Properties

Label 841.2.a.i.1.5
Level 841841
Weight 22
Character 841.1
Self dual yes
Analytic conductor 6.7156.715
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 841=292 841 = 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.715418809996.71541880999
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.2841328125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x73x6+23x543x3+2x2+24x+1 x^{8} - 4x^{7} - 3x^{6} + 23x^{5} - 43x^{3} + 2x^{2} + 24x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.5
Root 0.0419454-0.0419454 of defining polynomial
Character χ\chi == 841.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.0419454q23.02773q31.99824q41.74204q50.126999q6+2.05366q70.167708q8+6.16716q90.0730704q10+1.85185q11+6.05014q12+2.57790q13+0.0861414q14+5.27442q15+3.98945q165.23359q17+0.258684q180.379040q19+3.48101q206.21792q21+0.0776766q22+3.63048q23+0.507774q241.96531q25+0.108131q269.58931q274.10370q28+0.221238q302.36562q31+0.502754q325.60691q330.219525q343.57754q3512.3235q36+6.56734q370.0158990q387.80518q39+0.292153q409.44586q410.260813q42+0.995519q433.70044q4410.7434q45+0.152282q4610.1675q4712.0790q482.78250q490.0824356q50+15.8459q515.15126q52+9.93002q530.402227q543.22599q550.344414q56+1.14763q576.24449q5910.5396q60+7.98529q610.0992270q62+12.6652q637.95780q644.49079q650.235184q664.13822q67+10.4580q6810.9921q690.150061q702.28290q711.03428q72+9.06401q73+0.275470q74+5.95042q75+0.757414q76+3.80306q770.327391q7810.2768q796.94976q80+10.5324q810.396210q8215.6206q83+12.4249q84+9.11711q85+0.0417574q860.310570q88+9.61689q890.450637q90+5.29411q917.25457q92+7.16248q930.426481q94+0.660302q951.52221q965.17777q970.116713q98+11.4207q99+O(q100)q+0.0419454 q^{2} -3.02773 q^{3} -1.99824 q^{4} -1.74204 q^{5} -0.126999 q^{6} +2.05366 q^{7} -0.167708 q^{8} +6.16716 q^{9} -0.0730704 q^{10} +1.85185 q^{11} +6.05014 q^{12} +2.57790 q^{13} +0.0861414 q^{14} +5.27442 q^{15} +3.98945 q^{16} -5.23359 q^{17} +0.258684 q^{18} -0.379040 q^{19} +3.48101 q^{20} -6.21792 q^{21} +0.0776766 q^{22} +3.63048 q^{23} +0.507774 q^{24} -1.96531 q^{25} +0.108131 q^{26} -9.58931 q^{27} -4.10370 q^{28} +0.221238 q^{30} -2.36562 q^{31} +0.502754 q^{32} -5.60691 q^{33} -0.219525 q^{34} -3.57754 q^{35} -12.3235 q^{36} +6.56734 q^{37} -0.0158990 q^{38} -7.80518 q^{39} +0.292153 q^{40} -9.44586 q^{41} -0.260813 q^{42} +0.995519 q^{43} -3.70044 q^{44} -10.7434 q^{45} +0.152282 q^{46} -10.1675 q^{47} -12.0790 q^{48} -2.78250 q^{49} -0.0824356 q^{50} +15.8459 q^{51} -5.15126 q^{52} +9.93002 q^{53} -0.402227 q^{54} -3.22599 q^{55} -0.344414 q^{56} +1.14763 q^{57} -6.24449 q^{59} -10.5396 q^{60} +7.98529 q^{61} -0.0992270 q^{62} +12.6652 q^{63} -7.95780 q^{64} -4.49079 q^{65} -0.235184 q^{66} -4.13822 q^{67} +10.4580 q^{68} -10.9921 q^{69} -0.150061 q^{70} -2.28290 q^{71} -1.03428 q^{72} +9.06401 q^{73} +0.275470 q^{74} +5.95042 q^{75} +0.757414 q^{76} +3.80306 q^{77} -0.327391 q^{78} -10.2768 q^{79} -6.94976 q^{80} +10.5324 q^{81} -0.396210 q^{82} -15.6206 q^{83} +12.4249 q^{84} +9.11711 q^{85} +0.0417574 q^{86} -0.310570 q^{88} +9.61689 q^{89} -0.450637 q^{90} +5.29411 q^{91} -7.25457 q^{92} +7.16248 q^{93} -0.426481 q^{94} +0.660302 q^{95} -1.52221 q^{96} -5.17777 q^{97} -0.116713 q^{98} +11.4207 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q26q3+6q4q5+3q615q8+8q9+3q105q1112q124q1315q14+7q152q169q17+11q1817q197q2025q21+15q99+O(q100) 8 q - 4 q^{2} - 6 q^{3} + 6 q^{4} - q^{5} + 3 q^{6} - 15 q^{8} + 8 q^{9} + 3 q^{10} - 5 q^{11} - 12 q^{12} - 4 q^{13} - 15 q^{14} + 7 q^{15} - 2 q^{16} - 9 q^{17} + 11 q^{18} - 17 q^{19} - 7 q^{20} - 25 q^{21}+ \cdots - 15 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.0419454 0.0296599 0.0148299 0.999890i 0.495279π-0.495279\pi
0.0148299 + 0.999890i 0.495279π0.495279\pi
33 −3.02773 −1.74806 −0.874031 0.485870i 0.838503π-0.838503\pi
−0.874031 + 0.485870i 0.838503π0.838503\pi
44 −1.99824 −0.999120
55 −1.74204 −0.779063 −0.389531 0.921013i 0.627363π-0.627363\pi
−0.389531 + 0.921013i 0.627363π0.627363\pi
66 −0.126999 −0.0518473
77 2.05366 0.776209 0.388104 0.921615i 0.373130π-0.373130\pi
0.388104 + 0.921615i 0.373130π0.373130\pi
88 −0.167708 −0.0592936
99 6.16716 2.05572
1010 −0.0730704 −0.0231069
1111 1.85185 0.558354 0.279177 0.960240i 0.409938π-0.409938\pi
0.279177 + 0.960240i 0.409938π0.409938\pi
1212 6.05014 1.74652
1313 2.57790 0.714980 0.357490 0.933917i 0.383633π-0.383633\pi
0.357490 + 0.933917i 0.383633π0.383633\pi
1414 0.0861414 0.0230222
1515 5.27442 1.36185
1616 3.98945 0.997362
1717 −5.23359 −1.26933 −0.634666 0.772787i 0.718862π-0.718862\pi
−0.634666 + 0.772787i 0.718862π0.718862\pi
1818 0.258684 0.0609724
1919 −0.379040 −0.0869578 −0.0434789 0.999054i 0.513844π-0.513844\pi
−0.0434789 + 0.999054i 0.513844π0.513844\pi
2020 3.48101 0.778377
2121 −6.21792 −1.35686
2222 0.0776766 0.0165607
2323 3.63048 0.757007 0.378504 0.925600i 0.376439π-0.376439\pi
0.378504 + 0.925600i 0.376439π0.376439\pi
2424 0.507774 0.103649
2525 −1.96531 −0.393061
2626 0.108131 0.0212062
2727 −9.58931 −1.84546
2828 −4.10370 −0.775526
2929 0 0
3030 0.221238 0.0403923
3131 −2.36562 −0.424879 −0.212439 0.977174i 0.568141π-0.568141\pi
−0.212439 + 0.977174i 0.568141π0.568141\pi
3232 0.502754 0.0888752
3333 −5.60691 −0.976038
3434 −0.219525 −0.0376482
3535 −3.57754 −0.604715
3636 −12.3235 −2.05391
3737 6.56734 1.07966 0.539832 0.841773i 0.318488π-0.318488\pi
0.539832 + 0.841773i 0.318488π0.318488\pi
3838 −0.0158990 −0.00257916
3939 −7.80518 −1.24983
4040 0.292153 0.0461935
4141 −9.44586 −1.47520 −0.737598 0.675240i 0.764040π-0.764040\pi
−0.737598 + 0.675240i 0.764040π0.764040\pi
