Properties

Label 16.3.f.a.3.2
Level $16$
Weight $3$
Character 16.3
Analytic conductor $0.436$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,3,Mod(3,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.3");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 16.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.435968422976\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3.2
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 16.3
Dual form 16.3.f.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.573183 + 1.91611i) q^{2} +(0.146365 - 0.146365i) q^{3} +(-3.34292 - 2.19656i) q^{4} +(3.68585 - 3.68585i) q^{5} +(0.196558 + 0.364346i) q^{6} -9.66442 q^{7} +(6.12494 - 5.14637i) q^{8} +8.95715i q^{9} +(4.94981 + 9.17513i) q^{10} +(5.51806 + 5.51806i) q^{11} +(-0.810789 + 0.167788i) q^{12} +(-6.27131 - 6.27131i) q^{13} +(5.53948 - 18.5181i) q^{14} -1.07896i q^{15} +(6.35027 + 14.6858i) q^{16} -6.78623 q^{17} +(-17.1629 - 5.13409i) q^{18} +(13.5181 - 13.5181i) q^{19} +(-20.4177 + 4.22533i) q^{20} +(-1.41454 + 1.41454i) q^{21} +(-13.7360 + 7.41033i) q^{22} +17.0790 q^{23} +(0.143230 - 1.64973i) q^{24} -2.17092i q^{25} +(15.6111 - 8.42188i) q^{26} +(2.62831 + 2.62831i) q^{27} +(32.3074 + 21.2285i) q^{28} +(4.85677 + 4.85677i) q^{29} +(2.06740 + 0.618442i) q^{30} -5.25662i q^{31} +(-31.7795 + 3.75011i) q^{32} +1.61531 q^{33} +(3.88975 - 13.0031i) q^{34} +(-35.6216 + 35.6216i) q^{35} +(19.6749 - 29.9431i) q^{36} +(-18.1856 + 18.1856i) q^{37} +(18.1537 + 33.6503i) q^{38} -1.83581 q^{39} +(3.60688 - 41.5443i) q^{40} -48.2302i q^{41} +(-1.89962 - 3.52119i) q^{42} +(-54.5113 - 54.5113i) q^{43} +(-6.32571 - 30.5672i) q^{44} +(33.0147 + 33.0147i) q^{45} +(-9.78937 + 32.7251i) q^{46} +40.4015i q^{47} +(3.07896 + 1.22004i) q^{48} +44.4011 q^{49} +(4.15972 + 1.24434i) q^{50} +(-0.993270 + 0.993270i) q^{51} +(7.18921 + 34.7398i) q^{52} +(10.8996 - 10.8996i) q^{53} +(-6.54262 + 3.52962i) q^{54} +40.6774 q^{55} +(-59.1940 + 49.7367i) q^{56} -3.95715i q^{57} +(-12.0899 + 6.52227i) q^{58} +(50.8898 + 50.8898i) q^{59} +(-2.37000 + 3.60688i) q^{60} +(-17.0147 - 17.0147i) q^{61} +(10.0722 + 3.01300i) q^{62} -86.5657i q^{63} +(11.0298 - 63.0424i) q^{64} -46.2302 q^{65} +(-0.925866 + 3.09510i) q^{66} +(22.9191 - 22.9191i) q^{67} +(22.6858 + 14.9063i) q^{68} +(2.49977 - 2.49977i) q^{69} +(-47.8370 - 88.6724i) q^{70} -51.6047 q^{71} +(46.0968 + 54.8621i) q^{72} +78.5032i q^{73} +(-24.4219 - 45.2692i) q^{74} +(-0.317748 - 0.317748i) q^{75} +(-74.8830 + 15.4966i) q^{76} +(-53.3288 - 53.3288i) q^{77} +(1.05225 - 3.51760i) q^{78} +108.512i q^{79} +(77.5359 + 30.7237i) q^{80} -79.8450 q^{81} +(92.4141 + 27.6447i) q^{82} +(57.3173 - 57.3173i) q^{83} +(7.83581 - 1.62158i) q^{84} +(-25.0130 + 25.0130i) q^{85} +(135.694 - 73.2045i) q^{86} +1.42173 q^{87} +(62.1957 + 5.39985i) q^{88} +44.1276i q^{89} +(-82.1831 + 44.3362i) q^{90} +(60.6086 + 60.6086i) q^{91} +(-57.0937 - 37.5149i) q^{92} +(-0.769387 - 