Properties

Label 2-2e4-16.3-c2-0-0
Degree 22
Conductor 1616
Sign 0.6960.717i0.696 - 0.717i
Analytic cond. 0.4359680.435968
Root an. cond. 0.6602790.660279
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.573 + 1.91i)2-s + (0.146 − 0.146i)3-s + (−3.34 − 2.19i)4-s + (3.68 − 3.68i)5-s + (0.196 + 0.364i)6-s − 9.66·7-s + (6.12 − 5.14i)8-s + 8.95i·9-s + (4.94 + 9.17i)10-s + (5.51 + 5.51i)11-s + (−0.810 + 0.167i)12-s + (−6.27 − 6.27i)13-s + (5.53 − 18.5i)14-s − 1.07i·15-s + (6.35 + 14.6i)16-s − 6.78·17-s + ⋯
L(s)  = 1  + (−0.286 + 0.958i)2-s + (0.0487 − 0.0487i)3-s + (−0.835 − 0.549i)4-s + (0.737 − 0.737i)5-s + (0.0327 + 0.0607i)6-s − 1.38·7-s + (0.765 − 0.643i)8-s + 0.995i·9-s + (0.494 + 0.917i)10-s + (0.501 + 0.501i)11-s + (−0.0675 + 0.0139i)12-s + (−0.482 − 0.482i)13-s + (0.395 − 1.32i)14-s − 0.0719i·15-s + (0.396 + 0.917i)16-s − 0.399·17-s + ⋯

Functional equation

Λ(s)=(16s/2ΓC(s)L(s)=((0.6960.717i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(16s/2ΓC(s+1)L(s)=((0.6960.717i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.696 - 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 1616    =    242^{4}
Sign: 0.6960.717i0.696 - 0.717i
Analytic conductor: 0.4359680.435968
Root analytic conductor: 0.6602790.660279
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ16(3,)\chi_{16} (3, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 16, ( :1), 0.6960.717i)(2,\ 16,\ (\ :1),\ 0.696 - 0.717i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.638050+0.270074i0.638050 + 0.270074i
L(12)L(\frac12) \approx 0.638050+0.270074i0.638050 + 0.270074i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5731.91i)T 1 + (0.573 - 1.91i)T
good3 1+(0.146+0.146i)T9iT2 1 + (-0.146 + 0.146i)T - 9iT^{2}
5 1+(3.68+3.68i)T25iT2 1 + (-3.68 + 3.68i)T - 25iT^{2}
7 1+9.66T+49T2 1 + 9.66T + 49T^{2}
11 1+(5.515.51i)T+121iT2 1 + (-5.51 - 5.51i)T + 121iT^{2}
13 1+(6.27+6.27i)T+169iT2 1 + (6.27 + 6.27i)T + 169iT^{2}
17 1+6.78T+289T2 1 + 6.78T + 289T^{2}
19 1+(13.5+13.5i)T361iT2 1 + (-13.5 + 13.5i)T - 361iT^{2}
23 117.0T+529T2 1 - 17.0T + 529T^{2}
29 1+(4.854.85i)T+841iT2 1 + (-4.85 - 4.85i)T + 841iT^{2}
31 1+5.25iT961T2 1 + 5.25iT - 961T^{2}
37 1+(18.118.1i)T1.36e3iT2 1 + (18.1 - 18.1i)T - 1.36e3iT^{2}
41 1+48.2iT1.68e3T2 1 + 48.2iT - 1.68e3T^{2}
43 1+(54.5+54.5i)T+1.84e3iT2 1 + (54.5 + 54.5i)T + 1.84e3iT^{2}
47 140.4iT2.20e3T2 1 - 40.4iT - 2.20e3T^{2}
53 1+(10.8+10.8i)T2.80e3iT2 1 + (-10.8 + 10.8i)T - 2.80e3iT^{2}
59 1+(50.850.8i)T+3.48e3iT2 1 + (-50.8 - 50.8i)T + 3.48e3iT^{2}
61 1+(17.0+17.0i)T+3.72e3iT2 1 + (17.0 + 17.0i)T + 3.72e3iT^{2}
67 1+(22.9+22.9i)T4.48e3iT2 1 + (-22.9 + 22.9i)T - 4.48e3iT^{2}
71 1+51.6T+5.04e3T2 1 + 51.6T + 5.04e3T^{2}
73 178.5iT5.32e3T2 1 - 78.5iT - 5.32e3T^{2}
79 1108.iT6.24e3T2 1 - 108. iT - 6.24e3T^{2}
83 1+(57.3+57.3i)T6.88e3iT2 1 + (-57.3 + 57.3i)T - 6.88e3iT^{2}
89 144.1iT7.92e3T2 1 - 44.1iT - 7.92e3T^{2}
97 1112.T+9.40e3T2 1 - 112.T + 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.05917366499240579387292539661, −17.44809472315373685434368322205, −16.61854860503053858588883402170, −15.48577849509374745221103926577, −13.70565852781556031159673061557, −12.86943297645273560521880912709, −10.06652148021096439654084648890, −8.994231981046499986081599454075, −7.00661769518024865851982438880, −5.23955131995947565398025839100, 3.26337001318846697709200002217, 6.53005724998402159368645936403, 9.230626755154415845242817721063, 10.09800024692954469366961831329, 11.82170795194160262411601729103, 13.20271751375459428613970751030, 14.48541207774191503482784312224, 16.50844412781028768059825791010, 17.85434448226598555919006841803, 18.90176009244069779044019867640

Graph of the ZZ-function along the critical line