4242 −0.260813 −0.0402443
4343 0.995519 0.151815 0.0759076 0.997115i 0.475815π-0.475815\pi
0.0759076 + 0.997115i 0.475815π0.475815\pi
4444 −3.70044 −0.557863
4545 −10.7434 −1.60153
4646 0.152282 0.0224527
4747 −10.1675 −1.48309 −0.741543 0.670905i 0.765906π-0.765906\pi
−0.741543 + 0.670905i 0.765906π0.765906\pi
4848 −12.0790 −1.74345
4949 −2.78250 −0.397500
5050 −0.0824356 −0.0116582
5151 15.8459 2.21887
5252 −5.15126 −0.714351
5353 9.93002 1.36399 0.681997 0.731355i 0.261112π-0.261112\pi
0.681997 + 0.731355i 0.261112π0.261112\pi
5454 −0.402227 −0.0547362
5555 −3.22599 −0.434993
5656 −0.344414 −0.0460242
5757 1.14763 0.152008
5858 0 0
5959 −6.24449 −0.812963 −0.406482 0.913659i 0.633244π-0.633244\pi
−0.406482 + 0.913659i 0.633244π0.633244\pi
6060 −10.5396 −1.36065
6161 7.98529 1.02241 0.511206 0.859458i 0.329199π-0.329199\pi
0.511206 + 0.859458i 0.329199π0.329199\pi
6262 −0.0992270 −0.0126018
6363 12.6652 1.59567
6464 −7.95780 −0.994726
6565 −4.49079 −0.557014
6666 −0.235184 −0.0289491
6767 −4.13822 −0.505565 −0.252782 0.967523i 0.581346π-0.581346\pi
−0.252782 + 0.967523i 0.581346π0.581346\pi
6868 10.4580 1.26822
6969 −10.9921 −1.32330
7070 −0.150061 −0.0179358
7171 −2.28290 −0.270930 −0.135465 0.990782i 0.543253π-0.543253\pi
−0.135465 + 0.990782i 0.543253π0.543253\pi
7272 −1.03428 −0.121891
7373 9.06401 1.06086 0.530431 0.847728i 0.322030π-0.322030\pi
0.530431 + 0.847728i 0.322030π0.322030\pi
7474 0.275470 0.0320227
7575 5.95042 0.687096
7676 0.757414 0.0868813
7777 3.80306 0.433399
7878 −0.327391 −0.0370698
7979 −10.2768 −1.15622 −0.578112 0.815957i 0.696210π-0.696210\pi
−0.578112 + 0.815957i 0.696210π0.696210\pi
8080 −6.94976 −0.777007
8181 10.5324 1.17027
8282 −0.396210 −0.0437541
8383 −15.6206 −1.71459 −0.857294 0.514827i 0.827856π-0.827856\pi
−0.857294 + 0.514827i 0.827856π0.827856\pi
8484 12.4249 1.35567
8585 9.11711 0.988889
8686 0.0417574 0.00450282
8787 0 0
8888 −0.310570 −0.0331069
8989 9.61689 1.01939 0.509694 0.860356i 0.329758π-0.329758\pi
0.509694 + 0.860356i 0.329758π0.329758\pi
9090 −0.450637 −0.0475013
9191 5.29411 0.554974
9292 −7.25457 −0.756341
9393 7.16248 0.742714
9494 −0.426481 −0.0439881
9595 0.660302 0.0677456
9696 −1.52221 −0.155359
9797 −5.17777 −0.525723 −0.262862 0.964834i 0.584666π-0.584666\pi
−0.262862 + 0.964834i 0.584666π0.584666\pi
9898 −0.116713 −0.0117898
9999 11.4207 1.14782
100100 3.92716 0.392716
101101 8.46144 0.841945 0.420973 0.907073i 0.361689π-0.361689\pi
0.420973 + 0.907073i 0.361689π0.361689\pi
102102 0.664663 0.0658114
103103 3.51409 0.346254 0.173127 0.984900i 0.444613π-0.444613\pi
0.173127 + 0.984900i 0.444613π0.444613\pi
104104 −0.432333 −0.0423938
105105 10.8318 1.05708
106106 0.416519 0.0404559
107107 −4.44378 −0.429596 −0.214798 0.976658i 0.568909π-0.568909\pi
−0.214798 + 0.976658i 0.568909π0.568909\pi
108108 19.1618 1.84384
109109 −11.7628 −1.12667 −0.563335 0.826229i 0.690482π-0.690482\pi
−0.563335 + 0.826229i 0.690482π0.690482\pi
110110 −0.135316 −0.0129018
111111 −19.8842 −1.88732
112112 8.19295 0.774161
113113 −11.4197 −1.07428 −0.537139 0.843494i 0.680495π-0.680495\pi
−0.537139 + 0.843494i 0.680495π0.680495\pi
114114 0.0481379 0.00450853
115115 −6.32443 −0.589756
116116 0 0
117117 15.8983 1.46980
118118 −0.261927 −0.0241124
119119 −10.7480 −0.985267
120120 −0.884561 −0.0807490
121121 −7.57065 −0.688241
122122 0.334946 0.0303246
123123 28.5995 2.57873
124124 4.72709 0.424505
125125 12.1338 1.08528
126126 0.531248 0.0473273
127127 12.0462 1.06893 0.534466 0.845190i 0.320513π-0.320513\pi
0.534466 + 0.845190i 0.320513π0.320513\pi
128128 −1.33930 −0.118379
129129 −3.01417 −0.265383
130130 −0.188368 −0.0165210
131131 −14.5943 −1.27511 −0.637556 0.770404i 0.720054π-0.720054\pi
−0.637556 + 0.770404i 0.720054π0.720054\pi
132132 11.2040 0.975179
133133 −0.778418 −0.0674974
134134 −0.173579 −0.0149950
135135 16.7049 1.43773
136136 0.877713 0.0752633
137137 2.86241 0.244552 0.122276 0.992496i 0.460981π-0.460981\pi
0.122276 + 0.992496i 0.460981π0.460981\pi
138138 −0.461069 −0.0392488
139139 −22.2683 −1.88877 −0.944387 0.328835i 0.893344π-0.893344\pi
−0.944387 + 0.328835i 0.893344π0.893344\pi
140140 7.14879 0.604183
141141 30.7846 2.59253
142142 −0.0957570 −0.00803575
143143 4.77388 0.399212
144144 24.6036 2.05030
145145 0 0
146146 0.380194 0.0314650
147147 8.42466 0.694854
148148 −13.1231 −1.07871
149149 4.23624 0.347046 0.173523 0.984830i 0.444485π-0.444485\pi
0.173523 + 0.984830i 0.444485π0.444485\pi
150150 0.249593 0.0203792
151151 7.79459 0.634315 0.317158 0.948373i 0.397272π-0.397272\pi
0.317158 + 0.948373i 0.397272π0.397272\pi
152152 0.0635680 0.00515604
153153 −32.2764 −2.60939
154154 0.159521 0.0128546
155155 4.12101 0.331007
156156 15.5966 1.24873
157157 −6.32741 −0.504982 −0.252491 0.967599i 0.581250π-0.581250\pi
−0.252491 + 0.967599i 0.581250π0.581250\pi
158158 −0.431062 −0.0342935
159159 −30.0654 −2.38434
160160 −0.875817 −0.0692394
161161 7.45575 0.587596
162162 0.441785 0.0347099
163163 1.75944 0.137810 0.0689051 0.997623i 0.478049π-0.478049\pi
0.0689051 + 0.997623i 0.478049π0.478049\pi
164164 18.8751 1.47390
165165 9.76744 0.760394
166166 −0.655214 −0.0508545
167167 −13.9203 −1.07718 −0.538592 0.842567i 0.681044π-0.681044\pi
−0.538592 + 0.842567i 0.681044π0.681044\pi
168168 1.04279 0.0804532
169169 −6.35445 −0.488804
170170 0.382421 0.0293303
171171 −2.33760 −0.178761
172172 −1.98929 −0.151682
173173 −8.38553 −0.637540 −0.318770 0.947832i 0.603270π-0.603270\pi
−0.318770 + 0.947832i 0.603270π0.603270\pi
174174 0 0
175175 −4.03606 −0.305098
176176 7.38786 0.556881
