Properties

Label 2-29e2-1.1-c1-0-18
Degree $2$
Conductor $841$
Sign $-1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0419·2-s − 3.02·3-s − 1.99·4-s − 1.74·5-s − 0.126·6-s + 2.05·7-s − 0.167·8-s + 6.16·9-s − 0.0730·10-s + 1.85·11-s + 6.05·12-s + 2.57·13-s + 0.0861·14-s + 5.27·15-s + 3.98·16-s − 5.23·17-s + 0.258·18-s − 0.379·19-s + 3.48·20-s − 6.21·21-s + 0.0776·22-s + 3.63·23-s + 0.507·24-s − 1.96·25-s + 0.108·26-s − 9.58·27-s − 4.10·28-s + ⋯
L(s)  = 1  + 0.0296·2-s − 1.74·3-s − 0.999·4-s − 0.779·5-s − 0.0518·6-s + 0.776·7-s − 0.0592·8-s + 2.05·9-s − 0.0231·10-s + 0.558·11-s + 1.74·12-s + 0.714·13-s + 0.0230·14-s + 1.36·15-s + 0.997·16-s − 1.26·17-s + 0.0609·18-s − 0.0869·19-s + 0.778·20-s − 1.35·21-s + 0.0165·22-s + 0.757·23-s + 0.103·24-s − 0.393·25-s + 0.0212·26-s − 1.84·27-s − 0.775·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 0.0419T + 2T^{2} \)
3 \( 1 + 3.02T + 3T^{2} \)
5 \( 1 + 1.74T + 5T^{2} \)
7 \( 1 - 2.05T + 7T^{2} \)
11 \( 1 - 1.85T + 11T^{2} \)
13 \( 1 - 2.57T + 13T^{2} \)
17 \( 1 + 5.23T + 17T^{2} \)
19 \( 1 + 0.379T + 19T^{2} \)
23 \( 1 - 3.63T + 23T^{2} \)
31 \( 1 + 2.36T + 31T^{2} \)
37 \( 1 - 6.56T + 37T^{2} \)
41 \( 1 + 9.44T + 41T^{2} \)
43 \( 1 - 0.995T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 - 9.93T + 53T^{2} \)
59 \( 1 + 6.24T + 59T^{2} \)
61 \( 1 - 7.98T + 61T^{2} \)
67 \( 1 + 4.13T + 67T^{2} \)
71 \( 1 + 2.28T + 71T^{2} \)
73 \( 1 - 9.06T + 73T^{2} \)
79 \( 1 + 10.2T + 79T^{2} \)
83 \( 1 + 15.6T + 83T^{2} \)
89 \( 1 - 9.61T + 89T^{2} \)
97 \( 1 + 5.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.949420717437631188250207082872, −8.906250039555293352026517729327, −8.112234510432481801575492425329, −7.02363435936436704330980807109, −6.16702827181305489230412205532, −5.18444511262223159688928596805, −4.52263523143849229955120190750, −3.81958927161261144874096920569, −1.32067983669095626157272169336, 0, 1.32067983669095626157272169336, 3.81958927161261144874096920569, 4.52263523143849229955120190750, 5.18444511262223159688928596805, 6.16702827181305489230412205532, 7.02363435936436704330980807109, 8.112234510432481801575492425329, 8.906250039555293352026517729327, 9.949420717437631188250207082872

Graph of the $Z$-function along the critical line