Properties

Label 841.2.e.m.63.8
Level $841$
Weight $2$
Character 841.63
Analytic conductor $6.715$
Analytic rank $0$
Dimension $96$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(63,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.63");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.e (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 63.8
Character \(\chi\) \(=\) 841.63
Dual form 841.2.e.m.267.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0327942 + 0.0261525i) q^{2} +(-2.95182 + 0.673734i) q^{3} +(-0.444650 + 1.94814i) q^{4} +(1.08614 + 1.36198i) q^{5} +(0.0791828 - 0.0992921i) q^{6} +(-0.456981 - 2.00217i) q^{7} +(-0.0727657 - 0.151099i) q^{8} +(5.55642 - 2.67583i) q^{9} +(-0.0712384 - 0.0162597i) q^{10} +(0.803488 - 1.66846i) q^{11} -6.05014i q^{12} +(2.32260 + 1.11851i) q^{13} +(0.0673480 + 0.0537083i) q^{14} +(-4.12371 - 3.28855i) q^{15} +(-3.59437 - 1.73096i) q^{16} -5.23359i q^{17} +(-0.112239 + 0.233066i) q^{18} +(0.369537 + 0.0843444i) q^{19} +(-3.13628 + 1.51035i) q^{20} +(2.69785 + 5.60215i) q^{21} +(0.0172847 + 0.0757291i) q^{22} +(2.26357 - 2.83842i) q^{23} +(0.316592 + 0.396994i) q^{24} +(0.437322 - 1.91603i) q^{25} +(-0.105420 + 0.0240614i) q^{26} +(-7.49723 + 5.97884i) q^{27} +4.10370 q^{28} +0.221238 q^{30} +(1.84952 - 1.47494i) q^{31} +(0.490149 - 0.111873i) q^{32} +(-1.24765 + 5.46633i) q^{33} +(0.136872 + 0.171631i) q^{34} +(2.23056 - 2.79704i) q^{35} +(2.74223 + 12.0145i) q^{36} +(2.84946 + 5.91697i) q^{37} +(-0.0143245 + 0.00689831i) q^{38} +(-7.60949 - 1.73682i) q^{39} +(0.126760 - 0.263221i) q^{40} +9.44586i q^{41} +(-0.234984 - 0.113163i) q^{42} +(0.778328 + 0.620696i) q^{43} +(2.89312 + 2.30719i) q^{44} +(9.67949 + 4.66140i) q^{45} +0.152282i q^{46} +(4.41153 - 9.16063i) q^{47} +(11.7761 + 2.68782i) q^{48} +(2.50694 - 1.20728i) q^{49} +(0.0357675 + 0.0742719i) q^{50} +(3.52605 + 15.4486i) q^{51} +(-3.21176 + 4.02742i) q^{52} +(6.19127 + 7.76360i) q^{53} +(0.0895040 - 0.392143i) q^{54} +(3.14511 - 0.717851i) q^{55} +(-0.269274 + 0.214739i) q^{56} -1.14763 q^{57} -6.24449 q^{59} +(8.24016 - 6.57131i) q^{60} +(7.78508 - 1.77689i) q^{61} +(-0.0220801 + 0.0967392i) q^{62} +(-7.89664 - 9.90207i) q^{63} +(4.96161 - 6.22166i) q^{64} +(0.999295 + 4.37820i) q^{65} +(-0.102042 - 0.211893i) q^{66} +(-3.72841 + 1.79551i) q^{67} +(10.1958 + 2.32712i) q^{68} +(-4.76930 + 9.90355i) q^{69} +0.150061i q^{70} +(-2.05682 - 0.990512i) q^{71} +(-0.808633 - 0.644863i) q^{72} +(-7.08653 - 5.65132i) q^{73} +(-0.248190 - 0.119522i) q^{74} +5.95042i q^{75} +(-0.328629 + 0.682406i) q^{76} +(-3.70771 - 0.846262i) q^{77} +(0.294969 - 0.142050i) q^{78} +(4.45891 + 9.25903i) q^{79} +(-1.54647 - 6.77552i) q^{80} +(6.56684 - 8.23455i) q^{81} +(-0.247033 - 0.309770i) q^{82} +(3.47592 - 15.2290i) q^{83} +(-12.1134 + 2.76480i) q^{84} +(7.12804 - 5.68442i) q^{85} -0.0417574 q^{86} -0.310570 q^{88} +(-7.51879 + 5.99604i) q^{89} +(-0.439339 + 0.100276i) q^{90} +(1.17805 - 5.16138i) q^{91} +(4.52315 + 5.67185i) q^{92} +(-4.46573 + 5.59985i) q^{93} +(0.0949009 + 0.415788i) q^{94} +(0.286494 + 0.594912i) q^{95} +(-1.37146 + 0.660460i) q^{96} +(-5.04795 - 1.15216i) q^{97} +(-0.0506399 + 0.105155i) q^{98} -11.4207i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 2 q^{5} + 6 q^{6} + 16 q^{9} - 8 q^{13} + 4 q^{16} + 14 q^{20} + 50 q^{22} + 14 q^{23} - 50 q^{24} + 26 q^{25} - 300 q^{28} - 312 q^{30} + 24 q^{34} - 10 q^{35} + 38 q^{36} - 28 q^{38}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/841\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0327942 + 0.0261525i −0.0231890 + 0.0184926i −0.635016 0.772499i \(-0.719006\pi\)
0.611827 + 0.790992i \(0.290435\pi\)
\(3\) −2.95182 + 0.673734i −1.70423 + 0.388980i −0.960233 0.279198i \(-0.909931\pi\)
−0.744001 + 0.668179i \(0.767074\pi\)
\(4\) −0.444650 + 1.94814i −0.222325 + 0.974070i
\(5\) 1.08614 + 1.36198i 0.485738 + 0.609096i 0.962946 0.269695i \(-0.0869227\pi\)
−0.477208 + 0.878790i \(0.658351\pi\)
\(6\) 0.0791828 0.0992921i 0.0323262 0.0405358i
\(7\) −0.456981 2.00217i −0.172723 0.756748i −0.984870 0.173295i \(-0.944559\pi\)
0.812147 0.583453i \(-0.198299\pi\)
\(8\) −0.0727657 0.151099i −0.0257265 0.0534217i
\(9\) 5.55642 2.67583i 1.85214 0.891944i
\(10\) −0.0712384 0.0162597i −0.0225276 0.00514177i
\(11\) 0.803488 1.66846i 0.242261 0.503060i −0.744016 0.668162i \(-0.767081\pi\)
0.986276 + 0.165102i \(0.0527955\pi\)
\(12\) 6.05014i 1.74652i
\(13\) 2.32260 + 1.11851i 0.644175 + 0.310218i 0.727299 0.686321i \(-0.240775\pi\)
−0.0831241 + 0.996539i \(0.526490\pi\)
\(14\) 0.0673480 + 0.0537083i 0.0179995 + 0.0143541i
\(15\) −4.12371 3.28855i −1.06474 0.849099i
\(16\) −3.59437 1.73096i −0.898592 0.432739i
\(17\) 5.23359i 1.26933i −0.772787 0.634666i \(-0.781138\pi\)
0.772787 0.634666i \(-0.218862\pi\)
\(18\) −0.112239 + 0.233066i −0.0264549 + 0.0549342i
\(19\) 0.369537 + 0.0843444i 0.0847776 + 0.0193499i 0.264699 0.964331i \(-0.414727\pi\)
−0.179922 + 0.983681i \(0.557584\pi\)
\(20\) −3.13628 + 1.51035i −0.701294 + 0.337725i
\(21\) 2.69785 + 5.60215i 0.588720 + 1.22249i
\(22\) 0.0172847 + 0.0757291i 0.00368510 + 0.0161455i
\(23\) 2.26357 2.83842i 0.471986 0.591852i −0.487670 0.873028i \(-0.662153\pi\)
0.959656 + 0.281176i \(0.0907245\pi\)
\(24\) 0.316592 + 0.396994i 0.0646241 + 0.0810360i
\(25\) 0.437322 1.91603i 0.0874644 0.383207i
\(26\) −0.105420 + 0.0240614i −0.0206745 + 0.00471883i
\(27\) −7.49723 + 5.97884i −1.44284 + 1.15063i
\(28\) 4.10370 0.775526
\(29\) 0 0
\(30\) 0.221238 0.0403923
\(31\) 1.84952 1.47494i 0.332184 0.264908i −0.443166 0.896439i \(-0.646145\pi\)
0.775350 + 0.631532i \(0.217573\pi\)
\(32\) 0.490149 0.111873i 0.0866470 0.0197766i
\(33\) −1.24765 + 5.46633i −0.217189 + 0.951566i
\(34\) 0.136872 + 0.171631i 0.0234733 + 0.0294346i
\(35\) 2.23056 2.79704i 0.377034 0.472785i
\(36\) 2.74223 + 12.0145i 0.457038 + 2.00242i
\(37\) 2.84946 + 5.91697i 0.468449 + 0.972744i 0.992635 + 0.121141i \(0.0386552\pi\)
−0.524186 + 0.851604i \(0.675631\pi\)
\(38\) −0.0143245 + 0.00689831i −0.00232374 + 0.00111905i
\(39\) −7.60949 1.73682i −1.21849 0.278113i
\(40\) 0.126760 0.263221i 0.0200426 0.0416189i
\(41\) 9.44586i 1.47520i 0.675240 + 0.737598i \(0.264040\pi\)
−0.675240 + 0.737598i \(0.735960\pi\)
\(42\) −0.234984 0.113163i −0.0362589 0.0174614i
\(43\) 0.778328 + 0.620696i 0.118694 + 0.0946553i 0.681038 0.732248i \(-0.261529\pi\)
−0.562344 + 0.826903i \(0.690100\pi\)
\(44\) 2.89312 + 2.30719i 0.436155 + 0.347822i
\(45\) 9.67949 + 4.66140i 1.44293 + 0.694880i
\(46\) 0.152282i 0.0224527i
\(47\) 4.41153 9.16063i 0.643487 1.33621i −0.282721 0.959202i \(-0.591237\pi\)
0.926208 0.377013i \(-0.123049\pi\)
\(48\) 11.7761 + 2.68782i 1.69974 + 0.387954i
\(49\) 2.50694 1.20728i 0.358135 0.172469i
\(50\) 0.0357675 + 0.0742719i 0.00505828 + 0.0105036i
\(51\) 3.52605 + 15.4486i 0.493745 + 2.16324i
\(52\) −3.21176 + 4.02742i −0.445391 + 0.558502i
\(53\) 6.19127 + 7.76360i 0.850436 + 1.06641i 0.997015 + 0.0772140i \(0.0246025\pi\)
−0.146579 + 0.989199i \(0.546826\pi\)
\(54\) 0.0895040 0.392143i 0.0121800 0.0533639i
\(55\) 3.14511 0.717851i 0.424087 0.0967950i
\(56\) −0.269274 + 0.214739i −0.0359832 + 0.0286956i
\(57\) −1.14763 −0.152008
\(58\) 0 0
\(59\) −6.24449 −0.812963 −0.406482 0.913659i \(-0.633244\pi\)
−0.406482 + 0.913659i \(0.633244\pi\)
\(60\) 8.24016 6.57131i 1.06380 0.848352i
\(61\) 7.78508 1.77689i 0.996777 0.227508i 0.307141 0.951664i \(-0.400628\pi\)
0.689636 + 0.724156i \(0.257771\pi\)
\(62\) −0.0220801 + 0.0967392i −0.00280417 + 0.0122859i
\(63\) −7.89664 9.90207i −0.994883 1.24754i
\(64\) 4.96161 6.22166i 0.620201 0.777708i
\(65\) 0.999295 + 4.37820i 0.123947 + 0.543049i
\(66\) −0.102042 0.211893i −0.0125606 0.0260823i
\(67\) −3.72841 + 1.79551i −0.455498 + 0.219356i −0.647542 0.762030i \(-0.724203\pi\)
0.192044 + 0.981386i \(0.438489\pi\)
