Properties

Label 841.2.a.i.1.5
Level $841$
Weight $2$
Character 841.1
Self dual yes
Analytic conductor $6.715$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2841328125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 3x^{6} + 23x^{5} - 43x^{3} + 2x^{2} + 24x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0419454\) of defining polynomial
Character \(\chi\) \(=\) 841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0419454 q^{2} -3.02773 q^{3} -1.99824 q^{4} -1.74204 q^{5} -0.126999 q^{6} +2.05366 q^{7} -0.167708 q^{8} +6.16716 q^{9} -0.0730704 q^{10} +1.85185 q^{11} +6.05014 q^{12} +2.57790 q^{13} +0.0861414 q^{14} +5.27442 q^{15} +3.98945 q^{16} -5.23359 q^{17} +0.258684 q^{18} -0.379040 q^{19} +3.48101 q^{20} -6.21792 q^{21} +0.0776766 q^{22} +3.63048 q^{23} +0.507774 q^{24} -1.96531 q^{25} +0.108131 q^{26} -9.58931 q^{27} -4.10370 q^{28} +0.221238 q^{30} -2.36562 q^{31} +0.502754 q^{32} -5.60691 q^{33} -0.219525 q^{34} -3.57754 q^{35} -12.3235 q^{36} +6.56734 q^{37} -0.0158990 q^{38} -7.80518 q^{39} +0.292153 q^{40} -9.44586 q^{41} -0.260813 q^{42} +0.995519 q^{43} -3.70044 q^{44} -10.7434 q^{45} +0.152282 q^{46} -10.1675 q^{47} -12.0790 q^{48} -2.78250 q^{49} -0.0824356 q^{50} +15.8459 q^{51} -5.15126 q^{52} +9.93002 q^{53} -0.402227 q^{54} -3.22599 q^{55} -0.344414 q^{56} +1.14763 q^{57} -6.24449 q^{59} -10.5396 q^{60} +7.98529 q^{61} -0.0992270 q^{62} +12.6652 q^{63} -7.95780 q^{64} -4.49079 q^{65} -0.235184 q^{66} -4.13822 q^{67} +10.4580 q^{68} -10.9921 q^{69} -0.150061 q^{70} -2.28290 q^{71} -1.03428 q^{72} +9.06401 q^{73} +0.275470 q^{74} +5.95042 q^{75} +0.757414 q^{76} +3.80306 q^{77} -0.327391 q^{78} -10.2768 q^{79} -6.94976 q^{80} +10.5324 q^{81} -0.396210 q^{82} -15.6206 q^{83} +12.4249 q^{84} +9.11711 q^{85} +0.0417574 q^{86} -0.310570 q^{88} +9.61689 q^{89} -0.450637 q^{90} +5.29411 q^{91} -7.25457 q^{92} +7.16248 q^{93} -0.426481 q^{94} +0.660302 q^{95} -1.52221 q^{96} -5.17777 q^{97} -0.116713 q^{98} +11.4207 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 6 q^{3} + 6 q^{4} - q^{5} + 3 q^{6} - 15 q^{8} + 8 q^{9} + 3 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 15 q^{14} + 7 q^{15} - 2 q^{16} - 9 q^{17} + 11 q^{18} - 17 q^{19} - 7 q^{20} - 25 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0419454 0.0296599 0.0148299 0.999890i \(-0.495279\pi\)
0.0148299 + 0.999890i \(0.495279\pi\)
\(3\) −3.02773 −1.74806 −0.874031 0.485870i \(-0.838503\pi\)
−0.874031 + 0.485870i \(0.838503\pi\)
\(4\) −1.99824 −0.999120
\(5\) −1.74204 −0.779063 −0.389531 0.921013i \(-0.627363\pi\)
−0.389531 + 0.921013i \(0.627363\pi\)
\(6\) −0.126999 −0.0518473
\(7\) 2.05366 0.776209 0.388104 0.921615i \(-0.373130\pi\)
0.388104 + 0.921615i \(0.373130\pi\)
\(8\) −0.167708 −0.0592936
\(9\) 6.16716 2.05572
\(10\) −0.0730704 −0.0231069
\(11\) 1.85185 0.558354 0.279177 0.960240i \(-0.409938\pi\)
0.279177 + 0.960240i \(0.409938\pi\)
\(12\) 6.05014 1.74652
\(13\) 2.57790 0.714980 0.357490 0.933917i \(-0.383633\pi\)
0.357490 + 0.933917i \(0.383633\pi\)
\(14\) 0.0861414 0.0230222
\(15\) 5.27442 1.36185
\(16\) 3.98945 0.997362
\(17\) −5.23359 −1.26933 −0.634666 0.772787i \(-0.718862\pi\)
−0.634666 + 0.772787i \(0.718862\pi\)
\(18\) 0.258684 0.0609724
\(19\) −0.379040 −0.0869578 −0.0434789 0.999054i \(-0.513844\pi\)
−0.0434789 + 0.999054i \(0.513844\pi\)
\(20\) 3.48101 0.778377
\(21\) −6.21792 −1.35686
\(22\) 0.0776766 0.0165607
\(23\) 3.63048 0.757007 0.378504 0.925600i \(-0.376439\pi\)
0.378504 + 0.925600i \(0.376439\pi\)
\(24\) 0.507774 0.103649
\(25\) −1.96531 −0.393061
\(26\) 0.108131 0.0212062
\(27\) −9.58931 −1.84546
\(28\) −4.10370 −0.775526
\(29\) 0 0
\(30\) 0.221238 0.0403923
\(31\) −2.36562 −0.424879 −0.212439 0.977174i \(-0.568141\pi\)
−0.212439 + 0.977174i \(0.568141\pi\)
\(32\) 0.502754 0.0888752
\(33\) −5.60691 −0.976038
\(34\) −0.219525 −0.0376482
\(35\) −3.57754 −0.604715
\(36\) −12.3235 −2.05391
\(37\) 6.56734 1.07966 0.539832 0.841773i \(-0.318488\pi\)
0.539832 + 0.841773i \(0.318488\pi\)
\(38\) −0.0158990 −0.00257916
\(39\) −7.80518 −1.24983
\(40\) 0.292153 0.0461935
\(41\) −9.44586 −1.47520 −0.737598 0.675240i \(-0.764040\pi\)
−0.737598 + 0.675240i \(0.764040\pi\)
\(42\) −0.260813 −0.0402443
\(43\) 0.995519 0.151815 0.0759076 0.997115i \(-0.475815\pi\)
0.0759076 + 0.997115i \(0.475815\pi\)
\(44\) −3.70044 −0.557863
\(45\) −10.7434 −1.60153
\(46\) 0.152282 0.0224527
\(47\) −10.1675 −1.48309 −0.741543 0.670905i \(-0.765906\pi\)
−0.741543 + 0.670905i \(0.765906\pi\)
\(48\) −12.0790 −1.74345
\(49\) −2.78250 −0.397500
\(50\) −0.0824356 −0.0116582
\(51\) 15.8459 2.21887
\(52\) −5.15126 −0.714351
\(53\) 9.93002 1.36399 0.681997 0.731355i \(-0.261112\pi\)
0.681997 + 0.731355i \(0.261112\pi\)
\(54\) −0.402227 −0.0547362
\(55\) −3.22599 −0.434993
\(56\) −0.344414 −0.0460242
\(57\) 1.14763 0.152008
\(58\) 0 0
\(59\) −6.24449 −0.812963 −0.406482 0.913659i \(-0.633244\pi\)
−0.406482 + 0.913659i \(0.633244\pi\)
\(60\) −10.5396 −1.36065
\(61\) 7.98529 1.02241 0.511206 0.859458i \(-0.329199\pi\)
0.511206 + 0.859458i \(0.329199\pi\)
\(62\) −0.0992270 −0.0126018
\(63\) 12.6652 1.59567
\(64\) −7.95780 −0.994726
\(65\) −4.49079 −0.557014
\(66\) −0.235184 −0.0289491
\(67\) −4.13822 −0.505565 −0.252782 0.967523i \(-0.581346\pi\)
−0.252782 + 0.967523i \(0.581346\pi\)
\(68\) 10.4580 1.26822