0.769387i) q^{93} +(-77.4136 - 23.1575i) q^{94} -99.6510i q^{95} +(-4.10253 + 5.20031i) q^{96} +112.700 q^{97} +(-25.4499 + 85.0772i) q^{98} +(-49.4261 + 49.4261i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 2 q^{3} - 8 q^{4} - 2 q^{5} - 8 q^{6} - 4 q^{7} + 4 q^{8} + 36 q^{10} - 18 q^{11} + 52 q^{12} - 2 q^{13} + 12 q^{14} - 40 q^{16} - 4 q^{17} - 74 q^{18} + 30 q^{19} - 84 q^{20} - 20 q^{21}+ \cdots - 226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/16\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(15\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.573183 + 1.91611i −0.286591 + 0.958053i
\(3\) 0.146365 0.146365i 0.0487885 0.0487885i −0.682292 0.731080i \(-0.739017\pi\)
0.731080 + 0.682292i \(0.239017\pi\)
\(4\) −3.34292 2.19656i −0.835731 0.549139i
\(5\) 3.68585 3.68585i 0.737169 0.737169i −0.234860 0.972029i \(-0.575463\pi\)
0.972029 + 0.234860i \(0.0754632\pi\)
\(6\) 0.196558 + 0.364346i 0.0327596 + 0.0607243i
\(7\) −9.66442 −1.38063 −0.690316 0.723508i \(-0.742528\pi\)
−0.690316 + 0.723508i \(0.742528\pi\)
\(8\) 6.12494 5.14637i 0.765618 0.643296i
\(9\) 8.95715i 0.995239i
\(10\) 4.94981 + 9.17513i 0.494981 + 0.917513i
\(11\) 5.51806 + 5.51806i 0.501642 + 0.501642i 0.911948 0.410306i \(-0.134578\pi\)
−0.410306 + 0.911948i \(0.634578\pi\)
\(12\) −0.810789 + 0.167788i −0.0675657 + 0.0139824i
\(13\) −6.27131 6.27131i −0.482408 0.482408i 0.423492 0.905900i \(-0.360804\pi\)
−0.905900 + 0.423492i \(0.860804\pi\)
\(14\) 5.53948 18.5181i 0.395677 1.32272i
\(15\) 1.07896i 0.0719308i
\(16\) 6.35027 + 14.6858i 0.396892 + 0.917865i
\(17\) −6.78623 −0.399190 −0.199595 0.979878i \(-0.563963\pi\)
−0.199595 + 0.979878i \(0.563963\pi\)
\(18\) −17.1629 5.13409i −0.953492 0.285227i
\(19\) 13.5181 13.5181i 0.711477 0.711477i −0.255367 0.966844i \(-0.582196\pi\)
0.966844 + 0.255367i \(0.0821964\pi\)
\(20\) −20.4177 + 4.22533i −1.02088 + 0.211266i
\(21\) −1.41454 + 1.41454i −0.0673590 + 0.0673590i
\(22\) −13.7360 + 7.41033i −0.624365 + 0.336833i
\(23\) 17.0790 0.742564 0.371282 0.928520i \(-0.378918\pi\)
0.371282 + 0.928520i \(0.378918\pi\)
\(24\) 0.143230 1.64973i 0.00596791 0.0687388i
\(25\) 2.17092i 0.0868370i
\(26\) 15.6111 8.42188i 0.600427 0.323919i
\(27\) 2.62831 + 2.62831i 0.0973447 + 0.0973447i
\(28\) 32.3074 + 21.2285i 1.15384 + 0.758159i
\(29\) 4.85677 + 4.85677i 0.167475 + 0.167475i 0.785868 0.618394i \(-0.212216\pi\)
−0.618394 + 0.785868i \(0.712216\pi\)
\(30\) 2.06740 + 0.618442i 0.0689135 + 0.0206147i
\(31\) 5.25662i 0.169568i −0.996399 0.0847841i \(-0.972980\pi\)
0.996399 0.0847841i \(-0.0270201\pi\)
\(32\) −31.7795 + 3.75011i −0.993109 + 0.117191i
\(33\) 1.61531 0.0489487
\(34\) 3.88975 13.0031i 0.114404 0.382445i
\(35\) −35.6216 + 35.6216i −1.01776 + 1.01776i
\(36\) 19.6749 29.9431i 0.546525 0.831752i
\(37\) −18.1856 + 18.1856i −0.491503 + 0.491503i −0.908780 0.417276i \(-0.862985\pi\)
0.417276 + 0.908780i \(0.362985\pi\)
\(38\) 18.1537 + 33.6503i 0.477729 + 0.885535i