177177 18.9066 1.42111
178178 0.403384 0.0302349
179179 −19.6755 −1.47062 −0.735308 0.677733i 0.762963π-0.762963\pi
−0.735308 + 0.677733i 0.762963π0.762963\pi
180180 21.4679 1.60013
181181 12.0535 0.895932 0.447966 0.894051i 0.352149π-0.352149\pi
0.447966 + 0.894051i 0.352149π0.352149\pi
182182 0.222064 0.0164604
183183 −24.1773 −1.78724
184184 −0.608859 −0.0448857
185185 −11.4406 −0.841126
186186 0.300433 0.0220288
187187 −9.69183 −0.708737
188188 20.3172 1.48178
189189 −19.6931 −1.43247
190190 0.0276966 0.00200932
191191 −11.6202 −0.840810 −0.420405 0.907337i 0.638112π-0.638112\pi
−0.420405 + 0.907337i 0.638112π0.638112\pi
192192 24.0941 1.73884
193193 −19.0525 −1.37143 −0.685715 0.727871i 0.740510π-0.740510\pi
−0.685715 + 0.727871i 0.740510π0.740510\pi
194194 −0.217184 −0.0155929
195195 13.5969 0.973695
196196 5.56010 0.397150
197197 16.7067 1.19030 0.595151 0.803614i 0.297092π-0.297092\pi
0.595151 + 0.803614i 0.297092π0.297092\pi
198198 0.479044 0.0340442
199199 −8.90853 −0.631509 −0.315754 0.948841i 0.602258π-0.602258\pi
−0.315754 + 0.948841i 0.602258π0.602258\pi
200200 0.329597 0.0233060
201201 12.5294 0.883758
202202 0.354918 0.0249720
203203 0 0
204204 −31.6639 −2.21692
205205 16.4550 1.14927
206206 0.147400 0.0102698
207207 22.3897 1.55619
208208 10.2844 0.713094
209209 −0.701926 −0.0485533
210210 0.454346 0.0313528
211211 −0.254216 −0.0175010 −0.00875049 0.999962i 0.502785π-0.502785\pi
−0.00875049 + 0.999962i 0.502785π0.502785\pi
212212 −19.8426 −1.36279
213213 6.91200 0.473603
214214 −0.186396 −0.0127418
215215 −1.73423 −0.118274
216216 1.60820 0.109424
217217 −4.85818 −0.329795
218218 −0.493394 −0.0334169
219219 −27.4434 −1.85445
220220 6.44631 0.434610
221221 −13.4917 −0.907547
222222 −0.834049 −0.0559777
223223 9.15674 0.613180 0.306590 0.951842i 0.400812π-0.400812\pi
0.306590 + 0.951842i 0.400812π0.400812\pi
224224 1.03248 0.0689858
225225 −12.1204 −0.808024
226226 −0.479005 −0.0318629
227227 −4.81446 −0.319547 −0.159773 0.987154i 0.551076π-0.551076\pi
−0.159773 + 0.987154i 0.551076π0.551076\pi
228228 −2.29325 −0.151874
229229 6.86601 0.453719 0.226859 0.973928i 0.427154π-0.427154\pi
0.226859 + 0.973928i 0.427154π0.427154\pi
230230 −0.265281 −0.0174921
231231 −11.5147 −0.757609
232232 0 0
233233 17.2302 1.12879 0.564393 0.825507i 0.309110π-0.309110\pi
0.564393 + 0.825507i 0.309110π0.309110\pi
234234 0.666860 0.0435940
235235 17.7122 1.15542
236236 12.4780 0.812248
237237 31.1152 2.02115
238238 −0.450829 −0.0292229
239239 −21.3042 −1.37805 −0.689026 0.724737i 0.741961π-0.741961\pi
−0.689026 + 0.724737i 0.741961π0.741961\pi
240240 21.0420 1.35826
241241 −8.99312 −0.579298 −0.289649 0.957133i 0.593539π-0.593539\pi
−0.289649 + 0.957133i 0.593539π0.593539\pi
242242 −0.317554 −0.0204131
243243 −3.12130 −0.200232
244244 −15.9565 −1.02151
245245 4.84722 0.309677
246246 1.19962 0.0764849
247247 −0.977127 −0.0621731
248248 0.396734 0.0251926
249249 47.2951 2.99721
250250 0.508958 0.0321893
251251 6.50262 0.410442 0.205221 0.978716i 0.434209π-0.434209\pi
0.205221 + 0.978716i 0.434209π0.434209\pi
252252 −25.3082 −1.59426
253253 6.72311 0.422678
254254 0.505284 0.0317044
255255 −27.6042 −1.72864
256256 15.8594 0.991215
257257 −5.78756 −0.361018 −0.180509 0.983573i 0.557774π-0.557774\pi
−0.180509 + 0.983573i 0.557774π0.557774\pi
258258 −0.126430 −0.00787121
259259 13.4871 0.838045
260260 8.97368 0.556524
261261 0 0
262262 −0.612164 −0.0378196
263263 −30.2467 −1.86509 −0.932547 0.361048i 0.882419π-0.882419\pi
−0.932547 + 0.361048i 0.882419π0.882419\pi
264264 0.940322 0.0578728
265265 −17.2985 −1.06264
266266 −0.0326510 −0.00200196
267267 −29.1174 −1.78195
268268 8.26917 0.505120
269269 −11.9363 −0.727766 −0.363883 0.931445i 0.618549π-0.618549\pi
−0.363883 + 0.931445i 0.618549π0.618549\pi
270270 0.700695 0.0426429
271271 17.5571 1.06652 0.533260 0.845951i 0.320967π-0.320967\pi
0.533260 + 0.845951i 0.320967π0.320967\pi
272272 −20.8791 −1.26598
273273 −16.0292 −0.970128
274274 0.120065 0.00725337
275275 −3.63946 −0.219468
276276 21.9649 1.32213
277277 1.07477 0.0645765 0.0322882 0.999479i 0.489721π-0.489721\pi
0.0322882 + 0.999479i 0.489721π0.489721\pi
278278 −0.934053 −0.0560208
279279 −14.5892 −0.873432
280280 0.599982 0.0358558
281281 −29.8865 −1.78288 −0.891441 0.453138i 0.850305π-0.850305\pi
−0.891441 + 0.453138i 0.850305π0.850305\pi
282282 1.29127 0.0768940
283283 26.7501 1.59013 0.795065 0.606524i 0.207436π-0.207436\pi
0.795065 + 0.606524i 0.207436π0.207436\pi
284284 4.56178 0.270692
285285 −1.99922 −0.118423
286286 0.200242 0.0118406
287287 −19.3986 −1.14506
288288 3.10057 0.182703
289289 10.3905 0.611204
290290 0 0
291291 15.6769 0.918996
292292 −18.1121 −1.05993
293293 5.81037 0.339446 0.169723 0.985492i 0.445713π-0.445713\pi
0.169723 + 0.985492i 0.445713π0.445713\pi
294294 0.353376 0.0206093
295295 10.8781 0.633349
296296 −1.10139 −0.0640172
297297 −17.7580 −1.03042
298298 0.177691 0.0102933
299299 9.35900 0.541245
300300 −11.8904 −0.686491
301301 2.04445 0.117840
302302 0.326947 0.0188137
303303 −25.6190 −1.47177
304304 −1.51216 −0.0867284
305305 −13.9107 −0.796522
306306 −1.35385 −0.0773942
307307 −5.15345 −0.294123 −0.147061 0.989127i 0.546982π-0.546982\pi
−0.147061 + 0.989127i 0.546982π0.546982\pi
308308 −7.59944 −0.433018
309309 −10.6397 −0.605273
310310 0.172857 0.00981763
311311 10.6244 0.602453 0.301227 0.953553i 0.402604π-0.402604\pi
0.301227 + 0.953553i 0.402604π0.402604\pi
312312 1.30899 0.0741069
313313 16.7104 0.944526 0.472263 0.881458i 0.343437π-0.343437\pi
0.472263 + 0.881458i 0.343437π0.343437\pi
314314 −0.265405 −0.0149777