\(68\) 10.1958 + 2.32712i 1.23642 + 0.282204i
\(69\) −4.76930 + 9.90355i −0.574156 + 1.19225i
\(70\) 0.150061i 0.0179358i
\(71\) −2.05682 0.990512i −0.244100 0.117552i 0.307834 0.951440i \(-0.400396\pi\)
−0.551934 + 0.833888i \(0.686110\pi\)
\(72\) −0.808633 0.644863i −0.0952983 0.0759979i
\(73\) −7.08653 5.65132i −0.829416 0.661437i 0.113842 0.993499i \(-0.463684\pi\)
−0.943258 + 0.332062i \(0.892256\pi\)
\(74\) −0.248190 0.119522i −0.0288515 0.0138941i
\(75\) 5.95042i 0.687096i
\(76\) −0.328629 + 0.682406i −0.0376964 + 0.0782774i
\(77\) −3.70771 0.846262i −0.422533 0.0964405i
\(78\) 0.294969 0.142050i 0.0333987 0.0160840i
\(79\) 4.45891 + 9.25903i 0.501667 + 1.04172i 0.985986 + 0.166831i \(0.0533533\pi\)
−0.484318 + 0.874892i \(0.660932\pi\)
\(80\) −1.54647 6.77552i −0.172900 0.757526i
\(81\) 6.56684 8.23455i 0.729648 0.914950i
\(82\) −0.247033 0.309770i −0.0272802 0.0342083i
\(83\) 3.47592 15.2290i 0.381532 1.67160i −0.311153 0.950360i \(-0.600715\pi\)
0.692685 0.721240i \(-0.256428\pi\)
\(84\) −12.1134 + 2.76480i −1.32168 + 0.301664i
\(85\) 7.12804 5.68442i 0.773145 0.616562i
\(86\) −0.0417574 −0.00450282
\(87\) 0 0
\(88\) −0.310570 −0.0331069
\(89\) −7.51879 + 5.99604i −0.796990 + 0.635578i −0.934918 0.354864i \(-0.884527\pi\)
0.137928 + 0.990442i \(0.455956\pi\)
\(90\) −0.439339 + 0.100276i −0.0463103 + 0.0105700i
\(91\) 1.17805 5.16138i 0.123493 0.541059i
\(92\) 4.52315 + 5.67185i 0.471571 + 0.591331i
\(93\) −4.46573 + 5.59985i −0.463075 + 0.580677i
\(94\) 0.0949009 + 0.415788i 0.00978828 + 0.0428853i
\(95\) 0.286494 + 0.594912i 0.0293937 + 0.0610367i
\(96\) −1.37146 + 0.660460i −0.139974 + 0.0674079i
\(97\) −5.04795 1.15216i −0.512542 0.116984i −0.0415754 0.999135i \(-0.513238\pi\)
−0.470967 + 0.882151i \(0.656095\pi\)
\(98\) −0.0506399 + 0.105155i −0.00511540 + 0.0106222i
\(99\) 11.4207i 1.14782i
\(100\) 3.53825 + 1.70393i 0.353825 + 0.170393i
\(101\) 6.61542 + 5.27562i 0.658259 + 0.524944i 0.894681 0.446706i \(-0.147403\pi\)
−0.236421 + 0.971651i \(0.575975\pi\)
\(102\) −0.519654 0.414410i −0.0514534 0.0410327i
\(103\) −3.16609 1.52471i −0.311964 0.150234i 0.271350 0.962481i \(-0.412530\pi\)
−0.583314 + 0.812247i \(0.698244\pi\)
\(104\) 0.432333i 0.0423938i
\(105\) −4.69976 + 9.75915i −0.458650 + 0.952396i
\(106\) −0.406076 0.0926841i −0.0394415 0.00900228i
\(107\) 4.00371 1.92808i 0.387053 0.186395i −0.230230 0.973136i \(-0.573948\pi\)
0.617283 + 0.786741i \(0.288234\pi\)
\(108\) −8.31397 17.2641i −0.800012 1.66124i
\(109\) −2.61746 11.4679i −0.250708 1.09842i −0.930867 0.365358i \(-0.880947\pi\)
0.680159 0.733064i \(-0.261911\pi\)
\(110\) −0.0843679 + 0.105794i −0.00804416 + 0.0100871i
\(111\) −12.3976 15.5461i −1.17673 1.47557i
\(112\) −1.82310 + 7.98753i −0.172267 + 0.754751i
\(113\) 11.1334 2.54113i 1.04734 0.239049i 0.335977 0.941870i \(-0.390934\pi\)
0.711367 + 0.702821i \(0.248077\pi\)
\(114\) 0.0376357 0.0300135i 0.00352491 0.00281102i
\(115\) 6.32443 0.589756
\(116\) 0 0
\(117\) 15.8983 1.46980
\(118\) 0.204783 0.163309i 0.0188518 0.0150338i
\(119\) −10.4785 + 2.39165i −0.960564 + 0.219242i
\(120\) −0.196833 + 0.862383i −0.0179683 + 0.0787245i
\(121\) 4.72022 + 5.91897i 0.429111 + 0.538088i
\(122\) −0.208835 + 0.261871i −0.0189071 + 0.0237087i
\(123\) −6.36400 27.8825i −0.573822 2.51408i
\(124\) 2.05101 + 4.25896i 0.184186 + 0.382466i
\(125\) 10.9322 5.26467i 0.977805 0.470886i
\(126\) 0.517928 + 0.118214i 0.0461407 + 0.0105313i
\(127\) 5.22667 10.8533i 0.463792 0.963074i −0.529594 0.848251i \(-0.677656\pi\)
0.993386 0.114823i \(-0.0366300\pi\)
\(128\) 1.33930i 0.118379i
\(129\) −2.71567 1.30780i −0.239101 0.115145i
\(130\) −0.147272 0.117446i −0.0129166 0.0103007i
\(131\) 11.4103 + 9.09941i 0.996922 + 0.795019i 0.978800 0.204817i \(-0.0656599\pi\)
0.0181218 + 0.999836i \(0.494231\pi\)
\(132\) −10.0944 4.86121i −0.878606 0.423114i
\(133\) 0.778418i 0.0674974i
\(134\) 0.0753133 0.156390i 0.00650608 0.0135100i
\(135\) −16.2861 3.71720i −1.40169 0.319925i
\(136\) −0.790793 + 0.380826i −0.0678099 + 0.0326555i
\(137\) −1.24195 2.57894i −0.106107 0.220334i 0.841155 0.540795i \(-0.181876\pi\)
−0.947262 + 0.320461i \(0.896162\pi\)
\(138\) −0.102597 0.449509i −0.00873367 0.0382647i
\(139\) −13.8841 + 17.4101i −1.17763 + 1.47670i −0.331722 + 0.943377i \(0.607630\pi\)
−0.845910 + 0.533326i \(0.820942\pi\)
\(140\) 4.45720 + 5.58915i 0.376702 + 0.472370i
\(141\) −6.85021 + 30.0127i −0.576892 + 2.52753i
\(142\) 0.0933562 0.0213079i 0.00783428 0.00178812i
\(143\) 3.73237 2.97647i 0.312117 0.248905i
\(144\) −24.6036 −2.05030
\(145\) 0 0
\(146\) 0.380194 0.0314650
\(147\) −6.58666 + 5.25269i −0.543259 + 0.433235i
\(148\) −12.7941 + 2.92017i −1.05167 + 0.240037i
\(149\) 0.942652 4.13003i 0.0772250 0.338345i −0.921526 0.388318i \(-0.873056\pi\)
0.998751 + 0.0499728i \(0.0159134\pi\)
\(150\) −0.155619 0.195140i −0.0127062 0.0159331i
\(151\) −4.85985 + 6.09406i −0.395489 + 0.495927i −0.939212 0.343337i \(-0.888443\pi\)
0.543723 + 0.839265i \(0.317014\pi\)
\(152\) −0.0141452 0.0619742i −0.00114733 0.00502677i
\(153\) −14.0042 29.0800i −1.13217 2.35098i
\(154\) 0.143723 0.0692136i 0.0115816 0.00557739i
\(155\) 4.01768 + 0.917010i 0.322708 + 0.0736560i
\(156\) 6.76712 14.0521i 0.541803 1.12507i
\(157\) 6.32741i 0.504982i 0.967599 + 0.252491i \(0.0812498\pi\)
−0.967599 + 0.252491i \(0.918750\pi\)
\(158\) −0.388374 0.187031i −0.0308973 0.0148794i
\(159\) −23.5061 18.7455i −1.86416 1.48661i
\(160\) 0.684741 + 0.546063i 0.0541335 + 0.0431700i
\(161\) −6.71740 3.23493i −0.529405 0.254948i
\(162\) 0.441785i 0.0347099i
\(163\) −0.763393 + 1.58520i −0.0597936 + 0.124163i −0.928724 0.370771i \(-0.879093\pi\)
0.868931 + 0.494934i \(0.164808\pi\)
\(164\) −18.4019 4.20011i −1.43694 0.327973i
\(165\) −8.80016 + 4.23793i −0.685092 + 0.329923i
\(166\) 0.284287 + 0.590327i 0.0220649 + 0.0458183i
\(167\) −3.09755 13.5713i −0.239696 1.05018i −0.941290 0.337600i \(-0.890385\pi\)
0.701594 0.712577i \(-0.252472\pi\)
\(168\) 0.650171 0.815288i 0.0501618 0.0629009i
\(169\) −3.96193 4.96811i −0.304764 0.382162i
\(170\) −0.0850966 + 0.372832i −0.00652661 + 0.0285949i
\(171\) 2.27899 0.520165i 0.174279 0.0397780i
\(172\) −1.55529 + 1.24030i −0.118590 + 0.0945720i
\(173\) 8.38553 0.637540 0.318770 0.947832i \(-0.396730\pi\)
0.318770 + 0.947832i \(0.396730\pi\)
\(174\) 0 0
\(175\) −4.03606 −0.305098
\(176\) −5.77606 + 4.60626i −0.435387 + 0.347210i
\(177\) 18.4326 4.20712i 1.38548 0.316227i
\(178\) 0.0897614 0.393271i 0.00672790 0.0294769i
\(179\) 12.2675 + 15.3829i 0.916914 + 1.14977i 0.988330 + 0.152328i \(0.0486769\pi\)
−0.0714156 + 0.997447i \(0.522752\pi\)
\(180\) −13.3850 + 16.7843i −0.997662 + 1.25103i
\(181\) −2.68216 11.7513i −0.199364 0.873469i −0.971317 0.237789i \(-0.923577\pi\)
0.771953 0.635679i \(-0.219280\pi\)
\(182\) 0.0963498 + 0.200072i 0.00714192 + 0.0148303i
\(183\) −21.7830 + 10.4901i −1.61025 + 0.775453i
\(184\) −0.593594 0.135484i −0.0437603 0.00998801i
\(185\) −4.96387 + 10.3076i −0.364951 + 0.757829i
\(186\) 0.300433i 0.0220288i
\(187\) −8.73204 4.20513i −0.638550 0.307509i
\(188\) 15.8846 + 12.6675i 1.15850 + 0.923876i
\(189\) 15.3967 + 12.2785i 1.11995 + 0.893128i
\(190\) −0.0249538 0.0120171i −0.00181034 0.000871813i
\(191\) 11.6202i 0.840810i −0.907337 0.420405i \(-0.861888\pi\)
0.907337 0.420405i \(-0.138112\pi\)
\(192\) −10.4540 + 21.7080i −0.754455 + 1.56664i
\(193\) 18.5748 + 4.23958i 1.33704 + 0.305172i 0.830489 0.557035i \(-0.188061\pi\)
0.506556 + 0.862207i \(0.330918\pi\)
\(194\) 0.195676 0.0942324i 0.0140487 0.00676549i
\(195\) −5.89948 12.2504i −0.422470 0.877269i
\(196\) 1.23724 + 5.42070i 0.0883742 + 0.387193i
\(197\) 10.4165 13.0618i 0.742142 0.930616i −0.257220 0.966353i \(-0.582806\pi\)
0.999361 + 0.0357368i \(0.0113778\pi\)
\(198\) 0.298679 + 0.374532i 0.0212262 + 0.0266168i
\(199\) 1.98233 8.68517i 0.140524 0.615676i −0.854790 0.518975i \(-0.826314\pi\)