\(69\) −10.9921 −1.32330
\(70\) −0.150061 −0.0179358
\(71\) −2.28290 −0.270930 −0.135465 0.990782i \(-0.543253\pi\)
−0.135465 + 0.990782i \(0.543253\pi\)
\(72\) −1.03428 −0.121891
\(73\) 9.06401 1.06086 0.530431 0.847728i \(-0.322030\pi\)
0.530431 + 0.847728i \(0.322030\pi\)
\(74\) 0.275470 0.0320227
\(75\) 5.95042 0.687096
\(76\) 0.757414 0.0868813
\(77\) 3.80306 0.433399
\(78\) −0.327391 −0.0370698
\(79\) −10.2768 −1.15622 −0.578112 0.815957i \(-0.696210\pi\)
−0.578112 + 0.815957i \(0.696210\pi\)
\(80\) −6.94976 −0.777007
\(81\) 10.5324 1.17027
\(82\) −0.396210 −0.0437541
\(83\) −15.6206 −1.71459 −0.857294 0.514827i \(-0.827856\pi\)
−0.857294 + 0.514827i \(0.827856\pi\)
\(84\) 12.4249 1.35567
\(85\) 9.11711 0.988889
\(86\) 0.0417574 0.00450282
\(87\) 0 0
\(88\) −0.310570 −0.0331069
\(89\) 9.61689 1.01939 0.509694 0.860356i \(-0.329758\pi\)
0.509694 + 0.860356i \(0.329758\pi\)
\(90\) −0.450637 −0.0475013
\(91\) 5.29411 0.554974
\(92\) −7.25457 −0.756341
\(93\) 7.16248 0.742714
\(94\) −0.426481 −0.0439881
\(95\) 0.660302 0.0677456
\(96\) −1.52221 −0.155359
\(97\) −5.17777 −0.525723 −0.262862 0.964834i \(-0.584666\pi\)
−0.262862 + 0.964834i \(0.584666\pi\)
\(98\) −0.116713 −0.0117898
\(99\) 11.4207 1.14782
\(100\) 3.92716 0.392716
\(101\) 8.46144 0.841945 0.420973 0.907073i \(-0.361689\pi\)
0.420973 + 0.907073i \(0.361689\pi\)
\(102\) 0.664663 0.0658114
\(103\) 3.51409 0.346254 0.173127 0.984900i \(-0.444613\pi\)
0.173127 + 0.984900i \(0.444613\pi\)
\(104\) −0.432333 −0.0423938
\(105\) 10.8318 1.05708
\(106\) 0.416519 0.0404559
\(107\) −4.44378 −0.429596 −0.214798 0.976658i \(-0.568909\pi\)
−0.214798 + 0.976658i \(0.568909\pi\)
\(108\) 19.1618 1.84384
\(109\) −11.7628 −1.12667 −0.563335 0.826229i \(-0.690482\pi\)
−0.563335 + 0.826229i \(0.690482\pi\)
\(110\) −0.135316 −0.0129018
\(111\) −19.8842 −1.88732
\(112\) 8.19295 0.774161
\(113\) −11.4197 −1.07428 −0.537139 0.843494i \(-0.680495\pi\)
−0.537139 + 0.843494i \(0.680495\pi\)
\(114\) 0.0481379 0.00450853
\(115\) −6.32443 −0.589756
\(116\) 0 0
\(117\) 15.8983 1.46980
\(118\) −0.261927 −0.0241124
\(119\) −10.7480 −0.985267
\(120\) −0.884561 −0.0807490
\(121\) −7.57065 −0.688241
\(122\) 0.334946 0.0303246
\(123\) 28.5995 2.57873
\(124\) 4.72709 0.424505
\(125\) 12.1338 1.08528
\(126\) 0.531248 0.0473273
\(127\) 12.0462 1.06893 0.534466 0.845190i \(-0.320513\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(128\) −1.33930 −0.118379
\(129\) −3.01417 −0.265383
\(130\) −0.188368 −0.0165210
\(131\) −14.5943 −1.27511 −0.637556 0.770404i \(-0.720054\pi\)
−0.637556 + 0.770404i \(0.720054\pi\)
\(132\) 11.2040 0.975179
\(133\) −0.778418 −0.0674974
\(134\) −0.173579 −0.0149950
\(135\) 16.7049 1.43773
\(136\) 0.877713 0.0752633
\(137\) 2.86241 0.244552 0.122276 0.992496i \(-0.460981\pi\)
0.122276 + 0.992496i \(0.460981\pi\)
\(138\) −0.461069 −0.0392488
\(139\) −22.2683 −1.88877 −0.944387 0.328835i \(-0.893344\pi\)
−0.944387 + 0.328835i \(0.893344\pi\)
\(140\) 7.14879 0.604183
\(141\) 30.7846 2.59253
\(142\) −0.0957570 −0.00803575
\(143\) 4.77388 0.399212
\(144\) 24.6036 2.05030
\(145\) 0 0
\(146\) 0.380194 0.0314650
\(147\) 8.42466 0.694854
\(148\) −13.1231 −1.07871
\(149\) 4.23624 0.347046 0.173523 0.984830i \(-0.444485\pi\)
0.173523 + 0.984830i \(0.444485\pi\)
\(150\) 0.249593 0.0203792
\(151\) 7.79459 0.634315 0.317158 0.948373i \(-0.397272\pi\)
0.317158 + 0.948373i \(0.397272\pi\)
\(152\) 0.0635680 0.00515604
\(153\) −32.2764 −2.60939
\(154\) 0.159521 0.0128546
\(155\) 4.12101 0.331007
\(156\) 15.5966 1.24873
\(157\) −6.32741 −0.504982 −0.252491 0.967599i \(-0.581250\pi\)
−0.252491 + 0.967599i \(0.581250\pi\)
\(158\) −0.431062 −0.0342935
\(159\) −30.0654 −2.38434
\(160\) −0.875817 −0.0692394
\(161\) 7.45575 0.587596
\(162\) 0.441785 0.0347099
\(163\) 1.75944 0.137810 0.0689051 0.997623i \(-0.478049\pi\)
0.0689051 + 0.997623i \(0.478049\pi\)
\(164\) 18.8751 1.47390
\(165\) 9.76744 0.760394
\(166\) −0.655214 −0.0508545
\(167\) −13.9203 −1.07718 −0.538592 0.842567i \(-0.681044\pi\)
−0.538592 + 0.842567i \(0.681044\pi\)
\(168\) 1.04279 0.0804532
\(169\) −6.35445 −0.488804
\(170\) 0.382421 0.0293303
\(171\) −2.33760 −0.178761
\(172\) −1.98929 −0.151682
\(173\) −8.38553 −0.637540 −0.318770 0.947832i \(-0.603270\pi\)
−0.318770 + 0.947832i \(0.603270\pi\)
\(174\) 0 0
\(175\) −4.03606 −0.305098
\(176\) 7.38786 0.556881
\(177\) 18.9066 1.42111
\(178\) 0.403384 0.0302349
\(179\) −19.6755 −1.47062 −0.735308 0.677733i \(-0.762963\pi\)
−0.735308 + 0.677733i \(0.762963\pi\)
\(180\) 21.4679 1.60013
\(181\) 12.0535 0.895932 0.447966 0.894051i \(-0.352149\pi\)
0.447966 + 0.894051i \(0.352149\pi\)
\(182\) 0.222064 0.0164604
\(183\) −24.1773 −1.78724
\(184\) −0.608859 −0.0448857
\(185\) −11.4406 −0.841126
\(186\) 0.300433 0.0220288
\(187\) −9.69183 −0.708737
\(188\) 20.3172 1.48178
\(189\) −19.6931 −1.43247
\(190\) 0.0276966 0.00200932
\(191\) −11.6202 −0.840810 −0.420405 0.907337i \(-0.638112\pi\)
−0.420405 + 0.907337i \(0.638112\pi\)
\(192\) 24.0941 1.73884
\(193\) −19.0525 −1.37143 −0.685715 0.727871i \(-0.740510\pi\)
−0.685715 + 0.727871i \(0.740510\pi\)
\(194\) −0.217184 −0.0155929
\(195\) 13.5969 0.973695
\(196\) 5.56010 0.397150
\(197\) 16.7067 1.19030 0.595151 0.803614i \(-0.297092\pi\)
0.595151 + 0.803614i \(0.297092\pi\)
\(198\) 0.479044 0.0340442
\(199\) −8.90853 −0.631509 −0.315754 0.948841i \(-0.602258\pi\)