315315 −22.0633 −1.24313
316316 20.5354 1.15521
317317 1.49124 0.0837563 0.0418782 0.999123i 0.486666π-0.486666\pi
0.0418782 + 0.999123i 0.486666π0.486666\pi
318318 −1.26111 −0.0707193
319319 0 0
320320 13.8628 0.774954
321321 13.4546 0.750961
322322 0.312734 0.0174280
323323 1.98374 0.110378
324324 −21.0462 −1.16924
325325 −5.06636 −0.281031
326326 0.0738005 0.00408743
327327 35.6145 1.96949
328328 1.58414 0.0874697
329329 −20.8806 −1.15118
330330 0.409699 0.0225532
331331 29.8803 1.64237 0.821184 0.570663i 0.193314π-0.193314\pi
0.821184 + 0.570663i 0.193314π0.193314\pi
332332 31.2138 1.71308
333333 40.5019 2.21949
334334 −0.583892 −0.0319491
335335 7.20894 0.393866
336336 −24.8061 −1.35328
337337 0.941345 0.0512783 0.0256392 0.999671i 0.491838π-0.491838\pi
0.0256392 + 0.999671i 0.491838π0.491838\pi
338338 −0.266540 −0.0144979
339339 34.5759 1.87790
340340 −18.2182 −0.988019
341341 −4.38079 −0.237233
342342 −0.0980516 −0.00530202
343343 −20.0899 −1.08475
344344 −0.166956 −0.00900168
345345 19.1487 1.03093
346346 −0.351734 −0.0189094
347347 −8.65358 −0.464548 −0.232274 0.972650i 0.574617π-0.574617\pi
−0.232274 + 0.972650i 0.574617π0.574617\pi
348348 0 0
349349 −34.5616 −1.85004 −0.925021 0.379916i 0.875953π-0.875953\pi
−0.925021 + 0.379916i 0.875953π0.875953\pi
350350 −0.169294 −0.00904916
351351 −24.7203 −1.31947
352352 0.931026 0.0496239
353353 −14.4231 −0.767663 −0.383831 0.923403i 0.625396π-0.625396\pi
−0.383831 + 0.923403i 0.625396π0.625396\pi
354354 0.793046 0.0421499
355355 3.97689 0.211072
356356 −19.2169 −1.01849
357357 32.5420 1.72231
358358 −0.825297 −0.0436183
359359 −22.2909 −1.17647 −0.588235 0.808690i 0.700177π-0.700177\pi
−0.588235 + 0.808690i 0.700177π0.700177\pi
360360 1.80175 0.0949608
361361 −18.8563 −0.992438
362362 0.505590 0.0265732
363363 22.9219 1.20309
364364 −10.5789 −0.554486
365365 −15.7898 −0.826478
366366 −1.01413 −0.0530092
367367 5.08046 0.265198 0.132599 0.991170i 0.457668π-0.457668\pi
0.132599 + 0.991170i 0.457668π0.457668\pi
368368 14.4836 0.755010
369369 −58.2542 −3.03259
370370 −0.479878 −0.0249477
371371 20.3928 1.05874
372372 −14.3124 −0.742061
373373 25.5097 1.32084 0.660422 0.750894i 0.270377π-0.270377\pi
0.660422 + 0.750894i 0.270377π0.270377\pi
374374 −0.406528 −0.0210210
375375 −36.7380 −1.89714
376376 1.70517 0.0879376
377377 0 0
378378 −0.826036 −0.0424867
379379 8.31922 0.427330 0.213665 0.976907i 0.431460π-0.431460\pi
0.213665 + 0.976907i 0.431460π0.431460\pi
380380 −1.31944 −0.0676860
381381 −36.4728 −1.86856
382382 −0.487415 −0.0249383
383383 25.3223 1.29391 0.646956 0.762528i 0.276042π-0.276042\pi
0.646956 + 0.762528i 0.276042π0.276042\pi
384384 4.05505 0.206933
385385 −6.62508 −0.337645
386386 −0.799165 −0.0406764
387387 6.13953 0.312090
388388 10.3464 0.525261
389389 27.3249 1.38543 0.692714 0.721212i 0.256415π-0.256415\pi
0.692714 + 0.721212i 0.256415π0.256415\pi
390390 0.570328 0.0288797
391391 −19.0004 −0.960893
392392 0.466647 0.0235692
393393 44.1877 2.22897
394394 0.700769 0.0353042
395395 17.9025 0.900771
396396 −22.8212 −1.14681
397397 11.2253 0.563380 0.281690 0.959506i 0.409105π-0.409105\pi
0.281690 + 0.959506i 0.409105π0.409105\pi
398398 −0.373672 −0.0187305
399399 2.35684 0.117990
400400 −7.84049 −0.392024
401401 33.3016 1.66300 0.831500 0.555524i 0.187482π-0.187482\pi
0.831500 + 0.555524i 0.187482π0.187482\pi
402402 0.525552 0.0262121
403403 −6.09834 −0.303780
404404 −16.9080 −0.841204
405405 −18.3478 −0.911710
406406 0 0
407407 12.1617 0.602835
408408 −2.65748 −0.131565
409409 −16.0820 −0.795203 −0.397602 0.917558i 0.630157π-0.630157\pi
−0.397602 + 0.917558i 0.630157π0.630157\pi
410410 0.690213 0.0340872
411411 −8.66659 −0.427492
412412 −7.02200 −0.345949
413413 −12.8240 −0.631029
414414 0.939146 0.0461565
415415 27.2117 1.33577
416416 1.29605 0.0635440
417417 67.4225 3.30169
418418 −0.0294426 −0.00144008
419419 28.0762 1.37161 0.685806 0.727784i 0.259450π-0.259450\pi
0.685806 + 0.727784i 0.259450π0.259450\pi
420420 −21.6446 −1.05615
421421 30.4981 1.48638 0.743192 0.669078i 0.233311π-0.233311\pi
0.743192 + 0.669078i 0.233311π0.233311\pi
422422 −0.0106632 −0.000519077 0
423423 −62.7048 −3.04881
424424 −1.66534 −0.0808761
425425 10.2856 0.498925
426426 0.289927 0.0140470
427427 16.3990 0.793605
428428 8.87974 0.429218
429429 −14.4540 −0.697847
430430 −0.0727430 −0.00350798
431431 −9.72567 −0.468469 −0.234234 0.972180i 0.575258π-0.575258\pi
−0.234234 + 0.972180i 0.575258π0.575258\pi
432432 −38.2560 −1.84060
433433 −23.2297 −1.11635 −0.558174 0.829724i 0.688498π-0.688498\pi
−0.558174 + 0.829724i 0.688498π0.688498\pi
434434 −0.203778 −0.00978166
435435 0 0
436436 23.5049 1.12568
437437 −1.37610 −0.0658277
438438 −1.15112 −0.0550028
439439 −13.6277 −0.650414 −0.325207 0.945643i 0.605434π-0.605434\pi
−0.325207 + 0.945643i 0.605434π0.605434\pi
440440 0.541024 0.0257923
441441 −17.1601 −0.817148
442442 −0.565913 −0.0269177
443443 −9.17324 −0.435834 −0.217917 0.975967i 0.569926π-0.569926\pi
−0.217917 + 0.975967i 0.569926π0.569926\pi
444444 39.7333 1.88566
445445 −16.7530 −0.794168
446446 0.384083 0.0181869
447447 −12.8262 −0.606658
448448 −16.3426 −0.772115
449449 −17.7444 −0.837410 −0.418705 0.908122i 0.637516π-0.637516\pi
−0.418705 + 0.908122i 0.637516π0.637516\pi
450450 −0.508393 −0.0239659
451451 −17.4923 −0.823682
452452 22.8194 1.07333
453453 −23.5999 −1.10882
454454 −0.201944 −0.00947772
455455 −9.22254 −0.432359
456456 −0.192467 −0.00901308
457457 2.52347 0.118043 0.0590215 0.998257i 0.481202π-0.481202\pi
0.0590215 + 0.998257i 0.481202π0.481202\pi
458458 0.287997 0.0134572