\(39\) −1.83581 −0.0470720
\(40\) 3.60688 41.5443i 0.0901721 1.03861i
\(41\) 48.2302i 1.17635i −0.808735 0.588173i \(-0.799848\pi\)
0.808735 0.588173i \(-0.200152\pi\)
\(42\) −1.89962 3.52119i −0.0452289 0.0838379i
\(43\) −54.5113 54.5113i −1.26771 1.26771i −0.947271 0.320435i \(-0.896171\pi\)
−0.320435 0.947271i \(-0.603829\pi\)
\(44\) −6.32571 30.5672i −0.143766 0.694709i
\(45\) 33.0147 + 33.0147i 0.733660 + 0.733660i
\(46\) −9.78937 + 32.7251i −0.212812 + 0.711415i
\(47\) 40.4015i 0.859607i 0.902922 + 0.429804i \(0.141417\pi\)
−0.902922 + 0.429804i \(0.858583\pi\)
\(48\) 3.07896 + 1.22004i 0.0641450 + 0.0254175i
\(49\) 44.4011 0.906144
\(50\) 4.15972 + 1.24434i 0.0831944 + 0.0248867i
\(51\) −0.993270 + 0.993270i −0.0194759 + 0.0194759i
\(52\) 7.18921 + 34.7398i 0.138254 + 0.668073i
\(53\) 10.8996 10.8996i 0.205653 0.205653i −0.596764 0.802417i \(-0.703547\pi\)
0.802417 + 0.596764i \(0.203547\pi\)
\(54\) −6.54262 + 3.52962i −0.121160 + 0.0653632i
\(55\) 40.6774 0.739590
\(56\) −59.1940 + 49.7367i −1.05704 + 0.888155i
\(57\) 3.95715i 0.0694238i
\(58\) −12.0899 + 6.52227i −0.208447 + 0.112453i
\(59\) 50.8898 + 50.8898i 0.862538 + 0.862538i 0.991632 0.129094i \(-0.0412070\pi\)
−0.129094 + 0.991632i \(0.541207\pi\)
\(60\) −2.37000 + 3.60688i −0.0395000 + 0.0601147i
\(61\) −17.0147 17.0147i −0.278929 0.278929i 0.553752 0.832682i \(-0.313196\pi\)
−0.832682 + 0.553752i \(0.813196\pi\)
\(62\) 10.0722 + 3.01300i 0.162455 + 0.0485968i
\(63\) 86.5657i 1.37406i
\(64\) 11.0298 63.0424i 0.172341 0.985037i
\(65\) −46.2302 −0.711233
\(66\) −0.925866 + 3.09510i −0.0140283 + 0.0468954i
\(67\) 22.9191 22.9191i 0.342077 0.342077i −0.515071 0.857148i \(-0.672234\pi\)
0.857148 + 0.515071i \(0.172234\pi\)
\(68\) 22.6858 + 14.9063i 0.333615 + 0.219211i
\(69\) 2.49977 2.49977i 0.0362286 0.0362286i
\(70\) −47.8370 88.6724i −0.683386 1.26675i
\(71\) −51.6047 −0.726827 −0.363414 0.931628i \(-0.618389\pi\)
−0.363414 + 0.931628i \(0.618389\pi\)
\(72\) 46.0968 + 54.8621i 0.640233 + 0.761973i
\(73\) 78.5032i 1.07539i 0.843141 + 0.537693i \(0.180704\pi\)
−0.843141 + 0.537693i \(0.819296\pi\)
\(74\) −24.4219 45.2692i −0.330025 0.611747i
\(75\) −0.317748 0.317748i −0.00423664 0.00423664i
\(76\) −74.8830 + 15.4966i −0.985303 + 0.203903i
\(77\) −53.3288 53.3288i −0.692582 0.692582i
\(78\) 1.05225 3.51760i 0.0134904 0.0450974i
\(79\) 108.512i 1.37357i 0.726859 + 0.686787i \(0.240979\pi\)
−0.726859 + 0.686787i \(0.759021\pi\)
\(80\) 77.5359 + 30.7237i 0.969199 + 0.384046i
\(81\) −79.8450 −0.985741
\(82\) 92.4141 + 27.6447i 1.12700 + 0.337130i
\(83\) 57.3173 57.3173i 0.690570 0.690570i −0.271788 0.962357i \(-0.587615\pi\)
0.962357 + 0.271788i \(0.0876148\pi\)
\(84\) 7.83581 1.62158i 0.0932834 0.0193045i
\(85\) −25.0130 + 25.0130i −0.294271 + 0.294271i
\(86\) 135.694 73.2045i 1.57784 0.851215i
\(87\) 1.42173 0.0163417
\(88\) 62.1957 + 5.39985i 0.706770 + 0.0613619i
\(89\) 44.1276i 0.495816i 0.968784 + 0.247908i \(0.0797431\pi\)