−0.315754 + 0.948841i \(0.602258\pi\)
\(200\) 0.329597 0.0233060
\(201\) 12.5294 0.883758
\(202\) 0.354918 0.0249720
\(203\) 0 0
\(204\) −31.6639 −2.21692
\(205\) 16.4550 1.14927
\(206\) 0.147400 0.0102698
\(207\) 22.3897 1.55619
\(208\) 10.2844 0.713094
\(209\) −0.701926 −0.0485533
\(210\) 0.454346 0.0313528
\(211\) −0.254216 −0.0175010 −0.00875049 0.999962i \(-0.502785\pi\)
−0.00875049 + 0.999962i \(0.502785\pi\)
\(212\) −19.8426 −1.36279
\(213\) 6.91200 0.473603
\(214\) −0.186396 −0.0127418
\(215\) −1.73423 −0.118274
\(216\) 1.60820 0.109424
\(217\) −4.85818 −0.329795
\(218\) −0.493394 −0.0334169
\(219\) −27.4434 −1.85445
\(220\) 6.44631 0.434610
\(221\) −13.4917 −0.907547
\(222\) −0.834049 −0.0559777
\(223\) 9.15674 0.613180 0.306590 0.951842i \(-0.400812\pi\)
0.306590 + 0.951842i \(0.400812\pi\)
\(224\) 1.03248 0.0689858
\(225\) −12.1204 −0.808024
\(226\) −0.479005 −0.0318629
\(227\) −4.81446 −0.319547 −0.159773 0.987154i \(-0.551076\pi\)
−0.159773 + 0.987154i \(0.551076\pi\)
\(228\) −2.29325 −0.151874
\(229\) 6.86601 0.453719 0.226859 0.973928i \(-0.427154\pi\)
0.226859 + 0.973928i \(0.427154\pi\)
\(230\) −0.265281 −0.0174921
\(231\) −11.5147 −0.757609
\(232\) 0 0
\(233\) 17.2302 1.12879 0.564393 0.825507i \(-0.309110\pi\)
0.564393 + 0.825507i \(0.309110\pi\)
\(234\) 0.666860 0.0435940
\(235\) 17.7122 1.15542
\(236\) 12.4780 0.812248
\(237\) 31.1152 2.02115
\(238\) −0.450829 −0.0292229
\(239\) −21.3042 −1.37805 −0.689026 0.724737i \(-0.741961\pi\)
−0.689026 + 0.724737i \(0.741961\pi\)
\(240\) 21.0420 1.35826
\(241\) −8.99312 −0.579298 −0.289649 0.957133i \(-0.593539\pi\)
−0.289649 + 0.957133i \(0.593539\pi\)
\(242\) −0.317554 −0.0204131
\(243\) −3.12130 −0.200232
\(244\) −15.9565 −1.02151
\(245\) 4.84722 0.309677
\(246\) 1.19962 0.0764849
\(247\) −0.977127 −0.0621731
\(248\) 0.396734 0.0251926
\(249\) 47.2951 2.99721
\(250\) 0.508958 0.0321893
\(251\) 6.50262 0.410442 0.205221 0.978716i \(-0.434209\pi\)
0.205221 + 0.978716i \(0.434209\pi\)
\(252\) −25.3082 −1.59426
\(253\) 6.72311 0.422678
\(254\) 0.505284 0.0317044
\(255\) −27.6042 −1.72864
\(256\) 15.8594 0.991215
\(257\) −5.78756 −0.361018 −0.180509 0.983573i \(-0.557774\pi\)
−0.180509 + 0.983573i \(0.557774\pi\)
\(258\) −0.126430 −0.00787121
\(259\) 13.4871 0.838045
\(260\) 8.97368 0.556524
\(261\) 0 0
\(262\) −0.612164 −0.0378196
\(263\) −30.2467 −1.86509 −0.932547 0.361048i \(-0.882419\pi\)
−0.932547 + 0.361048i \(0.882419\pi\)
\(264\) 0.940322 0.0578728
\(265\) −17.2985 −1.06264
\(266\) −0.0326510 −0.00200196
\(267\) −29.1174 −1.78195
\(268\) 8.26917 0.505120
\(269\) −11.9363 −0.727766 −0.363883 0.931445i \(-0.618549\pi\)
−0.363883 + 0.931445i \(0.618549\pi\)
\(270\) 0.700695 0.0426429
\(271\) 17.5571 1.06652 0.533260 0.845951i \(-0.320967\pi\)
0.533260 + 0.845951i \(0.320967\pi\)
\(272\) −20.8791 −1.26598
\(273\) −16.0292 −0.970128
\(274\) 0.120065 0.00725337
\(275\) −3.63946 −0.219468
\(276\) 21.9649 1.32213
\(277\) 1.07477 0.0645765 0.0322882 0.999479i \(-0.489721\pi\)
0.0322882 + 0.999479i \(0.489721\pi\)
\(278\) −0.934053 −0.0560208
\(279\) −14.5892 −0.873432
\(280\) 0.599982 0.0358558
\(281\) −29.8865 −1.78288 −0.891441 0.453138i \(-0.850305\pi\)
−0.891441 + 0.453138i \(0.850305\pi\)
\(282\) 1.29127 0.0768940
\(283\) 26.7501 1.59013 0.795065 0.606524i \(-0.207436\pi\)
0.795065 + 0.606524i \(0.207436\pi\)
\(284\) 4.56178 0.270692
\(285\) −1.99922 −0.118423
\(286\) 0.200242 0.0118406
\(287\) −19.3986 −1.14506
\(288\) 3.10057 0.182703
\(289\) 10.3905 0.611204
\(290\) 0 0
\(291\) 15.6769 0.918996
\(292\) −18.1121 −1.05993
\(293\) 5.81037 0.339446 0.169723 0.985492i \(-0.445713\pi\)
0.169723 + 0.985492i \(0.445713\pi\)
\(294\) 0.353376 0.0206093
\(295\) 10.8781 0.633349
\(296\) −1.10139 −0.0640172
\(297\) −17.7580 −1.03042
\(298\) 0.177691 0.0102933
\(299\) 9.35900 0.541245
\(300\) −11.8904 −0.686491
\(301\) 2.04445 0.117840
\(302\) 0.326947 0.0188137
\(303\) −25.6190 −1.47177
\(304\) −1.51216 −0.0867284
\(305\) −13.9107 −0.796522
\(306\) −1.35385 −0.0773942
\(307\) −5.15345 −0.294123 −0.147061 0.989127i \(-0.546982\pi\)
−0.147061 + 0.989127i \(0.546982\pi\)
\(308\) −7.59944 −0.433018
\(309\) −10.6397 −0.605273
\(310\) 0.172857 0.00981763
\(311\) 10.6244 0.602453 0.301227 0.953553i \(-0.402604\pi\)
0.301227 + 0.953553i \(0.402604\pi\)
\(312\) 1.30899 0.0741069
\(313\) 16.7104 0.944526 0.472263 0.881458i \(-0.343437\pi\)
0.472263 + 0.881458i \(0.343437\pi\)
\(314\) −0.265405 −0.0149777
\(315\) −22.0633 −1.24313
\(316\) 20.5354 1.15521
\(317\) 1.49124 0.0837563 0.0418782 0.999123i \(-0.486666\pi\)
0.0418782 + 0.999123i \(0.486666\pi\)
\(318\) −1.26111 −0.0707193
\(319\) 0 0
\(320\) 13.8628 0.774954
\(321\) 13.4546 0.750961
\(322\) 0.312734 0.0174280
\(323\) 1.98374 0.110378
\(324\) −21.0462 −1.16924
\(325\) −5.06636 −0.281031
\(326\) 0.0738005 0.00408743
\(327\) 35.6145 1.96949
\(328\) 1.58414 0.0874697
\(329\) −20.8806 −1.15118
\(330\) 0.409699 0.0225532
\(331\) 29.8803 1.64237 0.821184 0.570663i \(-0.193314\pi\)
0.821184 + 0.570663i \(0.193314\pi\)
\(332\) 31.2138 1.71308
\(333\) 40.5019 2.21949
\(334\) −0.583892 −0.0319491
\(335\) 7.20894 0.393866
\(336\) −24.8061 −1.35328
\(337\) 0.941345 0.0512783 0.0256392 0.999671i \(-0.491838\pi\)
0.0256392 + 0.999671i \(0.491838\pi\)
\(338\) −0.266540 −0.0144979
\(339\) 34.5759 1.87790