0.995313 0.0967009i \(-0.0308290\pi\)
\(200\) −0.321334 + 0.0733423i −0.0227217 + 0.00518608i
\(201\) 9.79591 7.81197i 0.690950 0.551014i
\(202\) −0.354918 −0.0249720
\(203\) 0 0
\(204\) −31.6639 −2.21692
\(205\) −12.8651 + 10.2596i −0.898536 + 0.716558i
\(206\) 0.143704 0.0327996i 0.0100124 0.00228526i
\(207\) 4.98219 21.8284i 0.346286 1.51718i
\(208\) −6.41221 8.04065i −0.444607 0.557519i
\(209\) 0.437644 0.548788i 0.0302725 0.0379605i
\(210\) −0.101101 0.442954i −0.00697666 0.0305668i
\(211\) −0.110300 0.229041i −0.00759339 0.0157678i 0.897138 0.441751i \(-0.145643\pi\)
−0.904731 + 0.425983i \(0.859928\pi\)
\(212\) −17.8775 + 8.60937i −1.22783 + 0.591294i
\(213\) 6.73870 + 1.53807i 0.461728 + 0.105386i
\(214\) −0.0808742 + 0.167937i −0.00552844 + 0.0114799i
\(215\) 1.73423i 0.118274i
\(216\) 1.44894 + 0.697773i 0.0985879 + 0.0474774i
\(217\) −3.79828 3.02902i −0.257844 0.205624i
\(218\) 0.385751 + 0.307626i 0.0261264 + 0.0208351i
\(219\) 24.7257 + 11.9072i 1.67080 + 0.804617i
\(220\) 6.44631i 0.434610i
\(221\) 5.85381 12.1556i 0.393770 0.817671i
\(222\) 0.813137 + 0.185593i 0.0545742 + 0.0124562i
\(223\) −8.24994 + 3.97296i −0.552457 + 0.266049i −0.689217 0.724555i \(-0.742045\pi\)
0.136760 + 0.990604i \(0.456331\pi\)
\(224\) −0.447978 0.930236i −0.0299318 0.0621540i
\(225\) −2.69704 11.8165i −0.179802 0.787766i
\(226\) −0.298655 + 0.374501i −0.0198662 + 0.0249114i
\(227\) −3.00177 3.76410i −0.199234 0.249832i 0.672171 0.740396i \(-0.265362\pi\)
−0.871405 + 0.490564i \(0.836791\pi\)
\(228\) 0.510295 2.23575i 0.0337951 0.148066i
\(229\) −6.69386 + 1.52783i −0.442343 + 0.100962i −0.437891 0.899028i \(-0.644274\pi\)
−0.00445223 + 0.999990i \(0.501417\pi\)
\(230\) −0.207405 + 0.165400i −0.0136759 + 0.0109061i
\(231\) 11.5147 0.757609
\(232\) 0 0
\(233\) 17.2302 1.12879 0.564393 0.825507i \(-0.309110\pi\)
0.564393 + 0.825507i \(0.309110\pi\)
\(234\) −0.521372 + 0.415781i −0.0340832 + 0.0271804i
\(235\) 17.2681 3.94134i 1.12645 0.257105i
\(236\) 2.77661 12.1651i 0.180742 0.791883i
\(237\) −19.4000 24.3269i −1.26017 1.58020i
\(238\) 0.281087 0.352472i 0.0182202 0.0228474i
\(239\) 4.74062 + 20.7700i 0.306645 + 1.34350i 0.859889 + 0.510481i \(0.170533\pi\)
−0.553244 + 0.833019i \(0.686610\pi\)
\(240\) 9.12979 + 18.9582i 0.589325 + 1.22375i
\(241\) −8.10252 + 3.90197i −0.521929 + 0.251348i −0.676249 0.736673i \(-0.736396\pi\)
0.154320 + 0.988021i \(0.450681\pi\)
\(242\) −0.309592 0.0706623i −0.0199013 0.00454235i
\(243\) −1.35428 + 2.81220i −0.0868773 + 0.180402i
\(244\) 15.9565i 1.02151i
\(245\) 4.36719 + 2.10313i 0.279010 + 0.134364i
\(246\) 0.937900 + 0.747950i 0.0597983 + 0.0476876i
\(247\) 0.763948 + 0.609229i 0.0486089 + 0.0387643i
\(248\) −0.357445 0.172136i −0.0226978 0.0109307i
\(249\) 47.2951i 2.99721i
\(250\) −0.220829 + 0.458555i −0.0139664 + 0.0290016i
\(251\) −6.33959 1.44697i −0.400151 0.0913319i 0.0177090 0.999843i \(-0.494363\pi\)
−0.417860 + 0.908511i \(0.637220\pi\)
\(252\) 22.8019 10.9808i 1.43638 0.691725i
\(253\) −2.91705 6.05731i −0.183393 0.380820i
\(254\) 0.112436 + 0.492616i 0.00705488 + 0.0309095i
\(255\) −17.2109 + 21.5818i −1.07779 + 1.35150i
\(256\) 9.88819 + 12.3994i 0.618012 + 0.774963i
\(257\) 1.28785 5.64245i 0.0803341 0.351966i −0.918746 0.394849i \(-0.870797\pi\)
0.999080 + 0.0428824i \(0.0136541\pi\)
\(258\) 0.123260 0.0281334i 0.00767386 0.00175151i
\(259\) 10.5446 8.40905i 0.655210 0.522513i
\(260\) −8.97368 −0.556524
\(261\) 0 0
\(262\) −0.612164 −0.0378196
\(263\) 23.6479 18.8585i 1.45819 1.16287i 0.503985 0.863712i \(-0.331867\pi\)
0.954205 0.299155i \(-0.0967047\pi\)
\(264\) 0.916746 0.209241i 0.0564218 0.0128779i
\(265\) −3.84927 + 16.8648i −0.236459 + 1.03599i
\(266\) 0.0203576 + 0.0255276i 0.00124820 + 0.00156520i
\(267\) 18.1544 22.7649i 1.11103 1.39319i
\(268\) −1.84006 8.06184i −0.112400 0.492455i
\(269\) −5.17894 10.7542i −0.315766 0.655695i 0.681320 0.731986i \(-0.261406\pi\)
−0.997086 + 0.0762914i \(0.975692\pi\)
\(270\) 0.631304 0.304020i 0.0384200 0.0185021i
\(271\) 17.1169 + 3.90683i 1.03978 + 0.237323i 0.708132 0.706080i \(-0.249538\pi\)
0.331648 + 0.943403i \(0.392395\pi\)
\(272\) −9.05911 + 18.8114i −0.549289 + 1.14061i
\(273\) 16.0292i 0.970128i
\(274\) 0.108175 + 0.0520941i 0.00653506 + 0.00314712i
\(275\) −2.84544 2.26916i −0.171587 0.136836i
\(276\) −17.1728 13.6949i −1.03368 0.824335i
\(277\) −0.968331 0.466324i −0.0581814 0.0280187i 0.404567 0.914508i \(-0.367422\pi\)
−0.462748 + 0.886490i \(0.653137\pi\)
\(278\) 0.934053i 0.0560208i
\(279\) 6.33001 13.1444i 0.378968 0.786935i
\(280\) −0.584939 0.133509i −0.0349568 0.00797866i
\(281\) 26.9268 12.9673i 1.60632 0.773563i 0.606551 0.795044i \(-0.292553\pi\)
0.999769 + 0.0214813i \(0.00683824\pi\)
\(282\) −0.560261 1.16339i −0.0333631 0.0692791i
\(283\) 5.95247 + 26.0795i 0.353837 + 1.55026i 0.768236 + 0.640167i \(0.221135\pi\)
−0.414398 + 0.910096i \(0.636008\pi\)
\(284\) 2.84422 3.56654i 0.168774 0.211635i
\(285\) −1.24649 1.56305i −0.0738358 0.0925872i
\(286\) −0.0445581 + 0.195222i −0.00263478 + 0.0115437i
\(287\) 18.9122 4.31658i 1.11635 0.254800i
\(288\) 2.42412 1.93317i 0.142843 0.113913i
\(289\) −10.3905 −0.611204
\(290\) 0 0
\(291\) 15.6769 0.918996
\(292\) 14.1606 11.2927i 0.828686 0.660855i
\(293\) 5.66470 1.29293i 0.330935 0.0755338i −0.0538251 0.998550i \(-0.517141\pi\)
0.384760 + 0.923017i \(0.374284\pi\)
\(294\) 0.0786335 0.344516i 0.00458600 0.0200926i
\(295\) −6.78240 8.50486i −0.394887 0.495172i
\(296\) 0.686708 0.861105i 0.0399141 0.0500507i
\(297\) 3.95152 + 17.3128i 0.229291 + 1.00459i
\(298\) 0.0770971 + 0.160094i 0.00446611 + 0.00927398i
\(299\) 8.43217 4.06072i 0.487645 0.234837i
\(300\) −11.5923 2.64586i −0.669280 0.152759i
\(301\) 0.887055 1.84199i 0.0511290 0.106171i
\(302\) 0.326947i 0.0188137i
\(303\) −23.0819 11.1157i −1.32602 0.638578i
\(304\) −1.18226 0.942817i −0.0678070 0.0540743i
\(305\) 10.8758 + 8.67316i 0.622746 + 0.496623i
\(306\) 1.21977 + 0.587412i 0.0697298 + 0.0335801i
\(307\) 5.15345i 0.294123i −0.989127 0.147061i \(-0.953018\pi\)
0.989127 0.147061i \(-0.0469815\pi\)
\(308\) 3.29727 6.84686i 0.187880 0.390136i
\(309\) 10.3730 + 2.36756i 0.590098 + 0.134686i
\(310\) −0.155739 + 0.0749999i −0.00884538 + 0.00425971i
\(311\) −4.60974 9.57223i −0.261395 0.542792i 0.728424 0.685127i \(-0.240253\pi\)
−0.989819 + 0.142335i \(0.954539\pi\)
\(312\) 0.291277 + 1.27617i 0.0164903 + 0.0722489i
\(313\) 10.4187 13.0647i 0.588902 0.738460i −0.394700 0.918810i \(-0.629152\pi\)
0.983603 + 0.180350i \(0.0577230\pi\)
\(314\) −0.165478 0.207502i −0.00933844 0.0117100i
\(315\) 4.90954 21.5101i 0.276621 1.21196i
\(316\) −20.0206 + 4.56956i −1.12624 + 0.257058i
\(317\) 1.16590 0.929772i 0.0654833 0.0522212i −0.590201 0.807256i \(-0.700952\pi\)
0.655684 + 0.755035i \(0.272380\pi\)
\(318\) 1.26111 0.0707193
\(319\) 0 0
\(320\) 13.8628 0.774954
\(321\) −10.5192 + 8.38879i −0.587125 + 0.468216i
\(322\) 0.304893 0.0695899i 0.0169910 0.00387810i
\(323\) 0.441424 1.93400i 0.0245615 0.107611i
\(324\) 13.1221 + 16.4546i 0.729006 + 0.914145i
\(325\) 3.15882 3.96104i 0.175220 0.219719i
\(326\) −0.0164222 0.0719501i −0.000909539 0.00398495i
\(327\) 15.4526 + 32.0876i 0.854529 + 1.77445i
\(328\) 1.42726 0.687335i 0.0788075 0.0379517i
\(329\) −20.3571 4.64637i −1.12232 0.256163i
\(330\) 0.177762 0.369126i 0.00978546 0.0203197i
\(331\) 29.8803i 1.64237i −0.570663 0.821184i \(-0.693314\pi\)
0.570663 0.821184i \(-0.306686\pi\)
\(332\) 28.1227 + 13.5432i 1.54343 + 0.743278i
\(333\) 31.6656 + 25.2525i 1.73527 + 1.38383i
\(334\) 0.456505 + 0.364050i 0.0249788 + 0.0199200i
\(335\) −6.49503 3.12784i −0.354861 0.170892i
\(336\) 24.8061i 1.35328i
\(337\) −0.408434 + 0.848122i −0.0222488 + 0.0462002i −0.911797 0.410641i \(-0.865305\pi\)
0.889548 + 0.456841i \(0.151019\pi\)