459459 50.1865 2.34251
460460 12.6377 0.589237
461461 −10.0128 −0.466342 −0.233171 0.972436i 0.574910π-0.574910\pi
−0.233171 + 0.972436i 0.574910π0.574910\pi
462462 −0.482987 −0.0224706
463463 27.8485 1.29423 0.647115 0.762393i 0.275976π-0.275976\pi
0.647115 + 0.762393i 0.275976π0.275976\pi
464464 0 0
465465 −12.4773 −0.578621
466466 0.722726 0.0334796
467467 −20.3278 −0.940660 −0.470330 0.882491i 0.655865π-0.655865\pi
−0.470330 + 0.882491i 0.655865π0.655865\pi
468468 −31.7686 −1.46851
469469 −8.49849 −0.392424
470470 0.742945 0.0342695
471471 19.1577 0.882740
472472 1.04725 0.0482035
473473 1.84355 0.0847667
474474 1.30514 0.0599471
475475 0.744931 0.0341798
476476 21.4771 0.984400
477477 61.2400 2.80399
478478 −0.893611 −0.0408728
479479 −21.4510 −0.980119 −0.490060 0.871689i 0.663025π-0.663025\pi
−0.490060 + 0.871689i 0.663025π0.663025\pi
480480 2.65174 0.121035
481481 16.9299 0.771939
482482 −0.377220 −0.0171819
483483 −22.5740 −1.02715
484484 15.1280 0.687635
485485 9.01987 0.409571
486486 −0.130924 −0.00593884
487487 16.3963 0.742988 0.371494 0.928435i 0.378846π-0.378846\pi
0.371494 + 0.928435i 0.378846π0.378846\pi
488488 −1.33919 −0.0606225
489489 −5.32712 −0.240901
490490 0.203318 0.00918499
491491 −29.2747 −1.32115 −0.660575 0.750760i 0.729687π-0.729687\pi
−0.660575 + 0.750760i 0.729687π0.729687\pi
492492 −57.1488 −2.57647
493493 0 0
494494 −0.0409860 −0.00184405
495495 −19.8952 −0.894224
496496 −9.43753 −0.423758
497497 −4.68829 −0.210298
498498 1.98381 0.0888968
499499 −4.67402 −0.209238 −0.104619 0.994512i 0.533362π-0.533362\pi
−0.104619 + 0.994512i 0.533362π0.533362\pi
500500 −24.2463 −1.08433
501501 42.1469 1.88298
502502 0.272755 0.0121737
503503 −11.1073 −0.495248 −0.247624 0.968856i 0.579650π-0.579650\pi
−0.247624 + 0.968856i 0.579650π0.579650\pi
504504 −2.12406 −0.0946130
505505 −14.7401 −0.655928
506506 0.282003 0.0125366
507507 19.2396 0.854459
508508 −24.0713 −1.06799
509509 −33.2518 −1.47386 −0.736930 0.675969i 0.763726π-0.763726\pi
−0.736930 + 0.675969i 0.763726π0.763726\pi
510510 −1.15787 −0.0512712
511511 18.6144 0.823451
512512 3.34383 0.147778
513513 3.63474 0.160477
514514 −0.242761 −0.0107077
515515 −6.12168 −0.269753
516516 6.02303 0.265149
517517 −18.8288 −0.828088
518518 0.565720 0.0248563
519519 25.3891 1.11446
520520 0.753140 0.0330274
521521 −11.6310 −0.509565 −0.254783 0.966998i 0.582004π-0.582004\pi
−0.254783 + 0.966998i 0.582004π0.582004\pi
522522 0 0
523523 −0.747202 −0.0326728 −0.0163364 0.999867i 0.505200π-0.505200\pi
−0.0163364 + 0.999867i 0.505200π0.505200\pi
524524 29.1630 1.27399
525525 12.2201 0.533330
526526 −1.26871 −0.0553184
527527 12.3807 0.539312
528528 −22.3685 −0.973463
529529 −9.81963 −0.426940
530530 −0.725591 −0.0315176
531531 −38.5108 −1.67122
532532 1.55547 0.0674380
533533 −24.3505 −1.05474
534534 −1.22134 −0.0528525
535535 7.74122 0.334682
536536 0.694012 0.0299768
537537 59.5722 2.57073
538538 −0.500671 −0.0215854
539539 −5.15277 −0.221946
540540 −33.3805 −1.43647
541541 −19.2472 −0.827500 −0.413750 0.910391i 0.635781π-0.635781\pi
−0.413750 + 0.910391i 0.635781π0.635781\pi
542542 0.736441 0.0316328
543543 −36.4949 −1.56614
544544 −2.63121 −0.112812
545545 20.4912 0.877747
546546 −0.672349 −0.0287739
547547 −25.2969 −1.08162 −0.540809 0.841146i 0.681882π-0.681882\pi
−0.540809 + 0.841146i 0.681882π0.681882\pi
548548 −5.71977 −0.244337
549549 49.2465 2.10179
550550 −0.152658 −0.00650938
551551 0 0
552552 1.84346 0.0784630
553553 −21.1049 −0.897472
554554 0.0450815 0.00191533
555555 34.6389 1.47034
556556 44.4975 1.88711
557557 36.1438 1.53146 0.765731 0.643161i 0.222377π-0.222377\pi
0.765731 + 0.643161i 0.222377π0.222377\pi
558558 −0.611949 −0.0259059
559559 2.56635 0.108545
560560 −14.2724 −0.603120
561561 29.3443 1.23892
562562 −1.25360 −0.0528800
563563 −8.84332 −0.372701 −0.186351 0.982483i 0.559666π-0.559666\pi
−0.186351 + 0.982483i 0.559666π0.559666\pi
564564 −61.5149 −2.59025
565565 19.8936 0.836929
566566 1.12204 0.0471631
567567 21.6299 0.908370
568568 0.382860 0.0160644
569569 16.4900 0.691297 0.345648 0.938364i 0.387659π-0.387659\pi
0.345648 + 0.938364i 0.387659π0.387659\pi
570570 −0.0838580 −0.00351242
571571 −22.6312 −0.947086 −0.473543 0.880771i 0.657025π-0.657025\pi
−0.473543 + 0.880771i 0.657025π0.657025\pi
572572 −9.53936 −0.398861
573573 35.1829 1.46979
574574 −0.813680 −0.0339623
575575 −7.13501 −0.297550
576576 −49.0771 −2.04488
577577 41.1401 1.71268 0.856342 0.516408i 0.172731π-0.172731\pi
0.856342 + 0.516408i 0.172731π0.172731\pi
578578 0.435832 0.0181282
579579 57.6859 2.39734
580580 0 0
581581 −32.0794 −1.33088
582582 0.657574 0.0272573
583583 18.3889 0.761591
584584 −1.52011 −0.0629024
585585 −27.6954 −1.14507
586586 0.243718 0.0100679
587587 −26.1878 −1.08089 −0.540443 0.841381i 0.681743π-0.681743\pi
−0.540443 + 0.841381i 0.681743π0.681743\pi
588588 −16.8345 −0.694243
589589 0.896667 0.0369465
590590 0.456287 0.0187851
591591 −50.5834 −2.08072
592592 26.2001 1.07682
593593 −31.4857 −1.29296 −0.646482 0.762929i 0.723760π-0.723760\pi
−0.646482 + 0.762929i 0.723760π0.723760\pi
594594 −0.744865 −0.0305622
595595 18.7234 0.767584
596596 −8.46502 −0.346741
597597 26.9726 1.10392
598598 0.392567 0.0160533
599599 −14.1791 −0.579342 −0.289671 0.957126i 0.593546π-0.593546\pi
−0.289671 + 0.957126i 0.593546π0.593546\pi
600600 −0.997932 −0.0407404
601601 14.0233 0.572021 0.286010 0.958227i 0.407671π-0.407671\pi
0.286010 + 0.958227i 0.407671π0.407671\pi
602602 0.0857554 0.00349513
603603 −25.5211 −1.03930
604604 −15.5755 −0.633757
605605 13.1883 0.536183
606606 −1.07460 −0.0436526