\(340\) −18.2182 −0.988019
\(341\) −4.38079 −0.237233
\(342\) −0.0980516 −0.00530202
\(343\) −20.0899 −1.08475
\(344\) −0.166956 −0.00900168
\(345\) 19.1487 1.03093
\(346\) −0.351734 −0.0189094
\(347\) −8.65358 −0.464548 −0.232274 0.972650i \(-0.574617\pi\)
−0.232274 + 0.972650i \(0.574617\pi\)
\(348\) 0 0
\(349\) −34.5616 −1.85004 −0.925021 0.379916i \(-0.875953\pi\)
−0.925021 + 0.379916i \(0.875953\pi\)
\(350\) −0.169294 −0.00904916
\(351\) −24.7203 −1.31947
\(352\) 0.931026 0.0496239
\(353\) −14.4231 −0.767663 −0.383831 0.923403i \(-0.625396\pi\)
−0.383831 + 0.923403i \(0.625396\pi\)
\(354\) 0.793046 0.0421499
\(355\) 3.97689 0.211072
\(356\) −19.2169 −1.01849
\(357\) 32.5420 1.72231
\(358\) −0.825297 −0.0436183
\(359\) −22.2909 −1.17647 −0.588235 0.808690i \(-0.700177\pi\)
−0.588235 + 0.808690i \(0.700177\pi\)
\(360\) 1.80175 0.0949608
\(361\) −18.8563 −0.992438
\(362\) 0.505590 0.0265732
\(363\) 22.9219 1.20309
\(364\) −10.5789 −0.554486
\(365\) −15.7898 −0.826478
\(366\) −1.01413 −0.0530092
\(367\) 5.08046 0.265198 0.132599 0.991170i \(-0.457668\pi\)
0.132599 + 0.991170i \(0.457668\pi\)
\(368\) 14.4836 0.755010
\(369\) −58.2542 −3.03259
\(370\) −0.479878 −0.0249477
\(371\) 20.3928 1.05874
\(372\) −14.3124 −0.742061
\(373\) 25.5097 1.32084 0.660422 0.750894i \(-0.270377\pi\)
0.660422 + 0.750894i \(0.270377\pi\)
\(374\) −0.406528 −0.0210210
\(375\) −36.7380 −1.89714
\(376\) 1.70517 0.0879376
\(377\) 0 0
\(378\) −0.826036 −0.0424867
\(379\) 8.31922 0.427330 0.213665 0.976907i \(-0.431460\pi\)
0.213665 + 0.976907i \(0.431460\pi\)
\(380\) −1.31944 −0.0676860
\(381\) −36.4728 −1.86856
\(382\) −0.487415 −0.0249383
\(383\) 25.3223 1.29391 0.646956 0.762528i \(-0.276042\pi\)
0.646956 + 0.762528i \(0.276042\pi\)
\(384\) 4.05505 0.206933
\(385\) −6.62508 −0.337645
\(386\) −0.799165 −0.0406764
\(387\) 6.13953 0.312090
\(388\) 10.3464 0.525261
\(389\) 27.3249 1.38543 0.692714 0.721212i \(-0.256415\pi\)
0.692714 + 0.721212i \(0.256415\pi\)
\(390\) 0.570328 0.0288797
\(391\) −19.0004 −0.960893
\(392\) 0.466647 0.0235692
\(393\) 44.1877 2.22897
\(394\) 0.700769 0.0353042
\(395\) 17.9025 0.900771
\(396\) −22.8212 −1.14681
\(397\) 11.2253 0.563380 0.281690 0.959506i \(-0.409105\pi\)
0.281690 + 0.959506i \(0.409105\pi\)
\(398\) −0.373672 −0.0187305
\(399\) 2.35684 0.117990
\(400\) −7.84049 −0.392024
\(401\) 33.3016 1.66300 0.831500 0.555524i \(-0.187482\pi\)
0.831500 + 0.555524i \(0.187482\pi\)
\(402\) 0.525552 0.0262121
\(403\) −6.09834 −0.303780
\(404\) −16.9080 −0.841204
\(405\) −18.3478 −0.911710
\(406\) 0 0
\(407\) 12.1617 0.602835
\(408\) −2.65748 −0.131565
\(409\) −16.0820 −0.795203 −0.397602 0.917558i \(-0.630157\pi\)
−0.397602 + 0.917558i \(0.630157\pi\)
\(410\) 0.690213 0.0340872
\(411\) −8.66659 −0.427492
\(412\) −7.02200 −0.345949
\(413\) −12.8240 −0.631029
\(414\) 0.939146 0.0461565
\(415\) 27.2117 1.33577
\(416\) 1.29605 0.0635440
\(417\) 67.4225 3.30169
\(418\) −0.0294426 −0.00144008
\(419\) 28.0762 1.37161 0.685806 0.727784i \(-0.259450\pi\)
0.685806 + 0.727784i \(0.259450\pi\)
\(420\) −21.6446 −1.05615
\(421\) 30.4981 1.48638 0.743192 0.669078i \(-0.233311\pi\)
0.743192 + 0.669078i \(0.233311\pi\)
\(422\) −0.0106632 −0.000519077 0
\(423\) −62.7048 −3.04881
\(424\) −1.66534 −0.0808761
\(425\) 10.2856 0.498925
\(426\) 0.289927 0.0140470
\(427\) 16.3990 0.793605
\(428\) 8.87974 0.429218
\(429\) −14.4540 −0.697847
\(430\) −0.0727430 −0.00350798
\(431\) −9.72567 −0.468469 −0.234234 0.972180i \(-0.575258\pi\)
−0.234234 + 0.972180i \(0.575258\pi\)
\(432\) −38.2560 −1.84060
\(433\) −23.2297 −1.11635 −0.558174 0.829724i \(-0.688498\pi\)
−0.558174 + 0.829724i \(0.688498\pi\)
\(434\) −0.203778 −0.00978166
\(435\) 0 0
\(436\) 23.5049 1.12568
\(437\) −1.37610 −0.0658277
\(438\) −1.15112 −0.0550028
\(439\) −13.6277 −0.650414 −0.325207 0.945643i \(-0.605434\pi\)
−0.325207 + 0.945643i \(0.605434\pi\)
\(440\) 0.541024 0.0257923
\(441\) −17.1601 −0.817148
\(442\) −0.565913 −0.0269177
\(443\) −9.17324 −0.435834 −0.217917 0.975967i \(-0.569926\pi\)
−0.217917 + 0.975967i \(0.569926\pi\)
\(444\) 39.7333 1.88566
\(445\) −16.7530 −0.794168
\(446\) 0.384083 0.0181869
\(447\) −12.8262 −0.606658
\(448\) −16.3426 −0.772115
\(449\) −17.7444 −0.837410 −0.418705 0.908122i \(-0.637516\pi\)
−0.418705 + 0.908122i \(0.637516\pi\)
\(450\) −0.508393 −0.0239659
\(451\) −17.4923 −0.823682
\(452\) 22.8194 1.07333
\(453\) −23.5999 −1.10882
\(454\) −0.201944 −0.00947772
\(455\) −9.22254 −0.432359
\(456\) −0.192467 −0.00901308
\(457\) 2.52347 0.118043 0.0590215 0.998257i \(-0.481202\pi\)
0.0590215 + 0.998257i \(0.481202\pi\)
\(458\) 0.287997 0.0134572
\(459\) 50.1865 2.34251
\(460\) 12.6377 0.589237
\(461\) −10.0128 −0.466342 −0.233171 0.972436i \(-0.574910\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(462\) −0.482987 −0.0224706
\(463\) 27.8485 1.29423 0.647115 0.762393i \(-0.275976\pi\)
0.647115 + 0.762393i \(0.275976\pi\)
\(464\) 0 0
\(465\) −12.4773 −0.578621
\(466\) 0.722726 0.0334796
\(467\) −20.3278 −0.940660 −0.470330 0.882491i \(-0.655865\pi\)
−0.470330 + 0.882491i \(0.655865\pi\)
\(468\) −31.7686 −1.46851
\(469\) −8.49849 −0.392424
\(470\) 0.742945 0.0342695
\(471\) 19.1577 0.882740
\(472\) 1.04725 0.0482035
\(473\) 1.84355 0.0847667
\(474\) 1.30514 0.0599471
\(475\) 0.744931 0.0341798
\(476\) 21.4771 0.984400
\(477\) 61.2400 2.80399