\(338\) 0.259857 + 0.0593107i 0.0141344 + 0.00322608i
\(339\) −31.1518 + 15.0019i −1.69193 + 0.814792i
\(340\) 7.90457 + 16.4140i 0.428685 + 0.890174i
\(341\) −0.974816 4.27095i −0.0527893 0.231285i
\(342\) −0.0611342 + 0.0766598i −0.00330576 + 0.00414529i
\(343\) −12.5258 15.7069i −0.676332 0.848093i
\(344\) 0.0371513 0.162770i 0.00200306 0.00877599i
\(345\) −18.6686 + 4.26098i −1.00508 + 0.229403i
\(346\) −0.274997 + 0.219303i −0.0147839 + 0.0117898i
\(347\) 8.65358 0.464548 0.232274 0.972650i \(-0.425383\pi\)
0.232274 + 0.972650i \(0.425383\pi\)
\(348\) 0 0
\(349\) −34.5616 −1.85004 −0.925021 0.379916i \(-0.875953\pi\)
−0.925021 + 0.379916i \(0.875953\pi\)
\(350\) 0.132360 0.105553i 0.00707492 0.00564206i
\(351\) −24.1005 + 5.50077i −1.28639 + 0.293610i
\(352\) 0.207173 0.907684i 0.0110423 0.0483797i
\(353\) 8.99264 + 11.2764i 0.478630 + 0.600183i 0.961261 0.275641i \(-0.0888901\pi\)
−0.482631 + 0.875824i \(0.660319\pi\)
\(354\) −0.494456 + 0.620028i −0.0262801 + 0.0329541i
\(355\) −0.884942 3.87718i −0.0469678 0.205780i
\(356\) −8.33789 17.3138i −0.441907 0.917630i
\(357\) 29.3194 14.1195i 1.55175 0.747281i
\(358\) −0.804605 0.183646i −0.0425247 0.00970598i
\(359\) −9.67167 + 20.0834i −0.510451 + 1.05996i 0.473379 + 0.880859i \(0.343034\pi\)
−0.983830 + 0.179104i \(0.942680\pi\)
\(360\) 1.80175i 0.0949608i
\(361\) −16.9890 8.18145i −0.894156 0.430603i
\(362\) 0.395286 + 0.315230i 0.0207758 + 0.0165681i
\(363\) −17.9211 14.2916i −0.940611 0.750113i
\(364\) 9.53127 + 4.59002i 0.499574 + 0.240582i
\(365\) 15.7898i 0.826478i
\(366\) 0.440013 0.913696i 0.0229998 0.0477597i
\(367\) −4.95309 1.13051i −0.258549 0.0590121i 0.0912815 0.995825i \(-0.470904\pi\)
−0.349831 + 0.936813i \(0.613761\pi\)
\(368\) −13.0493 + 6.28420i −0.680240 + 0.327586i
\(369\) 25.2755 + 52.4852i 1.31579 + 2.73227i
\(370\) −0.106783 0.467847i −0.00555138 0.0243222i
\(371\) 12.7147 15.9438i 0.660116 0.827759i
\(372\) −8.92361 11.1898i −0.462667 0.580167i
\(373\) −5.67645 + 24.8702i −0.293916 + 1.28773i 0.585110 + 0.810954i \(0.301051\pi\)
−0.879026 + 0.476774i \(0.841806\pi\)
\(374\) 0.396335 0.0904609i 0.0204940 0.00467762i
\(375\) −28.7229 + 22.9057i −1.48324 + 1.18285i
\(376\) −1.70517 −0.0879376
\(377\) 0 0
\(378\) −0.826036 −0.0424867
\(379\) −6.50423 + 5.18695i −0.334100 + 0.266436i −0.776141 0.630559i \(-0.782826\pi\)
0.442042 + 0.896994i \(0.354254\pi\)
\(380\) −1.28636 + 0.293604i −0.0659889 + 0.0150615i
\(381\) −8.11596 + 35.5584i −0.415793 + 1.82171i
\(382\) 0.303898 + 0.381076i 0.0155488 + 0.0194976i
\(383\) −15.7882 + 19.7978i −0.806741 + 1.01162i 0.192798 + 0.981239i \(0.438244\pi\)
−0.999538 + 0.0303822i \(0.990328\pi\)
\(384\) −0.902333 3.95338i −0.0460470 0.201745i
\(385\) −2.87451 5.96899i −0.146499 0.304208i
\(386\) −0.720022 + 0.346745i −0.0366482 + 0.0176488i
\(387\) 5.98560 + 1.36617i 0.304265 + 0.0694465i
\(388\) 4.48915 9.32181i 0.227902 0.473243i
\(389\) 27.3249i 1.38543i −0.721212 0.692714i \(-0.756415\pi\)
0.721212 0.692714i \(-0.243585\pi\)
\(390\) 0.513848 + 0.247456i 0.0260197 + 0.0125304i
\(391\) −14.8551 11.8466i −0.751257 0.599107i
\(392\) −0.364839 0.290949i −0.0184272 0.0146952i
\(393\) −39.8117 19.1723i −2.00824 0.967115i
\(394\) 0.700769i 0.0353042i
\(395\) −7.76759 + 16.1296i −0.390830 + 0.811567i
\(396\) 22.2491 + 5.07820i 1.11806 + 0.255189i
\(397\) −10.1136 + 4.87046i −0.507588 + 0.244441i −0.670108 0.742264i \(-0.733752\pi\)
0.162520 + 0.986705i \(0.448038\pi\)
\(398\) 0.162130 + 0.336667i 0.00812685 + 0.0168756i
\(399\) 0.524447 + 2.29775i 0.0262552 + 0.115031i
\(400\) −4.88846 + 6.12994i −0.244423 + 0.306497i
\(401\) 20.7632 + 26.0362i 1.03686 + 1.30019i 0.952758 + 0.303729i \(0.0982319\pi\)
0.0841055 + 0.996457i \(0.473197\pi\)
\(402\) −0.116946 + 0.512375i −0.00583275 + 0.0255550i
\(403\) 5.94544 1.35701i 0.296163 0.0675974i
\(404\) −13.2192 + 10.5420i −0.657680 + 0.524482i
\(405\) 18.3478 0.911710
\(406\) 0 0
\(407\) 12.1617 0.602835
\(408\) 2.07770 1.65691i 0.102862 0.0820294i
\(409\) −15.6788 + 3.57858i −0.775266 + 0.176949i −0.591809 0.806078i \(-0.701586\pi\)
−0.183457 + 0.983028i \(0.558729\pi\)
\(410\) 0.153587 0.672908i 0.00758512 0.0332326i
\(411\) 5.40353 + 6.77582i 0.266537 + 0.334226i
\(412\) 4.37815 5.49002i 0.215696 0.270474i
\(413\) 2.85362 + 12.5025i 0.140417 + 0.615208i
\(414\) 0.407480 + 0.846142i 0.0200266 + 0.0415856i
\(415\) 24.5169 11.8067i 1.20349 0.579570i
\(416\) 1.26355 + 0.288398i 0.0619508 + 0.0141399i
\(417\) 29.2535 60.7456i 1.43255 2.97472i
\(418\) 0.0294426i 0.00144008i
\(419\) 25.2958 + 12.1818i 1.23578 + 0.595120i 0.933664 0.358151i \(-0.116593\pi\)
0.302116 + 0.953271i \(0.402307\pi\)
\(420\) −16.9225 13.4952i −0.825731 0.658499i
\(421\) −23.8443 19.0152i −1.16210 0.926745i −0.163888 0.986479i \(-0.552403\pi\)
−0.998214 + 0.0597337i \(0.980975\pi\)
\(422\) 0.00960722 + 0.00462659i 0.000467672 + 0.000225219i
\(423\) 62.7048i 3.04881i
\(424\) 0.722565 1.50042i 0.0350908 0.0728669i
\(425\) −10.0277 2.28876i −0.486416 0.111021i
\(426\) −0.261215 + 0.125794i −0.0126559 + 0.00609476i
\(427\) −7.11527 14.7750i −0.344332 0.715013i
\(428\) 1.97593 + 8.65710i 0.0955101 + 0.418457i
\(429\) −9.01194 + 11.3006i −0.435101 + 0.545599i
\(430\) −0.0453545 0.0568728i −0.00218719 0.00274265i
\(431\) 2.16416 9.48182i 0.104244 0.456723i −0.895683 0.444692i \(-0.853313\pi\)
0.999928 0.0120313i \(-0.00382976\pi\)
\(432\) 37.2969 8.51277i 1.79445 0.409571i
\(433\) −18.1617 + 14.4835i −0.872796 + 0.696032i −0.953722 0.300688i \(-0.902784\pi\)
0.0809262 + 0.996720i \(0.474212\pi\)
\(434\) 0.203778 0.00978166
\(435\) 0 0
\(436\) 23.5049 1.12568
\(437\) 1.07588 0.857983i 0.0514661 0.0410429i
\(438\) −1.12226 + 0.256149i −0.0536238 + 0.0122393i
\(439\) −3.03245 + 13.2860i −0.144731 + 0.634107i 0.849568 + 0.527479i \(0.176863\pi\)
−0.994299 + 0.106628i \(0.965995\pi\)
\(440\) −0.337323 0.422990i −0.0160812 0.0201652i
\(441\) 10.6992 13.4163i 0.509484 0.638872i
\(442\) 0.125927 + 0.551724i 0.00598976 + 0.0262428i
\(443\) −3.98012 8.26480i −0.189101 0.392673i 0.784766 0.619793i \(-0.212783\pi\)
−0.973867 + 0.227120i \(0.927069\pi\)
\(444\) 35.7985 17.2396i 1.69892 0.818157i
\(445\) −16.3330 3.72789i −0.774256 0.176719i
\(446\) 0.166647 0.346047i 0.00789098 0.0163858i
\(447\) 12.8262i 0.606658i
\(448\) −14.7242 7.09078i −0.695651 0.335008i
\(449\) −13.8731 11.0635i −0.654714 0.522117i 0.238848 0.971057i \(-0.423230\pi\)
−0.893562 + 0.448940i \(0.851802\pi\)
\(450\) 0.397478 + 0.316978i 0.0187373 + 0.0149425i
\(451\) 15.7601 + 7.58964i 0.742112 + 0.357382i
\(452\) 22.8194i 1.07333i
\(453\) 10.2396 21.2628i 0.481100 0.999014i
\(454\) 0.196881 + 0.0449368i 0.00924009 + 0.00210899i
\(455\) 8.30922 4.00151i 0.389542 0.187594i
\(456\) 0.0835082 + 0.173407i 0.00391063 + 0.00812051i
\(457\) 0.561526 + 2.46020i 0.0262671 + 0.115084i 0.986362 0.164591i \(-0.0526305\pi\)
−0.960095 + 0.279675i \(0.909773\pi\)
\(458\) 0.179563 0.225165i 0.00839045 0.0105213i
\(459\) 31.2908 + 39.2374i 1.46053 + 1.83145i
\(460\) −2.81216 + 12.3209i −0.131118 + 0.574464i
\(461\) 9.76174 2.22805i 0.454649 0.103771i 0.0109374 0.999940i \(-0.496518\pi\)
0.443712 + 0.896169i \(0.353661\pi\)
\(462\) −0.377614 + 0.301137i −0.0175682 + 0.0140102i
\(463\) −27.8485 −1.29423 −0.647115 0.762393i \(-0.724024\pi\)
−0.647115 + 0.762393i \(0.724024\pi\)
\(464\) 0 0
\(465\) −12.4773 −0.578621
\(466\) −0.565050 + 0.450612i −0.0261754 + 0.0208742i
\(467\) −19.8182 + 4.52337i −0.917076 + 0.209317i −0.654911 0.755706i \(-0.727294\pi\)
−0.262165 + 0.965023i \(0.584437\pi\)
\(468\) −7.06919 + 30.9721i −0.326773 + 1.43169i
\(469\) 5.29872 + 6.64439i 0.244672 + 0.306809i
\(470\) −0.463219 + 0.580858i −0.0213667 + 0.0267930i
\(471\) −4.26299 18.6774i −0.196428 0.860608i
\(472\) 0.454384 + 0.943539i 0.0209147 + 0.0434299i
\(473\) 1.66098 0.799888i 0.0763722 0.0367789i
