·21-s + 0.0165·22-s + 0.757·23-s + 0.103·24-s − 0.393·25-s + 0.0212·26-s − 1.84·27-s − 0.775·28-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1−0.0419T+2T2 |
| 3 | 1+3.02T+3T2 |
| 5 | 1+1.74T+5T2 |
| 7 | 1−2.05T+7T2 |
| 11 | 1−1.85T+11T2 |
| 13 | 1−2.57T+13T2 |
| 17 | 1+5.23T+17T2 |
| 19 | 1+0.379T+19T2 |
| 23 | 1−3.63T+23T2 |
| 31 | 1+2.36T+31T2 |
| 37 | 1−6.56T+37T2 |
| 41 | 1+9.44T+41T2 |
| 43 | 1−0.995T+43T2 |
| 47 | 1+10.1T+47T2 |
| 53 | 1−9.93T+53T2 |
| 59 | 1+6.24T+59T2 |
| 61 | 1−7.98T+61T2 |
| 67 | 1+4.13T+67T2 |
| 71 | 1+2.28T+71T2 |
| 73 | 1−9.06T+73T2 |
| 79 | 1+10.2T+79T2 |
| 83 | 1+15.6T+83T2 |
| 89 | 1−9.61T+89T2 |
| 97 | 1+5.17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949420717437631188250207082872, −8.906250039555293352026517729327, −8.112234510432481801575492425329, −7.02363435936436704330980807109, −6.16702827181305489230412205532, −5.18444511262223159688928596805, −4.52263523143849229955120190750, −3.81958927161261144874096920569, −1.32067983669095626157272169336, 0,
1.32067983669095626157272169336, 3.81958927161261144874096920569, 4.52263523143849229955120190750, 5.18444511262223159688928596805, 6.16702827181305489230412205532, 7.02363435936436704330980807109, 8.112234510432481801575492425329, 8.906250039555293352026517729327, 9.949420717437631188250207082872