\(478\) −0.893611 −0.0408728
\(479\) −21.4510 −0.980119 −0.490060 0.871689i \(-0.663025\pi\)
−0.490060 + 0.871689i \(0.663025\pi\)
\(480\) 2.65174 0.121035
\(481\) 16.9299 0.771939
\(482\) −0.377220 −0.0171819
\(483\) −22.5740 −1.02715
\(484\) 15.1280 0.687635
\(485\) 9.01987 0.409571
\(486\) −0.130924 −0.00593884
\(487\) 16.3963 0.742988 0.371494 0.928435i \(-0.378846\pi\)
0.371494 + 0.928435i \(0.378846\pi\)
\(488\) −1.33919 −0.0606225
\(489\) −5.32712 −0.240901
\(490\) 0.203318 0.00918499
\(491\) −29.2747 −1.32115 −0.660575 0.750760i \(-0.729687\pi\)
−0.660575 + 0.750760i \(0.729687\pi\)
\(492\) −57.1488 −2.57647
\(493\) 0 0
\(494\) −0.0409860 −0.00184405
\(495\) −19.8952 −0.894224
\(496\) −9.43753 −0.423758
\(497\) −4.68829 −0.210298
\(498\) 1.98381 0.0888968
\(499\) −4.67402 −0.209238 −0.104619 0.994512i \(-0.533362\pi\)
−0.104619 + 0.994512i \(0.533362\pi\)
\(500\) −24.2463 −1.08433
\(501\) 42.1469 1.88298
\(502\) 0.272755 0.0121737
\(503\) −11.1073 −0.495248 −0.247624 0.968856i \(-0.579650\pi\)
−0.247624 + 0.968856i \(0.579650\pi\)
\(504\) −2.12406 −0.0946130
\(505\) −14.7401 −0.655928
\(506\) 0.282003 0.0125366
\(507\) 19.2396 0.854459
\(508\) −24.0713 −1.06799
\(509\) −33.2518 −1.47386 −0.736930 0.675969i \(-0.763726\pi\)
−0.736930 + 0.675969i \(0.763726\pi\)
\(510\) −1.15787 −0.0512712
\(511\) 18.6144 0.823451
\(512\) 3.34383 0.147778
\(513\) 3.63474 0.160477
\(514\) −0.242761 −0.0107077
\(515\) −6.12168 −0.269753
\(516\) 6.02303 0.265149
\(517\) −18.8288 −0.828088
\(518\) 0.565720 0.0248563
\(519\) 25.3891 1.11446
\(520\) 0.753140 0.0330274
\(521\) −11.6310 −0.509565 −0.254783 0.966998i \(-0.582004\pi\)
−0.254783 + 0.966998i \(0.582004\pi\)
\(522\) 0 0
\(523\) −0.747202 −0.0326728 −0.0163364 0.999867i \(-0.505200\pi\)
−0.0163364 + 0.999867i \(0.505200\pi\)
\(524\) 29.1630 1.27399
\(525\) 12.2201 0.533330
\(526\) −1.26871 −0.0553184
\(527\) 12.3807 0.539312
\(528\) −22.3685 −0.973463
\(529\) −9.81963 −0.426940
\(530\) −0.725591 −0.0315176
\(531\) −38.5108 −1.67122
\(532\) 1.55547 0.0674380
\(533\) −24.3505 −1.05474
\(534\) −1.22134 −0.0528525
\(535\) 7.74122 0.334682
\(536\) 0.694012 0.0299768
\(537\) 59.5722 2.57073
\(538\) −0.500671 −0.0215854
\(539\) −5.15277 −0.221946
\(540\) −33.3805 −1.43647
\(541\) −19.2472 −0.827500 −0.413750 0.910391i \(-0.635781\pi\)
−0.413750 + 0.910391i \(0.635781\pi\)
\(542\) 0.736441 0.0316328
\(543\) −36.4949 −1.56614
\(544\) −2.63121 −0.112812
\(545\) 20.4912 0.877747
\(546\) −0.672349 −0.0287739
\(547\) −25.2969 −1.08162 −0.540809 0.841146i \(-0.681882\pi\)
−0.540809 + 0.841146i \(0.681882\pi\)
\(548\) −5.71977 −0.244337
\(549\) 49.2465 2.10179
\(550\) −0.152658 −0.00650938
\(551\) 0 0
\(552\) 1.84346 0.0784630
\(553\) −21.1049 −0.897472
\(554\) 0.0450815 0.00191533
\(555\) 34.6389 1.47034
\(556\) 44.4975 1.88711
\(557\) 36.1438 1.53146 0.765731 0.643161i \(-0.222377\pi\)
0.765731 + 0.643161i \(0.222377\pi\)
\(558\) −0.611949 −0.0259059
\(559\) 2.56635 0.108545
\(560\) −14.2724 −0.603120
\(561\) 29.3443 1.23892
\(562\) −1.25360 −0.0528800
\(563\) −8.84332 −0.372701 −0.186351 0.982483i \(-0.559666\pi\)
−0.186351 + 0.982483i \(0.559666\pi\)
\(564\) −61.5149 −2.59025
\(565\) 19.8936 0.836929
\(566\) 1.12204 0.0471631
\(567\) 21.6299 0.908370
\(568\) 0.382860 0.0160644
\(569\) 16.4900 0.691297 0.345648 0.938364i \(-0.387659\pi\)
0.345648 + 0.938364i \(0.387659\pi\)
\(570\) −0.0838580 −0.00351242
\(571\) −22.6312 −0.947086 −0.473543 0.880771i \(-0.657025\pi\)
−0.473543 + 0.880771i \(0.657025\pi\)
\(572\) −9.53936 −0.398861
\(573\) 35.1829 1.46979
\(574\) −0.813680 −0.0339623
\(575\) −7.13501 −0.297550
\(576\) −49.0771 −2.04488
\(577\) 41.1401 1.71268 0.856342 0.516408i \(-0.172731\pi\)
0.856342 + 0.516408i \(0.172731\pi\)
\(578\) 0.435832 0.0181282
\(579\) 57.6859 2.39734
\(580\) 0 0
\(581\) −32.0794 −1.33088
\(582\) 0.657574 0.0272573
\(583\) 18.3889 0.761591
\(584\) −1.52011 −0.0629024
\(585\) −27.6954 −1.14507
\(586\) 0.243718 0.0100679
\(587\) −26.1878 −1.08089 −0.540443 0.841381i \(-0.681743\pi\)
−0.540443 + 0.841381i \(0.681743\pi\)
\(588\) −16.8345 −0.694243
\(589\) 0.896667 0.0369465
\(590\) 0.456287 0.0187851
\(591\) −50.5834 −2.08072
\(592\) 26.2001 1.07682
\(593\) −31.4857 −1.29296 −0.646482 0.762929i \(-0.723760\pi\)
−0.646482 + 0.762929i \(0.723760\pi\)
\(594\) −0.744865 −0.0305622
\(595\) 18.7234 0.767584
\(596\) −8.46502 −0.346741
\(597\) 26.9726 1.10392
\(598\) 0.392567 0.0160533
\(599\) −14.1791 −0.579342 −0.289671 0.957126i \(-0.593546\pi\)
−0.289671 + 0.957126i \(0.593546\pi\)
\(600\) −0.997932 −0.0407404
\(601\) 14.0233 0.572021 0.286010 0.958227i \(-0.407671\pi\)
0.286010 + 0.958227i \(0.407671\pi\)
\(602\) 0.0857554 0.00349513
\(603\) −25.5211 −1.03930
\(604\) −15.5755 −0.633757
\(605\) 13.1883 0.536183
\(606\) −1.07460 −0.0436526
\(607\) −18.3000 −0.742776 −0.371388 0.928478i \(-0.621118\pi\)
−0.371388 + 0.928478i \(0.621118\pi\)
\(608\) −0.190564 −0.00772840
\(609\) 0 0
\(610\) −0.583488 −0.0236247
\(611\) −26.2108 −1.06038
\(612\) 64.4960 2.60710
\(613\) 29.8490 1.20559 0.602795 0.797896i \(-0.294054\pi\)
0.602795 + 0.797896i \(0.294054\pi\)
\(614\) −0.216163 −0.00872365
\(615\) −49.8215 −2.00900
\(616\) −0.637803 −0.0256978
\(617\) −4.59374 −0.184937 −0.0924685 0.995716i \(-0.529476\pi\)
−0.0924685 + 0.995716i \(0.529476\pi\)