\(474\) 1.27242 + 0.290421i 0.0584441 + 0.0133395i
\(475\) 0.323213 0.671159i 0.0148300 0.0307949i
\(476\) 21.4771i 0.984400i
\(477\) 55.1754 + 26.5711i 2.52631 + 1.21661i
\(478\) −0.698653 0.557157i −0.0319557 0.0254838i
\(479\) 16.7710 + 13.3745i 0.766288 + 0.611094i 0.926633 0.375967i \(-0.122689\pi\)
−0.160345 + 0.987061i \(0.551261\pi\)
\(480\) −2.38913 1.15055i −0.109049 0.0525150i
\(481\) 16.9299i 0.771939i
\(482\) 0.163670 0.339863i 0.00745495 0.0154804i
\(483\) 22.0080 + 5.02319i 1.00140 + 0.228563i
\(484\) −13.6298 + 6.56378i −0.619538 + 0.298354i
\(485\) −3.91357 8.12662i −0.177706 0.369011i
\(486\) −0.0291334 0.127642i −0.00132152 0.00578994i
\(487\) 10.2229 12.8192i 0.463245 0.580891i −0.494257 0.869316i \(-0.664560\pi\)
0.957503 + 0.288424i \(0.0931314\pi\)
\(488\) −0.834974 1.04702i −0.0377975 0.0473966i
\(489\) 1.18540 5.19356i 0.0536054 0.234861i
\(490\) −0.198221 + 0.0452426i −0.00895470 + 0.00204385i
\(491\) −22.8879 + 18.2525i −1.03292 + 0.823723i −0.984550 0.175106i \(-0.943973\pi\)
−0.0483669 + 0.998830i \(0.515402\pi\)
\(492\) 57.1488 2.57647
\(493\) 0 0
\(494\) −0.0409860 −0.00184405
\(495\) 15.5547 12.4045i 0.699132 0.557539i
\(496\) −9.20091 + 2.10005i −0.413133 + 0.0942950i
\(497\) −1.04324 + 4.57074i −0.0467958 + 0.205026i
\(498\) −1.23689 1.55101i −0.0554262 0.0695023i
\(499\) 2.91420 3.65430i 0.130458 0.163589i −0.712312 0.701863i \(-0.752352\pi\)
0.842770 + 0.538274i \(0.180923\pi\)
\(500\) 5.39531 + 23.6384i 0.241286 + 1.05714i
\(501\) 18.2868 + 37.9730i 0.816996 + 1.69651i
\(502\) 0.245744 0.118344i 0.0109681 0.00528195i
\(503\) −10.8288 2.47160i −0.482831 0.110203i −0.0258248 0.999666i \(-0.508221\pi\)
−0.457006 + 0.889463i \(0.651078\pi\)
\(504\) −0.921593 + 1.91371i −0.0410510 + 0.0852433i
\(505\) 14.7401i 0.655928i
\(506\) 0.254076 + 0.122357i 0.0112951 + 0.00543942i
\(507\) 15.0421 + 11.9957i 0.668043 + 0.532747i
\(508\) 18.8197 + 15.0082i 0.834989 + 0.665882i
\(509\) 29.9589 + 14.4274i 1.32790 + 0.639484i 0.957243 0.289284i \(-0.0934174\pi\)
0.370660 + 0.928769i \(0.379132\pi\)
\(510\) 1.15787i 0.0512712i
\(511\) −8.07647 + 16.7710i −0.357282 + 0.741904i
\(512\) −3.26000 0.744073i −0.144073 0.0328837i
\(513\) −3.27478 + 1.57705i −0.144585 + 0.0696286i
\(514\) 0.105330 + 0.218720i 0.00464592 + 0.00964734i
\(515\) −1.36220 5.96820i −0.0600258 0.262990i
\(516\) 3.75530 4.70899i 0.165318 0.207302i
\(517\) −11.7395 14.7209i −0.516304 0.647425i
\(518\) −0.125885 + 0.551536i −0.00553105 + 0.0242331i
\(519\) −24.7526 + 5.64962i −1.08652 + 0.247991i
\(520\) 0.588829 0.469575i 0.0258219 0.0205922i
\(521\) 11.6310 0.509565 0.254783 0.966998i \(-0.417996\pi\)
0.254783 + 0.966998i \(0.417996\pi\)
\(522\) 0 0
\(523\) −0.747202 −0.0326728 −0.0163364 0.999867i \(-0.505200\pi\)
−0.0163364 + 0.999867i \(0.505200\pi\)
\(524\) −22.8005 + 18.1828i −0.996045 + 0.794319i
\(525\) 11.9137 2.71923i 0.519958 0.118677i
\(526\) −0.282315 + 1.23690i −0.0123095 + 0.0539315i
\(527\) −7.71925 9.67963i −0.336256 0.421651i
\(528\) 13.9465 17.4884i 0.606944 0.761084i
\(529\) 2.18507 + 9.57343i 0.0950031 + 0.416236i
\(530\) −0.314822 0.653735i −0.0136750 0.0283964i
\(531\) −34.6970 + 16.7092i −1.50572 + 0.725117i
\(532\) 1.51647 + 0.346124i 0.0657472 + 0.0150064i
\(533\) −10.5653 + 21.9390i −0.457633 + 0.950284i
\(534\) 1.22134i 0.0528525i
\(535\) 6.97460 + 3.35879i 0.301538 + 0.145213i
\(536\) 0.542601 + 0.432710i 0.0234368 + 0.0186902i
\(537\) −46.5754 37.1426i −2.00988 1.60282i
\(538\) 0.451089 + 0.217233i 0.0194478 + 0.00936557i
\(539\) 5.15277i 0.221946i
\(540\) 14.4832 30.0748i 0.623260 1.29421i
\(541\) 18.7646 + 4.28290i 0.806753 + 0.184136i 0.605957 0.795497i \(-0.292790\pi\)
0.200795 + 0.979633i \(0.435647\pi\)
\(542\) −0.663510 + 0.319530i −0.0285002 + 0.0137250i
\(543\) 15.8345 + 32.8807i 0.679524 + 1.41105i
\(544\) −0.585499 2.56524i −0.0251031 0.109984i
\(545\) 12.7761 16.0207i 0.547266 0.686250i
\(546\) −0.419203 0.525664i −0.0179402 0.0224963i
\(547\) 5.62909 24.6627i 0.240683 1.05450i −0.699715 0.714422i \(-0.746690\pi\)
0.940398 0.340077i \(-0.110453\pi\)
\(548\) 5.57637 1.27277i 0.238211 0.0543700i
\(549\) 38.5025 30.7047i 1.64325 1.31045i
\(550\) 0.152658 0.00650938
\(551\) 0 0
\(552\) 1.84346 0.0784630
\(553\) 16.5005 13.1587i 0.701672 0.559565i
\(554\) 0.0439512 0.0100316i 0.00186731 0.000426201i
\(555\) 7.70789 33.7705i 0.327182 1.43348i
\(556\) −27.7437 34.7895i −1.17660 1.47540i
\(557\) −22.5353 + 28.2584i −0.954851 + 1.19735i 0.0254181 + 0.999677i \(0.491908\pi\)
−0.980269 + 0.197668i \(0.936663\pi\)
\(558\) 0.136171 + 0.596606i 0.00576460 + 0.0252564i
\(559\) 1.11350 + 2.31220i 0.0470959 + 0.0977956i
\(560\) −12.8590 + 6.19257i −0.543392 + 0.261684i
\(561\) 28.6085 + 6.52971i 1.20785 + 0.275685i
\(562\) −0.543918 + 1.12946i −0.0229438 + 0.0476432i
\(563\) 8.84332i 0.372701i 0.982483 + 0.186351i \(0.0596661\pi\)
−0.982483 + 0.186351i \(0.940334\pi\)
\(564\) −55.4230 26.6903i −2.33373 1.12387i
\(565\) 15.5534 + 12.4034i 0.654338 + 0.521817i
\(566\) −0.877250 0.699584i −0.0368736 0.0294057i
\(567\) −19.4879 9.38486i −0.818413 0.394127i
\(568\) 0.382860i 0.0160644i
\(569\) −7.15474 + 14.8570i −0.299942 + 0.622837i −0.995408 0.0957226i \(-0.969484\pi\)
0.695466 + 0.718559i \(0.255198\pi\)
\(570\) 0.0817555 + 0.0186602i 0.00342436 + 0.000781588i
\(571\) 20.3900 9.81931i 0.853295 0.410925i 0.0444957 0.999010i \(-0.485832\pi\)
0.808800 + 0.588084i \(0.200118\pi\)
\(572\) 4.13898 + 8.59467i 0.173059 + 0.359361i
\(573\) 7.82894 + 34.3008i 0.327058 + 1.43294i
\(574\) −0.507321 + 0.636160i −0.0211752 + 0.0265528i
\(575\) −4.44860 5.57837i −0.185520 0.232634i
\(576\) 10.9207 47.8466i 0.455028 1.99361i
\(577\) −40.1086 + 9.15453i −1.66974 + 0.381108i −0.949784 0.312907i \(-0.898697\pi\)
−0.719960 + 0.694015i \(0.755840\pi\)
\(578\) 0.340747 0.271737i 0.0141732 0.0113028i
\(579\) −57.6859 −2.39734
\(580\) 0 0
\(581\) −32.0794 −1.33088
\(582\) −0.514112 + 0.409991i −0.0213106 + 0.0169947i
\(583\) 17.9279 4.09192i 0.742497 0.169470i
\(584\) −0.338255 + 1.48199i −0.0139971 + 0.0613253i
\(585\) 17.2678 + 21.6532i 0.713936 + 0.895248i
\(586\) −0.151956 + 0.190547i −0.00627724 + 0.00787141i
\(587\) 5.82733 + 25.5312i 0.240520 + 1.05379i 0.940545 + 0.339668i \(0.110315\pi\)
−0.700026 + 0.714118i \(0.746828\pi\)
\(588\) −7.30422 15.1674i −0.301221 0.625491i
\(589\) 0.807869 0.389049i 0.0332877 0.0160305i
\(590\) 0.444847 + 0.101533i 0.0183141 + 0.00418007i
\(591\) −21.9473 + 45.5741i −0.902792 + 1.87467i
\(592\) 26.2001i 1.07682i
\(593\) −28.3677 13.6611i −1.16492 0.560996i −0.251438 0.967873i \(-0.580903\pi\)
−0.913483 + 0.406877i \(0.866618\pi\)
\(594\) −0.582359 0.464416i −0.0238945 0.0190552i
\(595\) −14.6385 11.6738i −0.600122 0.478581i
\(596\) 7.62672 + 3.67284i 0.312403 + 0.150445i
\(597\) 26.9726i 1.10392i
\(598\) −0.170328 + 0.353690i −0.00696524 + 0.0144635i
\(599\) 13.8236 + 3.15514i 0.564816 + 0.128916i 0.495389 0.868671i \(-0.335026\pi\)
0.0694275 + 0.997587i \(0.477883\pi\)
\(600\) 0.899106 0.432987i 0.0367058 0.0176766i
\(601\) −6.08447 12.6345i −0.248191 0.515373i 0.739237 0.673445i \(-0.235186\pi\)
−0.987428 + 0.158072i \(0.949472\pi\)
\(602\) 0.0190824 + 0.0836053i 0.000777740 + 0.00340750i
\(603\) −15.9121 + 19.9532i −0.647993 + 0.812557i
\(604\) −9.71115 12.1774i −0.395141 0.495491i
\(605\) −2.93468 + 12.8577i −0.119312 + 0.522739i
\(606\) 1.04766 0.239121i 0.0425581 0.00971361i
\(607\) −14.3075 + 11.4099i −0.580725 + 0.463113i −0.869259 0.494357i \(-0.835404\pi\)
0.288534 + 0.957470i \(0.406832\pi\)
\(608\) 0.190564 0.00772840
\(609\) 0 0
\(610\) −0.583488 −0.0236247
\(611\) 20.4925 16.3422i 0.829036 0.661134i
\(612\) 62.8789 14.3517i 2.54173 0.580133i
\(613\) 6.64203 29.1006i 0.268269 1.17536i −0.643757 0.765230i \(-0.722625\pi\)
0.912026 0.410133i \(-0.134518\pi\)
\(614\) 0.134776 + 0.169003i 0.00543911 + 0.00682042i