−0.968784 + 0.247908i \(0.920257\pi\)
\(90\) −82.1831 + 44.3362i −0.913146 + 0.492624i
\(91\) 60.6086 + 60.6086i 0.666028 + 0.666028i
\(92\) −57.0937 37.5149i −0.620583 0.407771i
\(93\) −0.769387 0.769387i −0.00827298 0.00827298i
\(94\) −77.4136 23.1575i −0.823549 0.246356i
\(95\) 99.6510i 1.04896i
\(96\) −4.10253 + 5.20031i −0.0427347 + 0.0541699i
\(97\) 112.700 1.16185 0.580926 0.813956i \(-0.302691\pi\)
0.580926 + 0.813956i \(0.302691\pi\)
\(98\) −25.4499 + 85.0772i −0.259693 + 0.868134i
\(99\) −49.4261 + 49.4261i −0.499253 + 0.499253i
\(100\) −4.76856 + 7.25723i −0.0476856 + 0.0725723i
\(101\) 97.3859 97.3859i 0.964217 0.964217i −0.0351644 0.999382i \(-0.511195\pi\)
0.999382 + 0.0351644i \(0.0111955\pi\)
\(102\) −1.33389 2.47254i −0.0130773 0.0242405i
\(103\) −138.698 −1.34658 −0.673290 0.739379i \(-0.735119\pi\)
−0.673290 + 0.739379i \(0.735119\pi\)
\(104\) −70.6858 6.13696i −0.679672 0.0590092i
\(105\) 10.4275i 0.0993099i
\(106\) 14.6373 + 27.1323i 0.138088 + 0.255965i
\(107\) −31.7386 31.7386i −0.296622 0.296622i 0.543067 0.839689i \(-0.317263\pi\)
−0.839689 + 0.543067i \(0.817263\pi\)
\(108\) −3.01300 14.5595i −0.0278982 0.134810i
\(109\) 0.712308 + 0.712308i 0.00653493 + 0.00653493i 0.710367 0.703832i \(-0.248529\pi\)
−0.703832 + 0.710367i \(0.748529\pi\)
\(110\) −23.3156 + 77.9423i −0.211960 + 0.708566i
\(111\) 5.32349i 0.0479594i
\(112\) −61.3717 141.930i −0.547962 1.26723i
\(113\) 14.8888 0.131759 0.0658795 0.997828i \(-0.479015\pi\)
0.0658795 + 0.997828i \(0.479015\pi\)
\(114\) 7.58233 + 2.26817i 0.0665116 + 0.0198963i
\(115\) 62.9504 62.9504i 0.547395 0.547395i
\(116\) −5.56763 26.9040i −0.0479968 0.231931i
\(117\) 56.1731 56.1731i 0.480112 0.480112i
\(118\) −126.679 + 68.3410i −1.07355 + 0.579161i
\(119\) 65.5850 0.551134
\(120\) −5.55273 6.60858i −0.0462727 0.0550715i
\(121\) 60.1021i 0.496711i
\(122\) 42.3545 22.8494i 0.347168 0.187290i
\(123\) −7.05923 7.05923i −0.0573921 0.0573921i
\(124\) −11.5465 + 17.5725i −0.0931166 + 0.141713i
\(125\) 84.1445 + 84.1445i 0.673156 + 0.673156i
\(126\) 165.869 + 49.6180i 1.31642 + 0.393794i
\(127\) 106.861i 0.841425i 0.907194 + 0.420712i \(0.138220\pi\)
−0.907194 + 0.420712i \(0.861780\pi\)
\(128\) 114.474 + 57.2692i 0.894326 + 0.447415i
\(129\) −15.9572 −0.123699
\(130\) 26.4983 88.5819i 0.203833 0.681399i
\(131\) −153.198 + 153.198i −1.16945 + 1.16945i −0.187116 + 0.982338i \(0.559914\pi\)
−0.982338 + 0.187116i \(0.940086\pi\)
\(132\) −5.39985 3.54811i −0.0409079 0.0268796i
\(133\) −130.644 + 130.644i −0.982287 + 0.982287i
\(134\) 30.7786 + 57.0523i 0.229691 + 0.425764i
\(135\) 19.3751 0.143519
\(136\) −41.5653 + 34.9244i −0.305627 + 0.256797i
\(137\) 75.1700i 0.548686i −0.961632 0.274343i \(-0.911540\pi\)
0.961632 0.274343i \(-0.0884604\pi\)
\(138\) 3.35700 + 6.22265i 0.0243261 + 0.0450917i
\(139\) −107.425 107.425i −0.772843 0.772843i 0.205760 0.978603i \(-0.434034\pi\)
−0.978603 + 0.205760i \(0.934034\pi\)