\(618\) −0.446288 −0.0179523
\(619\) −6.28557 −0.252638 −0.126319 0.991990i \(-0.540316\pi\)
−0.126319 + 0.991990i \(0.540316\pi\)
\(620\) −8.23476 −0.330716
\(621\) −34.8138 −1.39703
\(622\) 0.445644 0.0178687
\(623\) 19.7498 0.791258
\(624\) −31.1384 −1.24653
\(625\) −11.3110 −0.452441
\(626\) 0.700923 0.0280145
\(627\) 2.12524 0.0848741
\(628\) 12.6437 0.504538
\(629\) −34.3708 −1.37045
\(630\) −0.925453 −0.0368709
\(631\) 9.68689 0.385629 0.192815 0.981235i \(-0.438238\pi\)
0.192815 + 0.981235i \(0.438238\pi\)
\(632\) 1.72349 0.0685568
\(633\) 0.769699 0.0305928
\(634\) 0.0625506 0.00248420
\(635\) −20.9850 −0.832765
\(636\) 60.0780 2.38225
\(637\) −7.17299 −0.284204
\(638\) 0 0
\(639\) −14.0790 −0.556956
\(640\) 2.33311 0.0922244
\(641\) 4.79880 0.189541 0.0947707 0.995499i \(-0.469788\pi\)
0.0947707 + 0.995499i \(0.469788\pi\)
\(642\) 0.564357 0.0222734
\(643\) 12.2717 0.483948 0.241974 0.970283i \(-0.422205\pi\)
0.241974 + 0.970283i \(0.422205\pi\)
\(644\) −14.8984 −0.587079
\(645\) 5.25079 0.206750
\(646\) 0.0832088 0.00327381
\(647\) −10.6295 −0.417888 −0.208944 0.977928i \(-0.567003\pi\)
−0.208944 + 0.977928i \(0.567003\pi\)
\(648\) −1.76636 −0.0693893
\(649\) −11.5639 −0.453921
\(650\) −0.212510 −0.00833534
\(651\) 14.7093 0.576501
\(652\) −3.51579 −0.137689
\(653\) −28.0426 −1.09739 −0.548695 0.836022i \(-0.684875\pi\)
−0.548695 + 0.836022i \(0.684875\pi\)
\(654\) 1.49387 0.0584148
\(655\) 25.4238 0.993391
\(656\) −37.6838 −1.47130
\(657\) 55.8992 2.18084
\(658\) −0.875845 −0.0341440
\(659\) 20.2814 0.790051 0.395026 0.918670i \(-0.370736\pi\)
0.395026 + 0.918670i \(0.370736\pi\)
\(660\) −19.5177 −0.759725
\(661\) −31.3294 −1.21857 −0.609287 0.792950i \(-0.708544\pi\)
−0.609287 + 0.792950i \(0.708544\pi\)
\(662\) 1.25334 0.0487124
\(663\) 40.8491 1.58645
\(664\) 2.61970 0.101664
\(665\) 1.35603 0.0525847
\(666\) 1.69887 0.0658297
\(667\) 0 0
\(668\) 27.8161 1.07624
\(669\) −27.7241 −1.07188
\(670\) 0.302382 0.0116820
\(671\) 14.7876 0.570868
\(672\) −3.12609 −0.120591
\(673\) 40.7084 1.56919 0.784597 0.620006i \(-0.212870\pi\)
0.784597 + 0.620006i \(0.212870\pi\)
\(674\) 0.0394851 0.00152091
\(675\) 18.8459 0.725381
\(676\) 12.6977 0.488374
\(677\) −8.28145 −0.318282 −0.159141 0.987256i \(-0.550872\pi\)
−0.159141 + 0.987256i \(0.550872\pi\)
\(678\) 1.45030 0.0556984
\(679\) −10.6334 −0.408071
\(680\) −1.52901 −0.0586348
\(681\) 14.5769 0.558588
\(682\) −0.183754 −0.00703629
\(683\) 3.36543 0.128775 0.0643874 0.997925i \(-0.479491\pi\)
0.0643874 + 0.997925i \(0.479491\pi\)
\(684\) 4.67109 0.178604
\(685\) −4.98642 −0.190521
\(686\) −0.842678 −0.0321736
\(687\) −20.7884 −0.793128
\(688\) 3.97157 0.151415
\(689\) 25.5986 0.975228
\(690\) 0.803198 0.0305772
\(691\) 1.05513 0.0401391 0.0200696 0.999799i \(-0.493611\pi\)
0.0200696 + 0.999799i \(0.493611\pi\)
\(692\) 16.7563 0.636979
\(693\) 23.4541 0.890948
\(694\) −0.362978 −0.0137784
\(695\) 38.7922 1.47147
\(696\) 0 0
\(697\) 49.4358 1.87251
\(698\) −1.44970 −0.0548720
\(699\) −52.1683 −1.97319
\(700\) 8.06503 0.304829
\(701\) 14.0655 0.531247 0.265623 0.964077i \(-0.414422\pi\)
0.265623 + 0.964077i \(0.414422\pi\)
\(702\) −1.03690 −0.0391353
\(703\) −2.48929 −0.0938853
\(704\) −14.7367 −0.555409
\(705\) −53.6278 −2.01974
\(706\) −0.604981 −0.0227688
\(707\) 17.3769 0.653525
\(708\) −37.7800 −1.41986
\(709\) 4.07777 0.153144 0.0765720 0.997064i \(-0.475602\pi\)
0.0765720 + 0.997064i \(0.475602\pi\)
\(710\) 0.166812 0.00626035
\(711\) −63.3784 −2.37687
\(712\) −1.61283 −0.0604433
\(713\) −8.58835 −0.321636
\(714\) 1.36499 0.0510834
\(715\) −8.31628 −0.311011
\(716\) 39.3164 1.46932
\(717\) 64.5033 2.40892
\(718\) −0.935002 −0.0348940
\(719\) 8.32542 0.310486 0.155243 0.987876i \(-0.450384\pi\)
0.155243 + 0.987876i \(0.450384\pi\)
\(720\) −42.8603 −1.59731
\(721\) 7.21674 0.268765
\(722\) −0.790936 −0.0294356
\(723\) 27.2288 1.01265
\(724\) −24.0858 −0.895144
\(725\) 0 0
\(726\) 0.961467 0.0356834
\(727\) 36.8868 1.36806 0.684028 0.729456i \(-0.260227\pi\)
0.684028 + 0.729456i \(0.260227\pi\)
\(728\) −0.887864 −0.0329064
\(729\) −22.1467 −0.820248
\(730\) −0.662311 −0.0245132
\(731\) −5.21014 −0.192704
\(732\) 48.3121 1.78567
\(733\) 10.1401 0.374534 0.187267 0.982309i \(-0.440037\pi\)
0.187267 + 0.982309i \(0.440037\pi\)
\(734\) 0.213102 0.00786574
\(735\) −14.6761 −0.541335
\(736\) 1.82524 0.0672792
\(737\) −7.66338 −0.282284
\(738\) −2.44349 −0.0899462
\(739\) −12.1953 −0.448610 −0.224305 0.974519i \(-0.572011\pi\)
−0.224305 + 0.974519i \(0.572011\pi\)
\(740\) 22.8610 0.840386
\(741\) 2.95848 0.108682
\(742\) 0.855386 0.0314022
\(743\) 32.7458 1.20133 0.600664 0.799501i \(-0.294903\pi\)
0.600664 + 0.799501i \(0.294903\pi\)
\(744\) −1.20120 −0.0440382
\(745\) −7.37968 −0.270371
\(746\) 1.07002 0.0391761
\(747\) −96.3350 −3.52471
\(748\) 19.3666 0.708113
\(749\) −9.12599 −0.333456
\(750\) −1.54099 −0.0562689
\(751\) −47.8097 −1.74460 −0.872301 0.488970i \(-0.837373\pi\)
−0.872301 + 0.488970i \(0.837373\pi\)
\(752\) −40.5628 −1.47917
\(753\) −19.6882 −0.717478
\(754\) 0 0
\(755\) −13.5785 −0.494171
\(756\) 39.3516 1.43121
\(757\) 14.8571 0.539989 0.269994 0.962862i \(-0.412978\pi\)
0.269994 + 0.962862i \(0.412978\pi\)
\(758\) 0.348953 0.0126745
\(759\) −20.3558 −0.738867
\(760\) −0.110738 −0.00401688
\(761\) 18.3548 0.665362 0.332681 0.943039i \(-0.392047\pi\)