\(615\) 31.0632 38.9520i 1.25259 1.57070i
\(616\) 0.141925 + 0.621812i 0.00571831 + 0.0250535i
\(617\) −1.99315 4.13882i −0.0802412 0.166623i 0.856988 0.515336i \(-0.172333\pi\)
−0.937229 + 0.348714i \(0.886619\pi\)
\(618\) −0.402091 + 0.193637i −0.0161745 + 0.00778922i
\(619\) −6.12797 1.39867i −0.246304 0.0562173i 0.0975864 0.995227i \(-0.468888\pi\)
−0.343891 + 0.939010i \(0.611745\pi\)
\(620\) −3.57293 + 7.41926i −0.143492 + 0.297965i
\(621\) 34.8138i 1.39703i
\(622\) 0.401511 + 0.193357i 0.0160991 + 0.00775293i
\(623\) 15.4410 + 12.3138i 0.618631 + 0.493342i
\(624\) 24.3449 + 19.4144i 0.974578 + 0.777200i
\(625\) 10.1909 + 4.90767i 0.407635 + 0.196307i
\(626\) 0.700923i 0.0280145i
\(627\) −0.922109 + 1.91478i −0.0368255 + 0.0764689i
\(628\) −12.3267 2.81348i −0.491888 0.112270i
\(629\) 30.9670 14.9129i 1.23474 0.594617i
\(630\) 0.401539 + 0.833804i 0.0159977 + 0.0332196i
\(631\) 2.15554 + 9.44402i 0.0858105 + 0.375961i 0.999539 0.0303651i \(-0.00966700\pi\)
−0.913728 + 0.406326i \(0.866810\pi\)
\(632\) 1.07458 1.34748i 0.0427444 0.0535998i
\(633\) 0.479900 + 0.601775i 0.0190743 + 0.0239184i
\(634\) −0.0139188 + 0.0609823i −0.000552787 + 0.00242192i
\(635\) 20.4589 4.66960i 0.811885 0.185308i
\(636\) 46.9709 37.4580i 1.86252 1.48531i
\(637\) 7.17299 0.284204
\(638\) 0 0
\(639\) −14.0790 −0.556956
\(640\) −1.82410 + 1.45467i −0.0721039 + 0.0575010i
\(641\) 4.67849 1.06783i 0.184789 0.0421769i −0.129125 0.991628i \(-0.541217\pi\)
0.313914 + 0.949451i \(0.398360\pi\)
\(642\) 0.125581 0.550207i 0.00495630 0.0217150i
\(643\) −7.65128 9.59440i −0.301737 0.378366i 0.607729 0.794144i \(-0.292081\pi\)
−0.909466 + 0.415778i \(0.863509\pi\)
\(644\) 9.28899 11.6480i 0.366038 0.458997i
\(645\) −1.16841 5.11914i −0.0460061 0.201566i
\(646\) 0.0361029 + 0.0749685i 0.00142045 + 0.00294960i
\(647\) −9.57683 + 4.61196i −0.376504 + 0.181315i −0.612559 0.790425i \(-0.709860\pi\)
0.236055 + 0.971740i \(0.424146\pi\)
\(648\) −1.72208 0.393053i −0.0676495 0.0154406i
\(649\) −5.01737 + 10.4187i −0.196949 + 0.408969i
\(650\) 0.212510i 0.00833534i
\(651\) 13.2526 + 6.38211i 0.519410 + 0.250135i
\(652\) −2.74875 2.19206i −0.107650 0.0858476i
\(653\) 21.9246 + 17.4843i 0.857974 + 0.684212i 0.950239 0.311523i \(-0.100839\pi\)
−0.0922642 + 0.995735i \(0.529410\pi\)
\(654\) −1.34593 0.648164i −0.0526299 0.0253452i
\(655\) 25.4238i 0.993391i
\(656\) 16.3504 33.9519i 0.638375 1.32560i
\(657\) −54.4977 12.4387i −2.12616 0.485282i
\(658\) 0.789109 0.380015i 0.0307627 0.0148145i
\(659\) −8.79977 18.2729i −0.342790 0.711812i 0.656298 0.754502i \(-0.272121\pi\)
−0.999088 + 0.0426903i \(0.986407\pi\)
\(660\) −4.34310 19.0284i −0.169055 0.740678i
\(661\) −19.5336 + 24.4943i −0.759768 + 0.952719i −0.999837 0.0180369i \(-0.994258\pi\)
0.240069 + 0.970756i \(0.422830\pi\)
\(662\) 0.781444 + 0.979900i 0.0303717 + 0.0380849i
\(663\) −9.08978 + 39.8249i −0.353018 + 1.54667i
\(664\) −2.55402 + 0.582939i −0.0991153 + 0.0226224i
\(665\) 1.06019 0.845473i 0.0411124 0.0327860i
\(666\) −1.69887 −0.0658297
\(667\) 0 0
\(668\) 27.8161 1.07624
\(669\) 21.6756 17.2857i 0.838028 0.668305i
\(670\) 0.294800 0.0672863i 0.0113891 0.00259950i
\(671\) 3.29054 14.4168i 0.127030 0.556555i
\(672\) 1.94908 + 2.44407i 0.0751875 + 0.0942821i
\(673\) −25.3813 + 31.8271i −0.978376 + 1.22685i −0.00444768 + 0.999990i \(0.501416\pi\)
−0.973929 + 0.226855i \(0.927156\pi\)
\(674\) −0.00878626 0.0384951i −0.000338434 0.00148278i
\(675\) 8.17695 + 16.9796i 0.314731 + 0.653546i
\(676\) 11.4402 5.50933i 0.440009 0.211897i
\(677\) −8.07381 1.84280i −0.310302 0.0708244i 0.0645342 0.997915i \(-0.479444\pi\)
−0.374836 + 0.927091i \(0.622301\pi\)
\(678\) 0.629261 1.30667i 0.0241666 0.0501825i
\(679\) 10.6334i 0.408071i
\(680\) −1.37759 0.663412i −0.0528282 0.0254407i
\(681\) 11.3967 + 9.08854i 0.436721 + 0.348274i
\(682\) 0.143664 + 0.114569i 0.00550120 + 0.00438706i
\(683\) −3.03215 1.46021i −0.116022 0.0558733i 0.374972 0.927036i \(-0.377652\pi\)
−0.490994 + 0.871163i \(0.663366\pi\)
\(684\) 4.67109i 0.178604i
\(685\) 2.16352 4.49260i 0.0826640 0.171654i
\(686\) 0.821550 + 0.187513i 0.0313669 + 0.00715930i
\(687\) 18.7297 9.01976i 0.714584 0.344125i
\(688\) −1.72320 3.57826i −0.0656964 0.136420i
\(689\) 5.69622 + 24.9568i 0.217009 + 0.950777i
\(690\) 0.500786 0.627966i 0.0190646 0.0239062i
\(691\) 0.657864 + 0.824935i 0.0250263 + 0.0313820i 0.794187 0.607673i \(-0.207897\pi\)
−0.769161 + 0.639055i \(0.779326\pi\)
\(692\) −3.72863 + 16.3362i −0.141741 + 0.621009i
\(693\) −22.8661 + 5.21903i −0.868610 + 0.198255i
\(694\) −0.283787 + 0.226313i −0.0107724 + 0.00859072i
\(695\) −38.7922 −1.47147
\(696\) 0 0
\(697\) 49.4358 1.87251
\(698\) 1.13342 0.903874i 0.0429007 0.0342121i
\(699\) −50.8603 + 11.6085i −1.92371 + 0.439075i
\(700\) 1.79464 7.86282i 0.0678309 0.297187i
\(701\) −8.76970 10.9969i −0.331227 0.415345i 0.588132 0.808765i \(-0.299863\pi\)
−0.919359 + 0.393419i \(0.871292\pi\)
\(702\) 0.646497 0.810682i 0.0244005 0.0305972i
\(703\) 0.553919 + 2.42688i 0.0208914 + 0.0915314i
\(704\) −6.39400 13.2773i −0.240983 0.500406i
\(705\) −48.3170 + 23.2682i −1.81972 + 0.876333i
\(706\) −0.589813 0.134621i −0.0221979 0.00506653i
\(707\) 7.53955 15.6560i 0.283554 0.588806i
\(708\) 37.7800i 1.41986i
\(709\) 3.67395 + 1.76928i 0.137978 + 0.0664467i 0.501599 0.865100i \(-0.332745\pi\)
−0.363621 + 0.931547i \(0.618460\pi\)
\(710\) 0.130419 + 0.104006i 0.00489454 + 0.00390327i
\(711\) 49.5512 + 39.5158i 1.85832 + 1.48196i
\(712\) 1.45311 + 0.699780i 0.0544575 + 0.0262253i
\(713\) 8.58835i 0.321636i
\(714\) −0.592246 + 1.22981i −0.0221643 + 0.0460245i
\(715\) 8.10777 + 1.85055i 0.303213 + 0.0692065i
\(716\) −35.4229 + 17.0587i −1.32381 + 0.637515i
\(717\) −27.9869 58.1154i −1.04519 2.17036i
\(718\) −0.208057 0.911559i −0.00776463 0.0340191i
\(719\) 5.19082 6.50908i 0.193585 0.242748i −0.675560 0.737305i \(-0.736098\pi\)
0.869145 + 0.494557i \(0.164670\pi\)
\(720\) −26.7230 33.5095i −0.995906 1.24883i
\(721\) −1.60588 + 7.03580i −0.0598059 + 0.262027i
\(722\) 0.771106 0.176000i 0.0286976 0.00655003i
\(723\) 21.2883 16.9769i 0.791720 0.631376i
\(724\) 24.0858 0.895144
\(725\) 0 0
\(726\) 0.961467 0.0356834
\(727\) −28.8392 + 22.9985i −1.06959 + 0.852968i −0.989603 0.143828i \(-0.954059\pi\)
−0.0799858 + 0.996796i \(0.525487\pi\)
\(728\) −0.865603 + 0.197568i −0.0320814 + 0.00732237i
\(729\) −4.92810 + 21.5914i −0.182522 + 0.799682i
\(730\) 0.412944 + 0.517816i 0.0152838 + 0.0191652i
\(731\) 3.24847 4.07345i 0.120149 0.150662i
\(732\) −10.7504 47.1008i −0.397348 1.74090i
\(733\) 4.39963 + 9.13593i 0.162504 + 0.337443i 0.966282 0.257486i \(-0.0828942\pi\)
−0.803778 + 0.594930i \(0.797180\pi\)
\(734\) 0.191998 0.0924615i 0.00708679 0.00341282i
\(735\) −14.3081 3.26573i −0.527763 0.120458i
\(736\) 0.791941 1.64448i 0.0291913 0.0606165i
\(737\) 7.66338i 0.282284i
\(738\) −2.20151 1.06019i −0.0810387 0.0390262i
\(739\) −9.53463 7.60362i −0.350737 0.279704i 0.432234 0.901761i \(-0.357725\pi\)
−0.782971 + 0.622058i \(0.786297\pi\)
\(740\) −17.8734 14.2536i −0.657041 0.523972i
\(741\) −2.66550 1.28364i −0.0979195 0.0471555i
\(742\) 0.855386i 0.0314022i
\(743\) −14.2079 + 29.5030i −0.521237 + 1.08236i 0.459707 + 0.888070i \(0.347954\pi\)
−0.980944 + 0.194289i \(0.937760\pi\)
\(744\) 1.17109 + 0.267293i 0.0429341 + 0.00979943i
\(745\) 6.64887 3.20192i 0.243596 0.117309i
\(746\) −0.464263 0.964051i −0.0169979 0.0352964i
\(747\) −21.4366 93.9197i −0.784323 3.43634i
\(748\) 12.0749 15.1414i 0.441501 0.553625i
\(749\) −5.68996 7.13499i −0.207907 0.260707i
\(750\) 0.342902 1.50235i 0.0125210 0.0548581i
\(751\) 46.6110 10.6387i 1.70086 0.388210i 0.741624 0.670816i \(-0.234056\pi\)
0.959236 + 0.282605i \(0.0911986\pi\)
\(752\) −31.7133 + 25.2905i −1.15646 + 0.922250i
\(753\) 19.6882 0.717478
\(754\) 0 0
\(755\) −13.5785 −0.494171