\(140\) 197.325 40.8353i 1.40946 0.291681i
\(141\) 5.91339 + 5.91339i 0.0419389 + 0.0419389i
\(142\) 29.5789 98.8801i 0.208302 0.696339i
\(143\) 69.2109i 0.483992i
\(144\) −131.543 + 56.8803i −0.913496 + 0.395002i
\(145\) 35.8026 0.246915
\(146\) −150.420 44.9967i −1.03028 0.308196i
\(147\) 6.49879 6.49879i 0.0442094 0.0442094i
\(148\) 100.739 20.8474i 0.680668 0.140861i
\(149\) −146.031 + 146.031i −0.980074 + 0.980074i −0.999805 0.0197310i \(-0.993719\pi\)
0.0197310 + 0.999805i \(0.493719\pi\)
\(150\) 0.790967 0.426712i 0.00527312 0.00284474i
\(151\) 220.513 1.46035 0.730175 0.683260i \(-0.239439\pi\)
0.730175 + 0.683260i \(0.239439\pi\)
\(152\) 13.2285 152.366i 0.0870294 1.00241i
\(153\) 60.7853i 0.397290i
\(154\) 132.751 71.6165i 0.862019 0.465042i
\(155\) −19.3751 19.3751i −0.125000 0.125000i
\(156\) 6.13696 + 4.03245i 0.0393395 + 0.0258491i
\(157\) −109.561 109.561i −0.697839 0.697839i 0.266105 0.963944i \(-0.414263\pi\)
−0.963944 + 0.266105i \(0.914263\pi\)
\(158\) −207.921 62.1974i −1.31596 0.393654i
\(159\) 3.19066i 0.0200670i
\(160\) −103.312 + 130.957i −0.645700 + 0.818479i
\(161\) −165.058 −1.02521
\(162\) 45.7658 152.991i 0.282505 0.944392i
\(163\) 56.7781 56.7781i 0.348332 0.348332i −0.511156 0.859488i \(-0.670783\pi\)
0.859488 + 0.511156i \(0.170783\pi\)
\(164\) −105.940 + 161.230i −0.645978 + 0.983108i
\(165\) 5.95377 5.95377i 0.0360835 0.0360835i
\(166\) 76.9727 + 142.679i 0.463691 + 0.859514i
\(167\) 106.677 0.638781 0.319391 0.947623i \(-0.396522\pi\)
0.319391 + 0.947623i \(0.396522\pi\)
\(168\) −1.38423 + 15.9437i −0.00823949 + 0.0949029i
\(169\) 90.3414i 0.534564i
\(170\) −33.5905 62.2646i −0.197591 0.366262i
\(171\) 121.083 + 121.083i 0.708090 + 0.708090i
\(172\) 62.4899 + 301.964i 0.363313 + 1.75561i
\(173\) 178.360 + 178.360i 1.03098 + 1.03098i 0.999504 + 0.0314805i \(0.0100222\pi\)
0.0314805 + 0.999504i \(0.489978\pi\)
\(174\) −0.814909 + 2.72418i −0.00468339 + 0.0156562i
\(175\) 20.9807i 0.119890i
\(176\) −45.9962 + 116.079i −0.261342 + 0.659537i
\(177\) 14.8970 0.0841639
\(178\) −84.5532 25.2932i −0.475018 0.142097i
\(179\) 60.4622 60.4622i 0.337778 0.337778i −0.517753 0.855530i \(-0.673231\pi\)
0.855530 + 0.517753i \(0.173231\pi\)
\(180\) −37.8469 182.884i −0.210261 1.01602i
\(181\) 147.113 147.113i 0.812779 0.812779i −0.172271 0.985050i \(-0.555110\pi\)
0.985050 + 0.172271i \(0.0551105\pi\)
\(182\) −150.872 + 81.3927i −0.828968 + 0.447212i
\(183\) −4.98073 −0.0272171
\(184\) 104.608 87.8946i 0.568520 0.477688i
\(185\) 134.059i 0.724642i
\(186\) 1.91523 1.03323i 0.0102969 0.00555499i
\(187\) −37.4468 37.4468i −0.200250 0.200250i
\(188\) 88.7443 135.059i 0.472044 0.718400i
\(189\) −25.4011 25.4011i −0.134397 0.134397i
\(190\) 190.942 + 57.1182i 1.00496 + 0.300622i
\(191\) 106.861i 0.559481i −0.960076 0.279741i \(-0.909752\pi\)
0.960076 0.279741i \(-0.0902485\pi\)
\(192\) −7.61284 10.8416i −0.0396502 0.0564668i
\(193\) 68.1873 0.353302 0.176651 0.984274i \(-0.443474\pi\)