0.332681 + 0.943039i \(0.392047\pi\)
\(762\) −1.52987 −0.0554212
\(763\) −24.1567 −0.874531
\(764\) 23.2200 0.840070
\(765\) 56.2267 2.03288
\(766\) 1.06216 0.0383772
\(767\) −16.0976 −0.581252
\(768\) −48.0181 −1.73270
\(769\) 13.0590 0.470920 0.235460 0.971884i \(-0.424340\pi\)
0.235460 + 0.971884i \(0.424340\pi\)
\(770\) −0.277891 −0.0100145
\(771\) 17.5232 0.631082
\(772\) 38.0715 1.37022
\(773\) 30.2860 1.08931 0.544655 0.838660i \(-0.316660\pi\)
0.544655 + 0.838660i \(0.316660\pi\)
\(774\) 0.257525 0.00925654
\(775\) 4.64918 0.167003
\(776\) 0.868352 0.0311720
\(777\) −40.8352 −1.46495
\(778\) 1.14615 0.0410916
\(779\) 3.58036 0.128280
\(780\) −27.1699 −0.972839
\(781\) −4.22759 −0.151275
\(782\) −0.796981 −0.0285000
\(783\) 0 0
\(784\) −11.1006 −0.396451
\(785\) 11.0226 0.393413
\(786\) 1.85347 0.0661110
\(787\) −2.96391 −0.105652 −0.0528260 0.998604i \(-0.516823\pi\)
−0.0528260 + 0.998604i \(0.516823\pi\)
\(788\) −33.3840 −1.18926
\(789\) 91.5790 3.26030
\(790\) 0.750926 0.0267168
\(791\) −23.4522 −0.833864
\(792\) −1.91533 −0.0680584
\(793\) 20.5852 0.731003
\(794\) 0.470848 0.0167098
\(795\) 52.3751 1.85755
\(796\) 17.8014 0.630953
\(797\) −23.9622 −0.848786 −0.424393 0.905478i \(-0.639512\pi\)
−0.424393 + 0.905478i \(0.639512\pi\)
\(798\) 0.0988586 0.00349956
\(799\) 53.2127 1.88253
\(800\) −0.988067 −0.0349334
\(801\) 59.3089 2.09558
\(802\) 1.39685 0.0493244
\(803\) 16.7852 0.592337
\(804\) −25.0368 −0.882981
\(805\) −12.9882 −0.457774
\(806\) −0.255797 −0.00901007
\(807\) 36.1398 1.27218
\(808\) −1.41905 −0.0499220
\(809\) 48.7622 1.71439 0.857194 0.514993i \(-0.172205\pi\)
0.857194 + 0.514993i \(0.172205\pi\)
\(810\) −0.769606 −0.0270412
\(811\) 23.3346 0.819389 0.409695 0.912223i \(-0.365635\pi\)
0.409695 + 0.912223i \(0.365635\pi\)
\(812\) 0 0
\(813\) −53.1583 −1.86434
\(814\) 0.510129 0.0178800
\(815\) −3.06501 −0.107363
\(816\) 63.2164 2.21302
\(817\) −0.377342 −0.0132015
\(818\) −0.674565 −0.0235856
\(819\) 32.6496 1.14087
\(820\) −32.8811 −1.14826
\(821\) 36.6328 1.27849 0.639247 0.769001i \(-0.279246\pi\)
0.639247 + 0.769001i \(0.279246\pi\)
\(822\) −0.363524 −0.0126793
\(823\) 26.8685 0.936578 0.468289 0.883575i \(-0.344871\pi\)
0.468289 + 0.883575i \(0.344871\pi\)
\(824\) −0.589341 −0.0205307
\(825\) 11.0193 0.383643
\(826\) −0.537909 −0.0187162
\(827\) −2.55032 −0.0886834 −0.0443417 0.999016i \(-0.514119\pi\)
−0.0443417 + 0.999016i \(0.514119\pi\)
\(828\) −44.7401 −1.55483
\(829\) −29.2663 −1.01646 −0.508230 0.861221i \(-0.669700\pi\)
−0.508230 + 0.861221i \(0.669700\pi\)
\(830\) 1.14141 0.0396188
\(831\) −3.25410 −0.112884
\(832\) −20.5144 −0.711209
\(833\) 14.5625 0.504559
\(834\) 2.82806 0.0979278
\(835\) 24.2496 0.839194
\(836\) 1.40262 0.0485105
\(837\) 22.6847 0.784098
\(838\) 1.17767 0.0406818
\(839\) 46.3868 1.60145 0.800725 0.599032i \(-0.204448\pi\)
0.800725 + 0.599032i \(0.204448\pi\)
\(840\) −1.81658 −0.0626781
\(841\) 0 0
\(842\) 1.27925 0.0440860
\(843\) 90.4884 3.11659
\(844\) 0.507986 0.0174856
\(845\) 11.0697 0.380809
\(846\) −2.63018 −0.0904273
\(847\) −15.5475 −0.534218
\(848\) 39.6153 1.36039
\(849\) −80.9923 −2.77965
\(850\) 0.431434 0.0147981
\(851\) 23.8426 0.817314
\(852\) −13.8118 −0.473186
\(853\) 51.5353 1.76453 0.882267 0.470749i \(-0.156016\pi\)
0.882267 + 0.470749i \(0.156016\pi\)
\(854\) 0.687863 0.0235382
\(855\) 4.07219 0.139266
\(856\) 0.745256 0.0254723
\(857\) 17.2204 0.588236 0.294118 0.955769i \(-0.404974\pi\)
0.294118 + 0.955769i \(0.404974\pi\)
\(858\) −0.606280 −0.0206981
\(859\) −14.1463 −0.482665 −0.241332 0.970443i \(-0.577584\pi\)
−0.241332 + 0.970443i \(0.577584\pi\)
\(860\) 3.46541 0.118170
\(861\) 58.7336 2.00164
\(862\) −0.407947 −0.0138947
\(863\) −18.6105 −0.633508 −0.316754 0.948508i \(-0.602593\pi\)
−0.316754 + 0.948508i \(0.602593\pi\)
\(864\) −4.82107 −0.164016
\(865\) 14.6079 0.496684
\(866\) −0.974379 −0.0331107
\(867\) −31.4595 −1.06842
\(868\) 9.70781 0.329504
\(869\) −19.0310 −0.645583
\(870\) 0 0
\(871\) −10.6679 −0.361469
\(872\) 1.97271 0.0668044
\(873\) −31.9321 −1.08074
\(874\) −0.0577209 −0.00195244
\(875\) 24.9187 0.842406
\(876\) 54.8385 1.85282
\(877\) 8.50645 0.287242 0.143621 0.989633i \(-0.454125\pi\)
0.143621 + 0.989633i \(0.454125\pi\)
\(878\) −0.571618 −0.0192912
\(879\) −17.5923 −0.593372
\(880\) −12.8699 −0.433845
\(881\) 31.1664 1.05002 0.525011 0.851095i \(-0.324061\pi\)
0.525011 + 0.851095i \(0.324061\pi\)
\(882\) −0.719788 −0.0242365
\(883\) 20.3483 0.684775 0.342387 0.939559i \(-0.388764\pi\)
0.342387 + 0.939559i \(0.388764\pi\)
\(884\) 26.9596 0.906748
\(885\) −32.9361 −1.10713
\(886\) −0.384775 −0.0129268
\(887\) −11.2240 −0.376866 −0.188433 0.982086i \(-0.560341\pi\)
−0.188433 + 0.982086i \(0.560341\pi\)
\(888\) 3.33473 0.111906
\(889\) 24.7388 0.829714
\(890\) −0.702710 −0.0235549
\(891\) 19.5044 0.653422
\(892\) −18.2974 −0.612641
\(893\) 3.85390 0.128966
\(894\) −0.538000 −0.0179934
\(895\) 34.2755 1.14570
\(896\) −2.75046 −0.0918866
\(897\) −28.3365 −0.946130
\(898\) −0.744296 −0.0248375
\(899\) 0 0
\(900\) 24.2194 0.807314
\(901\) −51.9697 −1.73136
\(902\) −0.733723 −0.0244303
\(903\) −6.19006 −0.205992
\(904\) 1.91518 0.0636978
\(905\) −20.9977 −0.697987
\(906\) −0.989908 −0.0328875
\(907\) 40.7943 1.35455 0.677276 0.735729i \(-0.263161\pi\)
0.677276 + 0.735729i \(0.263161\pi\)
\(908\) 9.62045 0.319266