607607 −18.3000 −0.742776 −0.371388 0.928478i 0.621118π-0.621118\pi
−0.371388 + 0.928478i 0.621118π0.621118\pi
608608 −0.190564 −0.00772840
609609 0 0
610610 −0.583488 −0.0236247
611611 −26.2108 −1.06038
612612 64.4960 2.60710
613613 29.8490 1.20559 0.602795 0.797896i 0.294054π-0.294054\pi
0.602795 + 0.797896i 0.294054π0.294054\pi
614614 −0.216163 −0.00872365
615615 −49.8215 −2.00900
616616 −0.637803 −0.0256978
617617 −4.59374 −0.184937 −0.0924685 0.995716i 0.529476π-0.529476\pi
−0.0924685 + 0.995716i 0.529476π0.529476\pi
618618 −0.446288 −0.0179523
619619 −6.28557 −0.252638 −0.126319 0.991990i 0.540316π-0.540316\pi
−0.126319 + 0.991990i 0.540316π0.540316\pi
620620 −8.23476 −0.330716
621621 −34.8138 −1.39703
622622 0.445644 0.0178687
623623 19.7498 0.791258
624624 −31.1384 −1.24653
625625 −11.3110 −0.452441
626626 0.700923 0.0280145
627627 2.12524 0.0848741
628628 12.6437 0.504538
629629 −34.3708 −1.37045
630630 −0.925453 −0.0368709
631631 9.68689 0.385629 0.192815 0.981235i 0.438238π-0.438238\pi
0.192815 + 0.981235i 0.438238π0.438238\pi
632632 1.72349 0.0685568
633633 0.769699 0.0305928
634634 0.0625506 0.00248420
635635 −20.9850 −0.832765
636636 60.0780 2.38225
637637 −7.17299 −0.284204
638638 0 0
639639 −14.0790 −0.556956
640640 2.33311 0.0922244
641641 4.79880 0.189541 0.0947707 0.995499i 0.469788π-0.469788\pi
0.0947707 + 0.995499i 0.469788π0.469788\pi
642642 0.564357 0.0222734
643643 12.2717 0.483948 0.241974 0.970283i 0.422205π-0.422205\pi
0.241974 + 0.970283i 0.422205π0.422205\pi
644644 −14.8984 −0.587079
645645 5.25079 0.206750
646646 0.0832088 0.00327381
647647 −10.6295 −0.417888 −0.208944 0.977928i 0.567003π-0.567003\pi
−0.208944 + 0.977928i 0.567003π0.567003\pi
648648 −1.76636 −0.0693893
649649 −11.5639 −0.453921
650650 −0.212510 −0.00833534
651651 14.7093 0.576501
652652 −3.51579 −0.137689
653653 −28.0426 −1.09739 −0.548695 0.836022i 0.684875π-0.684875\pi
−0.548695 + 0.836022i 0.684875π0.684875\pi
654654 1.49387 0.0584148
655655 25.4238 0.993391
656656 −37.6838 −1.47130
657657 55.8992 2.18084
658658 −0.875845 −0.0341440
659659 20.2814 0.790051 0.395026 0.918670i 0.370736π-0.370736\pi
0.395026 + 0.918670i 0.370736π0.370736\pi
660660 −19.5177 −0.759725
661661 −31.3294 −1.21857 −0.609287 0.792950i 0.708544π-0.708544\pi
−0.609287 + 0.792950i 0.708544π0.708544\pi
662662 1.25334 0.0487124
663663 40.8491 1.58645
664664 2.61970 0.101664
665665 1.35603 0.0525847
666666 1.69887 0.0658297
667667 0 0
668668 27.8161 1.07624
669669 −27.7241 −1.07188
670670 0.302382 0.0116820
671671 14.7876 0.570868
672672 −3.12609 −0.120591
673673 40.7084 1.56919 0.784597 0.620006i 0.212870π-0.212870\pi
0.784597 + 0.620006i 0.212870π0.212870\pi
674674 0.0394851 0.00152091
675675 18.8459 0.725381
676676 12.6977 0.488374
677677 −8.28145 −0.318282 −0.159141 0.987256i 0.550872π-0.550872\pi
−0.159141 + 0.987256i 0.550872π0.550872\pi
678678 1.45030 0.0556984
679679 −10.6334 −0.408071
680680 −1.52901 −0.0586348
681681 14.5769 0.558588
682682 −0.183754 −0.00703629
683683 3.36543 0.128775 0.0643874 0.997925i 0.479491π-0.479491\pi
0.0643874 + 0.997925i 0.479491π0.479491\pi
684684 4.67109 0.178604
685685 −4.98642 −0.190521
686686 −0.842678 −0.0321736
687687 −20.7884 −0.793128
688688 3.97157 0.151415
689689 25.5986 0.975228
690690 0.803198 0.0305772
691691 1.05513 0.0401391 0.0200696 0.999799i 0.493611π-0.493611\pi
0.0200696 + 0.999799i 0.493611π0.493611\pi
692692 16.7563 0.636979
693693 23.4541 0.890948
694694 −0.362978 −0.0137784
695695 38.7922 1.47147
696696 0 0
697697 49.4358 1.87251
698698 −1.44970 −0.0548720
699699 −52.1683 −1.97319
700700 8.06503 0.304829
701701 14.0655 0.531247 0.265623 0.964077i 0.414422π-0.414422\pi
0.265623 + 0.964077i 0.414422π0.414422\pi
702702 −1.03690 −0.0391353
703703 −2.48929 −0.0938853
704704 −14.7367 −0.555409
705705 −53.6278 −2.01974
706706 −0.604981 −0.0227688
707707 17.3769 0.653525
708708 −37.7800 −1.41986
709709 4.07777 0.153144 0.0765720 0.997064i 0.475602π-0.475602\pi
0.0765720 + 0.997064i 0.475602π0.475602\pi
710710 0.166812 0.00626035
711711 −63.3784 −2.37687
712712 −1.61283 −0.0604433
713713 −8.58835 −0.321636
714714 1.36499 0.0510834
715715 −8.31628 −0.311011
716716 39.3164 1.46932
717717 64.5033 2.40892
718718 −0.935002 −0.0348940
719719 8.32542 0.310486 0.155243 0.987876i 0.450384π-0.450384\pi
0.155243 + 0.987876i 0.450384π0.450384\pi
720720 −42.8603 −1.59731
721721 7.21674 0.268765
722722 −0.790936 −0.0294356
723723 27.2288 1.01265
724724 −24.0858 −0.895144
725725 0 0
726726 0.961467 0.0356834
727727 36.8868 1.36806 0.684028 0.729456i 0.260227π-0.260227\pi
0.684028 + 0.729456i 0.260227π0.260227\pi
728728 −0.887864 −0.0329064
729729 −22.1467 −0.820248
730730 −0.662311 −0.0245132
731731 −5.21014 −0.192704
732732 48.3121 1.78567
733733 10.1401 0.374534 0.187267 0.982309i 0.440037π-0.440037\pi
0.187267 + 0.982309i 0.440037π0.440037\pi
734734 0.213102 0.00786574
735735 −14.6761 −0.541335
736736 1.82524 0.0672792
737737 −7.66338 −0.282284
738738 −2.44349 −0.0899462
739739 −12.1953 −0.448610 −0.224305 0.974519i 0.572011π-0.572011\pi
−0.224305 + 0.974519i 0.572011π0.572011\pi
740740 22.8610 0.840386
741741 2.95848 0.108682
742742 0.855386 0.0314022
743743 32.7458 1.20133 0.600664 0.799501i 0.294903π-0.294903\pi
0.600664 + 0.799501i 0.294903π0.294903\pi
744744 −1.20120 −0.0440382
745745 −7.37968 −0.270371
746746 1.07002 0.0391761
747747 −96.3350 −3.52471
748748 19.3666 0.708113
749749 −9.12599 −0.333456
750750 −1.54099 −0.0562689
751751 −47.8097 −1.74460 −0.872301 0.488970i 0.837373π-0.837373\pi
−0.872301 + 0.488970i 0.837373π0.837373\pi