\(756\) −30.7664 + 24.5353i −1.11896 + 0.892342i
\(757\) 14.4846 3.30601i 0.526450 0.120159i 0.0489682 0.998800i \(-0.484407\pi\)
0.477482 + 0.878641i \(0.341550\pi\)
\(758\) 0.0776493 0.340204i 0.00282035 0.0123568i
\(759\) 12.6916 + 15.9148i 0.460676 + 0.577670i
\(760\) 0.0690439 0.0865783i 0.00250448 0.00314052i
\(761\) −4.08433 17.8946i −0.148057 0.648680i −0.993424 0.114494i \(-0.963475\pi\)
0.845367 0.534186i \(-0.179382\pi\)
\(762\) −0.663784 1.37836i −0.0240464 0.0499328i
\(763\) −21.7644 + 10.4812i −0.787925 + 0.379445i
\(764\) 22.6378 + 5.16694i 0.819008 + 0.186933i
\(765\) 24.3958 50.6585i 0.882033 1.83156i
\(766\) 1.06216i 0.0383772i
\(767\) −14.5035 6.98451i −0.523690 0.252196i
\(768\) −37.5421 29.9388i −1.35468 1.08032i
\(769\) −10.2099 8.14215i −0.368180 0.293614i 0.421870 0.906656i \(-0.361374\pi\)
−0.790050 + 0.613043i \(0.789945\pi\)
\(770\) 0.250372 + 0.120573i 0.00902277 + 0.00434513i
\(771\) 17.5232i 0.631082i
\(772\) −16.5186 + 34.3012i −0.594517 + 1.23453i
\(773\) −29.5266 6.73926i −1.06200 0.242394i −0.344380 0.938830i \(-0.611911\pi\)
−0.717619 + 0.696436i \(0.754768\pi\)
\(774\) −0.232022 + 0.111736i −0.00833985 + 0.00401626i
\(775\) −2.01720 4.18877i −0.0724601 0.150465i
\(776\) 0.193227 + 0.846581i 0.00693643 + 0.0303905i
\(777\) −25.4603 + 31.9262i −0.913384 + 1.14535i
\(778\) 0.714615 + 0.896099i 0.0256202 + 0.0321267i
\(779\) −0.796706 + 3.49060i −0.0285449 + 0.125064i
\(780\) 26.4887 6.04587i 0.948447 0.216477i
\(781\) −3.30526 + 2.63586i −0.118272 + 0.0943184i
\(782\) 0.796981 0.0285000
\(783\) 0 0
\(784\) −11.1006 −0.396451
\(785\) −8.61780 + 6.87246i −0.307582 + 0.245289i
\(786\) 1.80700 0.412436i 0.0644535 0.0147111i
\(787\) −0.659533 + 2.88960i −0.0235098 + 0.103003i −0.985322 0.170709i \(-0.945394\pi\)
0.961812 + 0.273712i \(0.0882515\pi\)
\(788\) 20.8146 + 26.1007i 0.741489 + 0.929798i
\(789\) −57.0986 + 71.5994i −2.03276 + 2.54901i
\(790\) −0.167097 0.732099i −0.00594504 0.0260469i
\(791\) −10.1755 21.1297i −0.361800 0.751285i
\(792\) −1.72566 + 0.831032i −0.0613185 + 0.0295294i
\(793\) 20.0691 + 4.58065i 0.712676 + 0.162664i
\(794\) 0.204293 0.424219i 0.00725010 0.0150550i
\(795\) 52.3751i 1.85755i
\(796\) 16.0385 + 7.72373i 0.568469 + 0.273760i
\(797\) −18.7344 14.9402i −0.663607 0.529209i 0.232753 0.972536i \(-0.425227\pi\)
−0.896360 + 0.443327i \(0.853798\pi\)
\(798\) −0.0772908 0.0616373i −0.00273606 0.00218194i
\(799\) −47.9430 23.0881i −1.69610 0.816799i
\(800\) 0.988067i 0.0349334i
\(801\) −25.7332 + 53.4355i −0.909237 + 1.88805i
\(802\) −1.36182 0.310828i −0.0480877 0.0109757i
\(803\) −15.1229 + 7.28283i −0.533677 + 0.257005i
\(804\) 10.8631 + 22.5574i 0.383111 + 0.795538i
\(805\) −2.89015 12.6626i −0.101864 0.446296i
\(806\) −0.159487 + 0.199990i −0.00561768 + 0.00704435i
\(807\) 22.5328 + 28.2552i 0.793191 + 0.994630i
\(808\) 0.315768 1.38347i 0.0111087 0.0486703i
\(809\) −47.5397 + 10.8506i −1.67141 + 0.381487i −0.950299 0.311337i \(-0.899223\pi\)
−0.721106 + 0.692825i \(0.756366\pi\)
\(810\) −0.601702 + 0.479841i −0.0211417 + 0.0168599i
\(811\) −23.3346 −0.819389 −0.409695 0.912223i \(-0.634365\pi\)
−0.409695 + 0.912223i \(0.634365\pi\)
\(812\) 0 0
\(813\) −53.1583 −1.86434
\(814\) −0.398835 + 0.318060i −0.0139792 + 0.0111480i
\(815\) −2.98817 + 0.682030i −0.104671 + 0.0238905i
\(816\) 14.0670 61.6314i 0.492443 2.15753i
\(817\) 0.235269 + 0.295018i 0.00823102 + 0.0103214i
\(818\) 0.420585 0.527396i 0.0147054 0.0184400i
\(819\) −7.26523 31.8310i −0.253868 1.11227i
\(820\) −14.2666 29.6249i −0.498211 1.03455i
\(821\) 33.0050 15.8944i 1.15188 0.554718i 0.242284 0.970205i \(-0.422103\pi\)
0.909599 + 0.415487i \(0.136389\pi\)
\(822\) −0.354409 0.0808916i −0.0123614 0.00282142i
\(823\) 11.6578 24.2077i 0.406366 0.843828i −0.592891 0.805283i \(-0.702013\pi\)
0.999257 0.0385451i \(-0.0122723\pi\)
\(824\) 0.589341i 0.0205307i
\(825\) 9.92805 + 4.78110i 0.345650 + 0.166456i
\(826\) −0.420554 0.335381i −0.0146329 0.0116694i
\(827\) 1.99392 + 1.59010i 0.0693355 + 0.0552932i 0.657544 0.753416i \(-0.271595\pi\)
−0.588209 + 0.808709i \(0.700167\pi\)
\(828\) 40.3094 + 19.4120i 1.40085 + 0.674614i
\(829\) 29.2663i 1.01646i −0.861221 0.508230i \(-0.830300\pi\)
0.861221 0.508230i \(-0.169700\pi\)
\(830\) −0.495238 + 1.02837i −0.0171900 + 0.0356953i
\(831\) 3.17252 + 0.724106i 0.110053 + 0.0251190i
\(832\) 18.4828 8.90086i 0.640777 0.308582i
\(833\) −6.31841 13.1203i −0.218920 0.454592i
\(834\) 0.629303 + 2.75716i 0.0217910 + 0.0954726i
\(835\) 15.1194 18.9591i 0.523229 0.656108i
\(836\) 0.874518 + 1.09661i 0.0302458 + 0.0379271i
\(837\) −5.04782 + 22.1160i −0.174478 + 0.764439i
\(838\) −1.14814 + 0.262056i −0.0396619 + 0.00905256i
\(839\) 36.2667 28.9217i 1.25206 0.998488i 0.252542 0.967586i \(-0.418733\pi\)
0.999522 0.0309019i \(-0.00983794\pi\)
\(840\) 1.81658 0.0626781
\(841\) 0 0
\(842\) 1.27925 0.0440860
\(843\) −70.7467 + 56.4186i −2.43665 + 1.94316i
\(844\) 0.495249 0.113037i 0.0170472 0.00389091i
\(845\) 2.46324 10.7921i 0.0847379 0.371261i
\(846\) 1.63989 + 2.05635i 0.0563805 + 0.0706989i
\(847\) 9.69371 12.1555i 0.333080 0.417669i
\(848\) −8.81523 38.6221i −0.302716 1.32629i
\(849\) −35.1412 72.9715i −1.20604 2.50438i
\(850\) 0.388709 0.187192i 0.0133326 0.00642064i
\(851\) 23.2448 + 5.30548i 0.796822 + 0.181869i
\(852\) −5.99273 + 12.4440i −0.205308 + 0.426326i
\(853\) 51.5353i 1.76453i −0.470749 0.882267i \(-0.656016\pi\)
0.470749 0.882267i \(-0.343984\pi\)
\(854\) 0.619744 + 0.298453i 0.0212072 + 0.0102128i
\(855\) 3.18377 + 2.53897i 0.108882 + 0.0868309i
\(856\) −0.582665 0.464659i −0.0199151 0.0158817i
\(857\) −15.5150 7.47163i −0.529982 0.255226i 0.149701 0.988731i \(-0.452169\pi\)
−0.679684 + 0.733505i \(0.737883\pi\)
\(858\) 0.606280i 0.0206981i
\(859\) 6.13784 12.7454i 0.209420 0.434866i −0.769628 0.638492i \(-0.779558\pi\)
0.979049 + 0.203626i \(0.0652727\pi\)
\(860\) −3.37853 0.771127i −0.115207 0.0262952i
\(861\) −52.9172 + 25.4836i −1.80341 + 0.868477i
\(862\) 0.177001 + 0.367547i 0.00602869 + 0.0125187i
\(863\) −4.14122 18.1439i −0.140969 0.617624i −0.995211 0.0977493i \(-0.968836\pi\)
0.854242 0.519875i \(-0.174021\pi\)
\(864\) −3.00589 + 3.76926i −0.102262 + 0.128233i
\(865\) 9.10788 + 11.4209i 0.309677 + 0.388323i
\(866\) 0.216820 0.949949i 0.00736783 0.0322806i
\(867\) 30.6708 7.00040i 1.04163 0.237746i
\(868\) 7.58987 6.05272i 0.257617 0.205443i
\(869\) 19.0310 0.645583
\(870\) 0 0
\(871\) −10.6679 −0.361469
\(872\) −1.54233 + 1.22996i −0.0522298 + 0.0416518i
\(873\) −31.1315 + 7.10557i −1.05364 + 0.240487i
\(874\) −0.0128441 + 0.0562738i −0.000434459 + 0.00190349i
\(875\) −15.5366 19.4822i −0.525231 0.658619i
\(876\) −34.1913 + 42.8745i −1.15522 + 1.44859i
\(877\) −1.89286 8.29317i −0.0639174 0.280041i 0.932862 0.360234i \(-0.117303\pi\)
−0.996779 + 0.0801937i \(0.974446\pi\)
\(878\) −0.248016 0.515010i −0.00837013 0.0173808i
\(879\) −15.8501 + 7.63299i −0.534610 + 0.257454i
\(880\) −12.5473 2.86383i −0.422968 0.0965396i
\(881\) 13.5226 28.0800i 0.455588 0.946038i −0.539016 0.842295i \(-0.681204\pi\)
0.994604 0.103743i \(-0.0330818\pi\)
\(882\) 0.719788i 0.0242365i
\(883\) 18.3332 + 8.82880i 0.616961 + 0.297113i 0.716140 0.697957i \(-0.245907\pi\)
−0.0991789 + 0.995070i \(0.531622\pi\)
\(884\) 21.0778 + 16.8090i 0.708925 + 0.565348i
\(885\) 25.7505 + 20.5353i 0.865592 + 0.690287i
\(886\) 0.346670 + 0.166948i 0.0116466 + 0.00560871i
\(887\) 11.2240i 0.376866i −0.982086 0.188433i \(-0.939659\pi\)
0.982086 0.188433i \(-0.0603408\pi\)
\(888\) −1.44688 + 3.00448i −0.0485542 + 0.100824i
\(889\) −24.1186 5.50491i −0.808911 0.184629i
\(890\) 0.633120 0.304895i 0.0212222 0.0102201i
\(891\) −8.46265 17.5729i −0.283509 0.588713i
\(892\) −4.07155 17.8386i −0.136325 0.597281i
\(893\) 2.40287 3.01310i 0.0804089 0.100830i
\(894\) −0.335437 0.420625i −0.0112187 0.0140678i