0.176651 + 0.984274i \(0.443474\pi\)
\(194\) −64.5975 + 215.944i −0.332977 + 1.11312i
\(195\) −6.76650 + 6.76650i −0.0347000 + 0.0347000i
\(196\) −148.429 97.5295i −0.757293 0.497600i
\(197\) −61.8529 + 61.8529i −0.313974 + 0.313974i −0.846447 0.532473i \(-0.821263\pi\)
0.532473 + 0.846447i \(0.321263\pi\)
\(198\) −66.3754 123.036i −0.335230 0.621393i
\(199\) −158.466 −0.796310 −0.398155 0.917318i \(-0.630349\pi\)
−0.398155 + 0.917318i \(0.630349\pi\)
\(200\) −11.1724 13.2968i −0.0558618 0.0664839i
\(201\) 6.70914i 0.0333788i
\(202\) 130.782 + 242.422i 0.647435 + 1.20011i
\(203\) −46.9379 46.9379i −0.231221 0.231221i
\(204\) 5.50220 1.13865i 0.0269716 0.00558162i
\(205\) −177.769 177.769i −0.867166 0.867166i
\(206\) 79.4991 265.759i 0.385918 1.29009i
\(207\) 152.979i 0.739028i
\(208\) 52.2750 131.924i 0.251322 0.634250i
\(209\) 149.187 0.713813
\(210\) −19.9803 5.97689i −0.0951441 0.0284614i
\(211\) −197.031 + 197.031i −0.933798 + 0.933798i −0.997941 0.0641430i \(-0.979569\pi\)
0.0641430 + 0.997941i \(0.479569\pi\)
\(212\) −60.3782 + 12.4949i −0.284803 + 0.0589384i
\(213\) −7.55315 + 7.55315i −0.0354608 + 0.0354608i
\(214\) 79.0064 42.6224i 0.369189 0.199170i
\(215\) −401.841 −1.86903
\(216\) 29.6245 + 2.57200i 0.137150 + 0.0119074i
\(217\) 50.8022i 0.234111i
\(218\) −1.77314 + 0.956574i −0.00813366 + 0.00438796i
\(219\) 11.4902 + 11.4902i 0.0524664 + 0.0524664i
\(220\) −135.982 89.3503i −0.618098 0.406138i
\(221\) 42.5585 + 42.5585i 0.192573 + 0.192573i
\(222\) −10.2004 3.05133i −0.0459476 0.0137448i
\(223\) 15.7698i 0.0707168i 0.999375 + 0.0353584i \(0.0112573\pi\)
−0.999375 + 0.0353584i \(0.988743\pi\)
\(224\) 307.131 36.2427i 1.37112 0.161798i
\(225\) 19.4453 0.0864236
\(226\) −8.53398 + 28.5284i −0.0377610 + 0.126232i
\(227\) 199.289 199.289i 0.877927 0.877927i −0.115393 0.993320i \(-0.536813\pi\)
0.993320 + 0.115393i \(0.0368127\pi\)
\(228\) −8.69212 + 13.2285i −0.0381233 + 0.0580196i
\(229\) 230.522 230.522i 1.00664 1.00664i 0.00666715 0.999978i \(-0.497878\pi\)
0.999978 0.00666715i \(-0.00212224\pi\)
\(230\) 84.5376 + 156.702i 0.367555 + 0.681312i
\(231\) −15.6110 −0.0675801
\(232\) 54.7422 + 4.75272i 0.235958 + 0.0204859i
\(233\) 344.791i 1.47979i 0.672722 + 0.739895i \(0.265125\pi\)
−0.672722 + 0.739895i \(0.734875\pi\)
\(234\) 75.4361 + 139.831i 0.322377 + 0.597568i
\(235\) 148.914 + 148.914i 0.633676 + 0.633676i
\(236\) −58.3383 281.903i −0.247196 1.19450i
\(237\) 15.8825 + 15.8825i 0.0670146 + 0.0670146i
\(238\) −37.5922 + 125.668i −0.157950 + 0.528016i
\(239\) 77.1978i 0.323004i −0.986872 0.161502i \(-0.948366\pi\)
0.986872 0.161502i \(-0.0516337\pi\)
\(240\) 15.8455 6.85170i 0.0660228 0.0285487i
\(241\) −293.483 −1.21777 −0.608885 0.793259i \(-0.708383\pi\)
−0.608885 + 0.793259i \(0.708383\pi\)
\(242\) 115.162 + 34.4495i 0.475876 + 0.142353i
\(243\) −35.3413 + 35.3413i −0.145438 + 0.145438i
\(244\) 19.5051 + 94.2526i 0.0799388 + 0.386281i