752752 −40.5628 −1.47917
753753 −19.6882 −0.717478
754754 0 0
755755 −13.5785 −0.494171
756756 39.3516 1.43121
757757 14.8571 0.539989 0.269994 0.962862i 0.412978π-0.412978\pi
0.269994 + 0.962862i 0.412978π0.412978\pi
758758 0.348953 0.0126745
759759 −20.3558 −0.738867
760760 −0.110738 −0.00401688
761761 18.3548 0.665362 0.332681 0.943039i 0.392047π-0.392047\pi
0.332681 + 0.943039i 0.392047π0.392047\pi
762762 −1.52987 −0.0554212
763763 −24.1567 −0.874531
764764 23.2200 0.840070
765765 56.2267 2.03288
766766 1.06216 0.0383772
767767 −16.0976 −0.581252
768768 −48.0181 −1.73270
769769 13.0590 0.470920 0.235460 0.971884i 0.424340π-0.424340\pi
0.235460 + 0.971884i 0.424340π0.424340\pi
770770 −0.277891 −0.0100145
771771 17.5232 0.631082
772772 38.0715 1.37022
773773 30.2860 1.08931 0.544655 0.838660i 0.316660π-0.316660\pi
0.544655 + 0.838660i 0.316660π0.316660\pi
774774 0.257525 0.00925654
775775 4.64918 0.167003
776776 0.868352 0.0311720
777777 −40.8352 −1.46495
778778 1.14615 0.0410916
779779 3.58036 0.128280
780780 −27.1699 −0.972839
781781 −4.22759 −0.151275
782782 −0.796981 −0.0285000
783783 0 0
784784 −11.1006 −0.396451
785785 11.0226 0.393413
786786 1.85347 0.0661110
787787 −2.96391 −0.105652 −0.0528260 0.998604i 0.516823π-0.516823\pi
−0.0528260 + 0.998604i 0.516823π0.516823\pi
788788 −33.3840 −1.18926
789789 91.5790 3.26030
790790 0.750926 0.0267168
791791 −23.4522 −0.833864
792792 −1.91533 −0.0680584
793793 20.5852 0.731003
794794 0.470848 0.0167098
795795 52.3751 1.85755
796796 17.8014 0.630953
797797 −23.9622 −0.848786 −0.424393 0.905478i 0.639512π-0.639512\pi
−0.424393 + 0.905478i 0.639512π0.639512\pi
798798 0.0988586 0.00349956
799799 53.2127 1.88253
800800 −0.988067 −0.0349334
801801 59.3089 2.09558
802802 1.39685 0.0493244
803803 16.7852 0.592337
804804 −25.0368 −0.882981
805805 −12.9882 −0.457774
806806 −0.255797 −0.00901007
807807 36.1398 1.27218
808808 −1.41905 −0.0499220
809809 48.7622 1.71439 0.857194 0.514993i 0.172205π-0.172205\pi
0.857194 + 0.514993i 0.172205π0.172205\pi
810810 −0.769606 −0.0270412
811811 23.3346 0.819389 0.409695 0.912223i 0.365635π-0.365635\pi
0.409695 + 0.912223i 0.365635π0.365635\pi
812812 0 0
813813 −53.1583 −1.86434
814814 0.510129 0.0178800
815815 −3.06501 −0.107363
816816 63.2164 2.21302
817817 −0.377342 −0.0132015
818818 −0.674565 −0.0235856
819819 32.6496 1.14087
820820 −32.8811 −1.14826
821821 36.6328 1.27849 0.639247 0.769001i 0.279246π-0.279246\pi
0.639247 + 0.769001i 0.279246π0.279246\pi
822822 −0.363524 −0.0126793
823823 26.8685 0.936578 0.468289 0.883575i 0.344871π-0.344871\pi
0.468289 + 0.883575i 0.344871π0.344871\pi
824824 −0.589341 −0.0205307
825825 11.0193 0.383643
826826 −0.537909 −0.0187162
827827 −2.55032 −0.0886834 −0.0443417 0.999016i 0.514119π-0.514119\pi
−0.0443417 + 0.999016i 0.514119π0.514119\pi
828828 −44.7401 −1.55483
829829 −29.2663 −1.01646 −0.508230 0.861221i 0.669700π-0.669700\pi
−0.508230 + 0.861221i 0.669700π0.669700\pi
830830 1.14141 0.0396188
831831 −3.25410 −0.112884
832832 −20.5144 −0.711209
833833 14.5625 0.504559
834834 2.82806 0.0979278
835835 24.2496 0.839194
836836 1.40262 0.0485105
837837 22.6847 0.784098
838838 1.17767 0.0406818
839839 46.3868 1.60145 0.800725 0.599032i 0.204448π-0.204448\pi
0.800725 + 0.599032i 0.204448π0.204448\pi
840840 −1.81658 −0.0626781
841841 0 0
842842 1.27925 0.0440860
843843 90.4884 3.11659
844844 0.507986 0.0174856
845845 11.0697 0.380809
846846 −2.63018 −0.0904273
847847 −15.5475 −0.534218
848848 39.6153 1.36039
849849 −80.9923 −2.77965
850850 0.431434 0.0147981
851851 23.8426 0.817314
852852 −13.8118 −0.473186
853853 51.5353 1.76453 0.882267 0.470749i 0.156016π-0.156016\pi
0.882267 + 0.470749i 0.156016π0.156016\pi
854854 0.687863 0.0235382
855855 4.07219 0.139266
856856 0.745256 0.0254723
857857 17.2204 0.588236 0.294118 0.955769i 0.404974π-0.404974\pi
0.294118 + 0.955769i 0.404974π0.404974\pi
858858 −0.606280 −0.0206981
859859 −14.1463 −0.482665 −0.241332 0.970443i 0.577584π-0.577584\pi
−0.241332 + 0.970443i 0.577584π0.577584\pi
860860 3.46541 0.118170
861861 58.7336 2.00164
862862 −0.407947 −0.0138947
863863 −18.6105 −0.633508 −0.316754 0.948508i 0.602593π-0.602593\pi
−0.316754 + 0.948508i 0.602593π0.602593\pi
864864 −4.82107 −0.164016
865865 14.6079 0.496684
866866 −0.974379 −0.0331107
867867 −31.4595 −1.06842
868868 9.70781 0.329504
869869 −19.0310 −0.645583
870870 0 0
871871 −10.6679 −0.361469
872872 1.97271 0.0668044
873873 −31.9321 −1.08074
874874 −0.0577209 −0.00195244
875875 24.9187 0.842406
876876 54.8385 1.85282
877877 8.50645 0.287242 0.143621 0.989633i 0.454125π-0.454125\pi
0.143621 + 0.989633i 0.454125π0.454125\pi
878878 −0.571618 −0.0192912
879879 −17.5923 −0.593372
880880 −12.8699 −0.433845
881881 31.1664 1.05002 0.525011 0.851095i 0.324061π-0.324061\pi
0.525011 + 0.851095i 0.324061π0.324061\pi
882882 −0.719788 −0.0242365
883883 20.3483 0.684775 0.342387 0.939559i 0.388764π-0.388764\pi
0.342387 + 0.939559i 0.388764π0.388764\pi
884884 26.9596 0.906748
885885 −32.9361 −1.10713
886886 −0.384775 −0.0129268
887887 −11.2240 −0.376866 −0.188433 0.982086i 0.560341π-0.560341\pi
−0.188433 + 0.982086i 0.560341π0.560341\pi
888888 3.33473 0.111906
889889 24.7388 0.829714
890890 −0.702710 −0.0235549
891891 19.5044 0.653422
892892 −18.2974 −0.612641
893893 3.85390 0.128966
894894 −0.538000 −0.0179934
895895 34.2755 1.14570
896896 −2.75046 −0.0918866
897897 −28.3365 −0.946130
898898 −0.744296 −0.0248375
899899 0 0
900900 24.2194 0.807314
901901 −51.9697 −1.73136
902902 −0.733723 −0.0244303
903903 −6.19006 −0.205992