\(895\) −7.62701 + 33.4161i −0.254943 + 1.11698i
\(896\) 2.68150 0.612036i 0.0895828 0.0204467i
\(897\) −22.1544 + 17.6675i −0.739714 + 0.589902i
\(898\) 0.744296 0.0248375
\(899\) 0 0
\(900\) 24.2194 0.807314
\(901\) 40.6315 32.4026i 1.35363 1.07949i
\(902\) −0.715327 + 0.163269i −0.0238178 + 0.00543625i
\(903\) −1.37742 + 6.03486i −0.0458376 + 0.200828i
\(904\) −1.19409 1.49735i −0.0397149 0.0498010i
\(905\) 13.0918 16.4167i 0.435188 0.545708i
\(906\) 0.220275 + 0.965089i 0.00731816 + 0.0320629i
\(907\) 17.7000 + 36.7544i 0.587718 + 1.22041i 0.956728 + 0.290983i \(0.0939823\pi\)
−0.369011 + 0.929425i \(0.620303\pi\)
\(908\) 8.66772 4.17416i 0.287648 0.138524i
\(909\) 50.8747 + 11.6118i 1.68741 + 0.385140i
\(910\) −0.167845 + 0.348533i −0.00556400 + 0.0115538i
\(911\) 30.2991i 1.00385i 0.864910 + 0.501926i \(0.167375\pi\)
−0.864910 + 0.501926i \(0.832625\pi\)
\(912\) 4.12501 + 1.98650i 0.136593 + 0.0657796i
\(913\) −22.6161 18.0358i −0.748485 0.596897i
\(914\) −0.0827553 0.0659952i −0.00273730 0.00218293i
\(915\) −37.9468 18.2742i −1.25448 0.604127i
\(916\) 13.7199i 0.453320i
\(917\) 13.0042 27.0036i 0.429438 0.891736i
\(918\) −2.05231 0.468427i −0.0677365 0.0154604i
\(919\) −23.9089 + 11.5139i −0.788680 + 0.379808i −0.784457 0.620183i \(-0.787058\pi\)
−0.00422290 + 0.999991i \(0.501344\pi\)
\(920\) −0.460201 0.955618i −0.0151724 0.0315058i
\(921\) 3.47205 + 15.2121i 0.114408 + 0.501254i
\(922\) −0.261859 + 0.328361i −0.00862388 + 0.0108140i
\(923\) −3.66928 4.60114i −0.120776 0.151448i
\(924\) −5.12000 + 22.4322i −0.168436 + 0.737964i
\(925\) 12.5832 2.87204i 0.413735 0.0944322i
\(926\) 0.913270 0.728308i 0.0300119 0.0239337i
\(927\) −21.6720 −0.711801
\(928\) 0 0
\(929\) 4.73988 0.155510 0.0777551 0.996972i \(-0.475225\pi\)
0.0777551 + 0.996972i \(0.475225\pi\)
\(930\) 0.409183 0.326313i 0.0134176 0.0107002i
\(931\) 1.02824 0.234688i 0.0336991 0.00769159i
\(932\) −7.66140 + 33.5668i −0.250957 + 1.09952i
\(933\) 20.0563 + 25.1498i 0.656613 + 0.823367i
\(934\) 0.531624 0.666636i 0.0173953 0.0218130i
\(935\) −3.75694 16.4602i −0.122865 0.538307i
\(936\) −1.15685 2.40222i −0.0378128 0.0785192i
\(937\) −16.8106 + 8.09556i −0.549179 + 0.264471i −0.687831 0.725871i \(-0.741437\pi\)
0.138653 + 0.990341i \(0.455723\pi\)
\(938\) −0.347535 0.0793226i −0.0113474 0.00258997i
\(939\) −21.9521 + 45.5841i −0.716381 + 1.48758i
\(940\) 35.3933i 1.15440i
\(941\) −20.3307 9.79076i −0.662762 0.319170i 0.0720885 0.997398i \(-0.477034\pi\)
−0.734851 + 0.678229i \(0.762748\pi\)
\(942\) 0.628261 + 0.501022i 0.0204699 + 0.0163242i
\(943\) 26.8114 + 21.3813i 0.873098 + 0.696272i
\(944\) 22.4450 + 10.8089i 0.730522 + 0.351801i
\(945\) 34.3062i 1.11598i
\(946\) −0.0335516 + 0.0696706i −0.00109086 + 0.00226519i
\(947\) 26.9443 + 6.14987i 0.875573 + 0.199844i 0.636611 0.771185i \(-0.280336\pi\)
0.238962 + 0.971029i \(0.423193\pi\)
\(948\) 56.0184 26.9770i 1.81939 0.876174i
\(949\) −10.1382 21.0521i −0.329099 0.683381i
\(950\) 0.00695298 + 0.0304630i 0.000225584 + 0.000988350i
\(951\) −2.81510 + 3.53003i −0.0912859 + 0.114469i
\(952\) 1.12385 + 1.40927i 0.0364243 + 0.0456746i
\(953\) 8.31233 36.4187i 0.269263 1.17972i −0.641610 0.767031i \(-0.721733\pi\)
0.910873 0.412687i \(-0.135410\pi\)
\(954\) −2.50433 + 0.571598i −0.0810808 + 0.0185062i
\(955\) 15.8265 12.6212i 0.512134 0.408413i
\(956\) −42.5708 −1.37684
\(957\) 0 0
\(958\) −0.899769 −0.0290702
\(959\) −4.59591 + 3.66512i −0.148410 + 0.118353i
\(960\) −40.9205 + 9.33983i −1.32070 + 0.301442i
\(961\) −5.65288 + 24.7669i −0.182351 + 0.798932i
\(962\) −0.442760 0.555204i −0.0142752 0.0179005i
\(963\) 17.0870 21.4265i 0.550622 0.690458i
\(964\) −3.99879 17.5199i −0.128792 0.564277i
\(965\) 14.4007 + 29.9033i 0.463574 + 0.962621i
\(966\) −0.853106 + 0.410834i −0.0274482 + 0.0132184i
\(967\) −38.9506 8.89021i −1.25257 0.285890i −0.455747 0.890109i \(-0.650628\pi\)
−0.796818 + 0.604219i \(0.793485\pi\)
\(968\) 0.550883 1.14392i 0.0177061 0.0367670i
\(969\) 6.00624i 0.192948i
\(970\) 0.340874 + 0.164156i 0.0109448 + 0.00527074i
\(971\) −11.5571 9.21647i −0.370885 0.295771i 0.420255 0.907406i \(-0.361941\pi\)
−0.791140 + 0.611635i \(0.790512\pi\)
\(972\) −4.87637 3.88878i −0.156410 0.124733i
\(973\) 41.2026 + 19.8421i 1.32090 + 0.636110i
\(974\) 0.687749i 0.0220369i
\(975\) −6.65559 + 13.8205i −0.213150 + 0.442610i
\(976\) −31.0582 7.08882i −0.994147 0.226908i
\(977\) 8.85513 4.26441i 0.283301 0.136430i −0.286837 0.957979i \(-0.592604\pi\)
0.570138 + 0.821549i \(0.306890\pi\)
\(978\) 0.0969505 + 0.201320i 0.00310013 + 0.00643750i
\(979\) 3.96289 + 17.3625i 0.126654 + 0.554909i
\(980\) −6.03906 + 7.57274i −0.192911 + 0.241902i
\(981\) −45.2298 56.7164i −1.44408 1.81081i
\(982\) 0.273242 1.19715i 0.00871951 0.0382027i
\(983\) −46.1811 + 10.5405i −1.47295 + 0.336191i −0.882280 0.470724i \(-0.843993\pi\)
−0.590667 + 0.806915i \(0.701135\pi\)
\(984\) −3.74995 + 2.99048i −0.119544 + 0.0953332i
\(985\) 29.1037 0.927320
\(986\) 0 0
\(987\) 63.2209 2.01234
\(988\) −1.52655 + 1.21739i −0.0485661 + 0.0387302i
\(989\) 3.52360 0.804238i 0.112044 0.0255733i
\(990\) −0.185697 + 0.813590i −0.00590182 + 0.0258576i
\(991\) 30.5393 + 38.2950i 0.970112 + 1.21648i 0.976283 + 0.216501i \(0.0694643\pi\)
−0.00617090 + 0.999981i \(0.501964\pi\)
\(992\) 0.741534 0.929854i 0.0235437 0.0295229i
\(993\) 20.1313 + 88.2012i 0.638849 + 2.79898i
\(994\) −0.0853241 0.177177i −0.00270632 0.00561972i
\(995\) 13.9821 6.73344i 0.443263 0.213464i
\(996\) −92.1376 21.0298i −2.91949 0.666355i
\(997\) 0.504144 1.04687i 0.0159664 0.0331546i −0.892833 0.450388i \(-0.851286\pi\)
0.908800 + 0.417233i \(0.137000\pi\)
\(998\) 0.196054i 0.00620597i
\(999\) −56.7397 27.3244i −1.79516 0.864506i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.2.e.m.63.8 96
29.2 odd 28 841.2.d.q.571.4 48
29.3 odd 28 841.2.d.q.190.4 48
29.4 even 14 inner 841.2.e.m.196.8 96
29.5 even 14 inner 841.2.e.m.270.9 96
29.6 even 14 inner 841.2.e.m.267.8 96
29.7 even 7 inner 841.2.e.m.651.9 96
29.8 odd 28 841.2.a.j.1.4 yes 8
29.9 even 14 841.2.b.f.840.8 16
29.10 odd 28 841.2.d.p.645.5 48
29.11 odd 28 841.2.d.q.605.4 48
29.12 odd 4 841.2.d.p.778.4 48
29.13 even 14 inner 841.2.e.m.236.9 96
29.14 odd 28 841.2.d.q.574.5 48
29.15 odd 28 841.2.d.p.574.4 48
29.16 even 7 inner 841.2.e.m.236.8 96
29.17 odd 4 841.2.d.q.778.5 48
29.18 odd 28 841.2.d.p.605.5 48
29.19 odd 28 841.2.d.q.645.4 48
29.20 even 7 841.2.b.f.840.9 16
29.21 odd 28 841.2.a.i.1.5 8
29.22 even 14 inner 841.2.e.m.651.8 96
29.23 even 7 inner 841.2.e.m.267.9 96
29.24 even 7 inner 841.2.e.m.270.8 96
29.25 even 7 inner 841.2.e.m.196.9 96
29.26 odd 28 841.2.d.p.190.5 48
29.27 odd 28 841.2.d.p.571.5 48
29.28 even 2 inner 841.2.e.m.63.9 96
87.8 even 28 7569.2.a.bd.1.5 8
87.50 even 28 7569.2.a.bi.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
841.2.a.i.1.5 8 29.21 odd 28
841.2.a.j.1.4 yes 8 29.8 odd 28
841.2.b.f.840.8 16 29.9 even 14
841.2.b.f.840.9 16 29.20 even 7
841.2.d.p.190.5 48 29.26 odd 28
841.2.d.p.571.5 48 29.27 odd 28
841.2.d.p.574.4 48 29.15 odd 28
841.2.d.p.605.5 48 29.18 odd 28
841.2.d.p.645.5 48 29.10 odd 28
841.2.d.p.778.4 48 29.12 odd 4
841.2.d.q.190.4 48 29.3 odd 28
841.2.d.q.571.4 48 29.2 odd 28
841.2.d.q.574.5 48 29.14 odd 28
841.2.d.q.605.4 48 29.11 odd 28
841.2.d.q.645.4 48 29.19 odd 28
841.2.d.q.778.5 48 29.17 odd 4
841.2.e.m.63.8 96 1.1 even 1 trivial
841.2.e.m.63.9 96 29.28 even 2 inner
841.2.e.m.196.8 96 29.4 even 14 inner
841.2.e.m.196.9 96 29.25 even 7 inner
841.2.e.m.236.8 96 29.16 even 7 inner
841.2.e.m.236.9 96 29.13 even 14 inner
841.2.e.m.267.8 96 29.6 even 14 inner
841.2.e.m.267.9 96 29.23 even 7 inner
841.2.e.m.270.8 96 29.24 even 7 inner
841.2.e.m.270.9 96 29.5 even 14 inner
841.2.e.m.651.8 96 29.22 even 14 inner
841.2.e.m.651.9 96 29.7 even 7 inner
7569.2.a.bd.1.5 8 87.8 even 28
7569.2.a.bi.1.4 8 87.50 even 28