\(245\) 163.656 163.656i 0.667982 0.667982i
\(246\) 17.5725 9.48000i 0.0714328 0.0385366i
\(247\) −169.552 −0.686445
\(248\) −27.0525 32.1965i −0.109083 0.129824i
\(249\) 16.7785i 0.0673837i
\(250\) −209.460 + 113.000i −0.837839 + 0.451998i
\(251\) 79.6322 + 79.6322i 0.317260 + 0.317260i 0.847714 0.530454i \(-0.177979\pi\)
−0.530454 + 0.847714i \(0.677979\pi\)
\(252\) −190.147 + 289.383i −0.754550 + 1.14834i
\(253\) 94.2427 + 94.2427i 0.372501 + 0.372501i
\(254\) −204.757 61.2508i −0.806129 0.241145i
\(255\) 7.32208i 0.0287140i
\(256\) −175.348 + 186.518i −0.684954 + 0.728587i
\(257\) 221.860 0.863270 0.431635 0.902048i \(-0.357937\pi\)
0.431635 + 0.902048i \(0.357937\pi\)
\(258\) 9.14637 30.5756i 0.0354510 0.118510i
\(259\) 175.753 175.753i 0.678585 0.678585i
\(260\) 154.544 + 101.547i 0.594399 + 0.390566i
\(261\) −43.5028 + 43.5028i −0.166678 + 0.166678i
\(262\) −205.734 381.355i −0.785243 1.45555i
\(263\) 374.223 1.42290 0.711451 0.702736i \(-0.248039\pi\)
0.711451 + 0.702736i \(0.248039\pi\)
\(264\) 9.89366 8.31296i 0.0374760 0.0314885i
\(265\) 80.3486i 0.303202i
\(266\) −175.445 325.211i −0.659568 1.22260i
\(267\) 6.45876 + 6.45876i 0.0241901 + 0.0241901i
\(268\) −126.960 + 26.2737i −0.473732 + 0.0980362i
\(269\) −357.970 357.970i −1.33075 1.33075i −0.904704 0.426042i \(-0.859908\pi\)
−0.426042 0.904704i \(-0.640092\pi\)
\(270\) −11.1055 + 37.1247i −0.0411313 + 0.137499i
\(271\) 359.030i 1.32484i −0.749135 0.662418i \(-0.769530\pi\)
0.749135 0.662418i \(-0.230470\pi\)
\(272\) −43.0944 99.6615i −0.158435 0.366403i
\(273\) 17.7420 0.0649890
\(274\) 144.034 + 43.0862i 0.525670 + 0.157249i
\(275\) 11.9793 11.9793i 0.0435610 0.0435610i
\(276\) −13.8474 + 2.86565i −0.0501718 + 0.0103828i
\(277\) −351.765 + 351.765i −1.26991 + 1.26991i −0.323775 + 0.946134i \(0.604952\pi\)
−0.946134 + 0.323775i \(0.895048\pi\)
\(278\) 267.412 144.264i 0.961915 0.518934i
\(279\) 47.0843 0.168761
\(280\) −34.8585 + 401.502i −0.124495 + 1.43393i
\(281\) 191.390i 0.681103i −0.940226 0.340552i \(-0.889386\pi\)
0.940226 0.340552i \(-0.110614\pi\)
\(282\) −14.7201 + 7.94123i −0.0521991 + 0.0281604i
\(283\) −31.3119 31.3119i −0.110643 0.110643i 0.649618 0.760261i \(-0.274929\pi\)
−0.760261 + 0.649618i \(0.774929\pi\)
\(284\) 172.511 + 113.353i 0.607432 + 0.399129i
\(285\) −14.5855 14.5855i −0.0511771 0.0511771i
\(286\) 132.615 + 39.6705i 0.463690 + 0.138708i
\(287\) 466.117i 1.62410i
\(288\) −33.5904 284.654i −0.116633 0.988382i
\(289\) −242.947 −0.840647
\(290\) −20.5214 + 68.6016i −0.0707636 + 0.236557i
\(291\) 16.4953 16.4953i 0.0566850 0.0566850i
\(292\) 172.437 262.430i 0.590537 0.898733i
\(293\) −92.0889 + 92.0889i −0.314297 + 0.314297i −0.846572 0.532275i \(-0.821337\pi\)
0.532275 + 0.846572i \(0.321337\pi\)
\(294\) 8.72737 + 16.1774i 0.0296849 + 0.0550250i
\(295\) 375.144 1.27167
\(296\) −17.7960 + 204.976i −0.0601217 + 0.692485i
\(297\) 29.0063i 0.0976643i
\(298\) −196.109 363.513i −0.658082 1.21984i