904904 1.91518 0.0636978
905905 −20.9977 −0.697987
906906 −0.989908 −0.0328875
907907 40.7943 1.35455 0.677276 0.735729i 0.263161π-0.263161\pi
0.677276 + 0.735729i 0.263161π0.263161\pi
908908 9.62045 0.319266
909909 52.1831 1.73080
910910 −0.386843 −0.0128237
911911 −30.2991 −1.00385 −0.501926 0.864910i 0.667375π-0.667375\pi
−0.501926 + 0.864910i 0.667375π0.667375\pi
912912 4.57842 0.151607
913913 −28.9271 −0.957348
914914 0.105848 0.00350114
915915 42.1178 1.39237
916916 −13.7199 −0.453320
917917 −29.9717 −0.989753
918918 2.10509 0.0694784
919919 26.5368 0.875369 0.437685 0.899129i 0.355799π-0.355799\pi
0.437685 + 0.899129i 0.355799π0.355799\pi
920920 1.06066 0.0349688
921921 15.6033 0.514145
922922 −0.419990 −0.0138316
923923 −5.88507 −0.193710
924924 23.0091 0.756943
925925 −12.9068 −0.424375
926926 1.16812 0.0383867
927927 21.6720 0.711801
928928 0 0
929929 4.73988 0.155510 0.0777551 0.996972i 0.475225π-0.475225\pi
0.0777551 + 0.996972i 0.475225π0.475225\pi
930930 −0.523365 −0.0171618
931931 1.05468 0.0345657
932932 −34.4300 −1.12779
933933 −32.1678 −1.05313
934934 −0.852659 −0.0278999
935935 16.8835 0.552150
936936 −2.66627 −0.0871497
937937 −18.6584 −0.609542 −0.304771 0.952426i 0.598580π-0.598580\pi
−0.304771 + 0.952426i 0.598580π0.598580\pi
938938 −0.356472 −0.0116392
939939 −50.5945 −1.65109
940940 −35.3933 −1.15440
941941 −22.5654 −0.735611 −0.367805 0.929903i 0.619891π-0.619891\pi
−0.367805 + 0.929903i 0.619891π0.619891\pi
942942 0.803577 0.0261819
943943 −34.2930 −1.11673
944944 −24.9121 −0.810818
945945 34.3062 1.11598
946946 0.0773286 0.00251417
947947 −27.6373 −0.898090 −0.449045 0.893509i 0.648236π-0.648236\pi
−0.449045 + 0.893509i 0.648236π0.648236\pi
948948 −62.1757 −2.01937
949949 23.3661 0.758496
950950 0.0312464 0.00101377
951951 −4.51507 −0.146411
952952 1.80252 0.0584200
953953 −37.3553 −1.21006 −0.605028 0.796204i 0.706838π-0.706838\pi
−0.605028 + 0.796204i 0.706838π0.706838\pi
954954 2.56874 0.0831659
955955 20.2429 0.655043
956956 42.5708 1.37684
957957 0 0
958958 −0.899769 −0.0290702
959959 5.87839 0.189823
960960 −41.9728 −1.35467
961961 −25.4038 −0.819478
962962 0.710133 0.0228956
963963 −27.4055 −0.883130
964964 17.9704 0.578788
965965 33.1902 1.06843
966966 −0.946876 −0.0304652
967967 −39.9522 −1.28478 −0.642389 0.766379i 0.722057π-0.722057\pi
−0.642389 + 0.766379i 0.722057π0.722057\pi
968968 1.26966 0.0408083
969969 −6.00624 −0.192948
970970 0.378342 0.0121478
971971 −14.7821 −0.474379 −0.237190 0.971463i 0.576226π-0.576226\pi
−0.237190 + 0.971463i 0.576226π0.576226\pi
972972 6.23711 0.200056
973973 −45.7315 −1.46608
974974 0.687749 0.0220369
975975 15.3396 0.491260
976976 31.8569 1.01971
977977 −9.82846 −0.314440 −0.157220 0.987564i 0.550253π-0.550253\pi
−0.157220 + 0.987564i 0.550253π0.550253\pi
978978 −0.223448 −0.00714508
979979 17.8091 0.569180
980980 −9.68590 −0.309405
981981 −72.5430 −2.31612
982982 −1.22794 −0.0391851
983983 47.3687 1.51083 0.755414 0.655248i 0.227436π-0.227436\pi
0.755414 + 0.655248i 0.227436π0.227436\pi
984984 −4.79636 −0.152903
985985 −29.1037 −0.927320
986986 0 0
987987 63.2209 2.01234
988988 1.95253 0.0621184
989989 3.61421 0.114925
990990 −0.834513 −0.0265226
991991 −48.9812 −1.55594 −0.777969 0.628303i 0.783750π-0.783750\pi
−0.777969 + 0.628303i 0.783750π0.783750\pi
992992 −1.18933 −0.0377612
993993 −90.4695 −2.87096
994994 −0.196652 −0.00623742
995995 15.5190 0.491985
996996 −94.5070 −2.99457
997997 1.16193 0.0367988 0.0183994 0.999831i 0.494143π-0.494143\pi
0.0183994 + 0.999831i 0.494143π0.494143\pi
998998 −0.196054 −0.00620597
999999 −62.9763 −1.99248
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.a.i.1.5 8
3.2 odd 2 7569.2.a.bi.1.4 8
29.2 odd 28 841.2.e.m.236.9 96
29.3 odd 28 841.2.e.m.270.9 96
29.4 even 14 841.2.d.p.190.5 48
29.5 even 14 841.2.d.p.605.5 48
29.6 even 14 841.2.d.p.645.5 48
29.7 even 7 841.2.d.q.571.4 48
29.8 odd 28 841.2.e.m.267.9 96
29.9 even 14 841.2.d.p.574.4 48
29.10 odd 28 841.2.e.m.651.9 96
29.11 odd 28 841.2.e.m.63.9 96
29.12 odd 4 841.2.b.f.840.9 16
29.13 even 14 841.2.d.p.778.4 48
29.14 odd 28 841.2.e.m.196.8 96
29.15 odd 28 841.2.e.m.196.9 96
29.16 even 7 841.2.d.q.778.5 48
29.17 odd 4 841.2.b.f.840.8 16
29.18 odd 28 841.2.e.m.63.8 96
29.19 odd 28 841.2.e.m.651.8 96
29.20 even 7 841.2.d.q.574.5 48
29.21 odd 28 841.2.e.m.267.8 96
29.22 even 14 841.2.d.p.571.5 48
29.23 even 7 841.2.d.q.645.4 48
29.24 even 7 841.2.d.q.605.4 48
29.25 even 7 841.2.d.q.190.4 48
29.26 odd 28 841.2.e.m.270.8 96
29.27 odd 28 841.2.e.m.236.8 96
29.28 even 2 841.2.a.j.1.4 yes 8
87.86 odd 2 7569.2.a.bd.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.i.1.5 8 1.1 even 1 trivial
841.2.a.j.1.4 yes 8 29.28 even 2
841.2.b.f.840.8 16 29.17 odd 4
841.2.b.f.840.9 16 29.12 odd 4
841.2.d.p.190.5 48 29.4 even 14
841.2.d.p.571.5 48 29.22 even 14
841.2.d.p.574.4 48 29.9 even 14
841.2.d.p.605.5 48 29.5 even 14
841.2.d.p.645.5 48 29.6 even 14
841.2.d.p.778.4 48 29.13 even 14
841.2.d.q.190.4 48 29.25 even 7
841.2.d.q.571.4 48 29.7 even 7
841.2.d.q.574.5 48 29.20 even 7
841.2.d.q.605.4 48 29.24 even 7
841.2.d.q.645.4 48 29.23 even 7
841.2.d.q.778.5 48 29.16 even 7
841.2.e.m.63.8 96 29.18 odd 28
841.2.e.m.63.9 96 29.11 odd 28
841.2.e.m.196.8 96 29.14 odd 28
841.2.e.m.196.9 96 29.15 odd 28
841.2.e.m.236.8 96 29.27 odd 28
841.2.e.m.236.9 96 29.2 odd 28
841.2.e.m.267.8 96 29.21 odd 28
841.2.e.m.267.9 96 29.8 odd 28
841.2.e.m.270.8 96 29.26 odd 28
841.2.e.m.270.9 96 29.3 odd 28
841.2.e.m.651.8 96 29.19 odd 28
841.2.e.m.651.9 96 29.10 odd 28
7569.2.a.bd.1.5 8 87.86 odd 2
7569.2.a.bi.1.4 8 3.2 odd 2