\(909\) 52.1831 1.73080
\(910\) −0.386843 −0.0128237
\(911\) −30.2991 −1.00385 −0.501926 0.864910i \(-0.667375\pi\)
−0.501926 + 0.864910i \(0.667375\pi\)
\(912\) 4.57842 0.151607
\(913\) −28.9271 −0.957348
\(914\) 0.105848 0.00350114
\(915\) 42.1178 1.39237
\(916\) −13.7199 −0.453320
\(917\) −29.9717 −0.989753
\(918\) 2.10509 0.0694784
\(919\) 26.5368 0.875369 0.437685 0.899129i \(-0.355799\pi\)
0.437685 + 0.899129i \(0.355799\pi\)
\(920\) 1.06066 0.0349688
\(921\) 15.6033 0.514145
\(922\) −0.419990 −0.0138316
\(923\) −5.88507 −0.193710
\(924\) 23.0091 0.756943
\(925\) −12.9068 −0.424375
\(926\) 1.16812 0.0383867
\(927\) 21.6720 0.711801
\(928\) 0 0
\(929\) 4.73988 0.155510 0.0777551 0.996972i \(-0.475225\pi\)
0.0777551 + 0.996972i \(0.475225\pi\)
\(930\) −0.523365 −0.0171618
\(931\) 1.05468 0.0345657
\(932\) −34.4300 −1.12779
\(933\) −32.1678 −1.05313
\(934\) −0.852659 −0.0278999
\(935\) 16.8835 0.552150
\(936\) −2.66627 −0.0871497
\(937\) −18.6584 −0.609542 −0.304771 0.952426i \(-0.598580\pi\)
−0.304771 + 0.952426i \(0.598580\pi\)
\(938\) −0.356472 −0.0116392
\(939\) −50.5945 −1.65109
\(940\) −35.3933 −1.15440
\(941\) −22.5654 −0.735611 −0.367805 0.929903i \(-0.619891\pi\)
−0.367805 + 0.929903i \(0.619891\pi\)
\(942\) 0.803577 0.0261819
\(943\) −34.2930 −1.11673
\(944\) −24.9121 −0.810818
\(945\) 34.3062 1.11598
\(946\) 0.0773286 0.00251417
\(947\) −27.6373 −0.898090 −0.449045 0.893509i \(-0.648236\pi\)
−0.449045 + 0.893509i \(0.648236\pi\)
\(948\) −62.1757 −2.01937
\(949\) 23.3661 0.758496
\(950\) 0.0312464 0.00101377
\(951\) −4.51507 −0.146411
\(952\) 1.80252 0.0584200
\(953\) −37.3553 −1.21006 −0.605028 0.796204i \(-0.706838\pi\)
−0.605028 + 0.796204i \(0.706838\pi\)
\(954\) 2.56874 0.0831659
\(955\) 20.2429 0.655043
\(956\) 42.5708 1.37684
\(957\) 0 0
\(958\) −0.899769 −0.0290702
\(959\) 5.87839 0.189823
\(960\) −41.9728 −1.35467
\(961\) −25.4038 −0.819478
\(962\) 0.710133 0.0228956
\(963\) −27.4055 −0.883130
\(964\) 17.9704 0.578788
\(965\) 33.1902 1.06843
\(966\) −0.946876 −0.0304652
\(967\) −39.9522 −1.28478 −0.642389 0.766379i \(-0.722057\pi\)
−0.642389 + 0.766379i \(0.722057\pi\)
\(968\) 1.26966 0.0408083
\(969\) −6.00624 −0.192948
\(970\) 0.378342 0.0121478
\(971\) −14.7821 −0.474379 −0.237190 0.971463i \(-0.576226\pi\)
−0.237190 + 0.971463i \(0.576226\pi\)
\(972\) 6.23711 0.200056
\(973\) −45.7315 −1.46608
\(974\) 0.687749 0.0220369
\(975\) 15.3396 0.491260
\(976\) 31.8569 1.01971
\(977\) −9.82846 −0.314440 −0.157220 0.987564i \(-0.550253\pi\)
−0.157220 + 0.987564i \(0.550253\pi\)
\(978\) −0.223448 −0.00714508
\(979\) 17.8091 0.569180
\(980\) −9.68590 −0.309405
\(981\) −72.5430 −2.31612
\(982\) −1.22794 −0.0391851
\(983\) 47.3687 1.51083 0.755414 0.655248i \(-0.227436\pi\)
0.755414 + 0.655248i \(0.227436\pi\)
\(984\) −4.79636 −0.152903
\(985\) −29.1037 −0.927320
\(986\) 0 0
\(987\) 63.2209 2.01234
\(988\) 1.95253 0.0621184
\(989\) 3.61421 0.114925
\(990\) −0.834513 −0.0265226
\(991\) −48.9812 −1.55594 −0.777969 0.628303i \(-0.783750\pi\)
−0.777969 + 0.628303i \(0.783750\pi\)
\(992\) −1.18933 −0.0377612
\(993\) −90.4695 −2.87096
\(994\) −0.196652 −0.00623742
\(995\) 15.5190 0.491985
\(996\) −94.5070 −2.99457
\(997\) 1.16193 0.0367988 0.0183994 0.999831i \(-0.494143\pi\)
0.0183994 + 0.999831i \(0.494143\pi\)
\(998\) −0.196054 −0.00620597
\(999\) −62.9763 −1.99248
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.i.1.5 8
3.2 odd 2 7569.2.a.bi.1.4 8
29.2 odd 28 841.2.e.m.236.9 96
29.3 odd 28 841.2.e.m.270.9 96
29.4 even 14 841.2.d.p.190.5 48
29.5 even 14 841.2.d.p.605.5 48
29.6 even 14 841.2.d.p.645.5 48
29.7 even 7 841.2.d.q.571.4 48
29.8 odd 28 841.2.e.m.267.9 96
29.9 even 14 841.2.d.p.574.4 48
29.10 odd 28 841.2.e.m.651.9 96
29.11 odd 28 841.2.e.m.63.9 96
29.12 odd 4 841.2.b.f.840.9 16
29.13 even 14 841.2.d.p.778.4 48
29.14 odd 28 841.2.e.m.196.8 96
29.15 odd 28 841.2.e.m.196.9 96
29.16 even 7 841.2.d.q.778.5 48
29.17 odd 4 841.2.b.f.840.8 16
29.18 odd 28 841.2.e.m.63.8 96
29.19 odd 28 841.2.e.m.651.8 96
29.20 even 7 841.2.d.q.574.5 48
29.21 odd 28 841.2.e.m.267.8 96
29.22 even 14 841.2.d.p.571.5 48
29.23 even 7 841.2.d.q.645.4 48
29.24 even 7 841.2.d.q.605.4 48
29.25 even 7 841.2.d.q.190.4 48
29.26 odd 28 841.2.e.m.270.8 96
29.27 odd 28 841.2.e.m.236.8 96
29.28 even 2 841.2.a.j.1.4 yes 8
87.86 odd 2 7569.2.a.bd.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.i.1.5 8 1.1 even 1 trivial
841.2.a.j.1.4 yes 8 29.28 even 2
841.2.b.f.840.8 16 29.17 odd 4
841.2.b.f.840.9 16 29.12 odd 4
841.2.d.p.190.5 48 29.4 even 14
841.2.d.p.571.5 48 29.22 even 14
841.2.d.p.574.4 48 29.9 even 14
841.2.d.p.605.5 48 29.5 even 14
841.2.d.p.645.5 48 29.6 even 14
841.2.d.p.778.4 48 29.13 even 14
841.2.d.q.190.4 48 29.25 even 7
841.2.d.q.571.4 48 29.7 even 7
841.2.d.q.574.5 48 29.20 even 7
841.2.d.q.605.4 48 29.24 even 7
841.2.d.q.645.4 48 29.23 even 7
841.2.d.q.778.5 48 29.16 even 7
841.2.e.m.63.8 96 29.18 odd 28
841.2.e.m.63.9 96 29.11 odd 28
841.2.e.m.196.8 96 29.14 odd 28
841.2.e.m.196.9 96 29.15 odd 28
841.2.e.m.236.8 96 29.27 odd 28
841.2.e.m.236.9 96 29.2 odd 28
841.2.e.m.267.8 96 29.21 odd 28
841.2.e.m.267.9 96 29.8 odd 28
841.2.e.m.270.8 96 29.26 odd 28
841.2.e.m.270.9 96 29.3 odd 28
841.2.e.m.651.8 96 29.19 odd 28
841.2.e.m.651.9 96 29.10 odd 28
7569.2.a.bd.1.5 8 87.86 odd 2
7569.2.a.bi.1.4 8 3.2 odd 2