\(299\) −107.107 107.107i −0.358219 0.358219i
\(300\) 0.364256 + 1.76016i 0.00121419 + 0.00586720i
\(301\) 526.821 + 526.821i 1.75023 + 1.75023i
\(302\) −126.394 + 422.526i −0.418524 + 1.39909i
\(303\) 28.5079i 0.0940854i
\(304\) 284.367 + 112.681i 0.935419 + 0.370661i
\(305\) −125.427 −0.411236
\(306\) 116.471 + 34.8411i 0.380624 + 0.113860i
\(307\) −257.566 + 257.566i −0.838978 + 0.838978i −0.988724 0.149746i \(-0.952154\pi\)
0.149746 + 0.988724i \(0.452154\pi\)
\(308\) 61.1343 + 295.414i 0.198488 + 0.959137i
\(309\) −20.3005 + 20.3005i −0.0656976 + 0.0656976i
\(310\) 48.2302 26.0192i 0.155581 0.0839330i
\(311\) −130.914 −0.420946 −0.210473 0.977600i \(-0.567500\pi\)
−0.210473 + 0.977600i \(0.567500\pi\)
\(312\) −11.2442 + 9.44773i −0.0360391 + 0.0302812i
\(313\) 51.8354i 0.165608i −0.996566 0.0828041i \(-0.973612\pi\)
0.996566 0.0828041i \(-0.0263876\pi\)
\(314\) 272.728 147.132i 0.868561 0.468572i
\(315\) −319.068 319.068i −1.01291 1.01291i
\(316\) 238.354 362.748i 0.754283 1.14794i
\(317\) −109.636 109.636i −0.345856 0.345856i 0.512707 0.858563i \(-0.328643\pi\)
−0.858563 + 0.512707i \(0.828643\pi\)
\(318\) 6.11363 + 1.82883i 0.0192253 + 0.00575103i
\(319\) 53.5999i 0.168025i
\(320\) −191.710 273.019i −0.599094 0.853184i
\(321\) −9.29086 −0.0289435
\(322\) 94.6086 316.269i 0.293815 0.982202i
\(323\) −91.7367 + 91.7367i −0.284014 + 0.284014i
\(324\) 266.916 + 175.384i 0.823814 + 0.541309i
\(325\) −13.6145 + 13.6145i −0.0418909 + 0.0418909i
\(326\) 76.2486 + 141.337i 0.233891 + 0.433549i
\(327\) 0.208514 0.000637659
\(328\) −248.210 295.407i −0.756738 0.900631i
\(329\) 390.458i 1.18680i
\(330\) 7.99546 + 14.8207i 0.0242287 + 0.0449111i
\(331\) 323.226 + 323.226i 0.976515 + 0.976515i 0.999730 0.0232157i \(-0.00739046\pi\)
−0.0232157 + 0.999730i \(0.507390\pi\)
\(332\) −317.508 + 65.7066i −0.956349 + 0.197911i
\(333\) −162.891 162.891i −0.489163 0.489163i
\(334\) −61.1451 + 204.403i −0.183069 + 0.611986i
\(335\) 168.953i 0.504337i
\(336\) −29.7564 11.7910i −0.0885607 0.0350922i
\(337\) 315.159 0.935191 0.467596 0.883943i \(-0.345120\pi\)
0.467596 + 0.883943i \(0.345120\pi\)
\(338\) 173.104 + 51.7821i 0.512141 + 0.153202i
\(339\) 2.17920 2.17920i 0.00642832 0.00642832i
\(340\) 138.559 28.6740i 0.407527 0.0843354i
\(341\) 29.0063 29.0063i 0.0850625 0.0850625i
\(342\) −301.411 + 162.606i −0.881320 + 0.475455i
\(343\) 44.4459 0.129580
\(344\) −614.414 53.3435i −1.78609 0.155068i
\(345\) 18.4275i 0.0534132i
\(346\) −443.990 + 239.524i −1.28321 + 0.692267i
\(347\) −307.568 307.568i −0.886363 0.886363i 0.107809 0.994172i \(-0.465616\pi\)
−0.994172 + 0.107809i \(0.965616\pi\)
\(348\) −4.75272 3.12291i −0.0136573 0.00897387i
\(349\) 170.461 + 170.461i 0.488427 + 0.488427i 0.907810 0.419382i \(-0.137753\pi\)
−0.419382 + 0.907810i \(0.637753\pi\)
\(350\) −40.2013 12.0258i −0.114861 0.0343594i
\(351\) 32.9659i 0.0939198i
\(352\) −196.054 154.668i −0.556973 0.439397i
\(353\) 238.136 0.674606 0.337303 0.941396i \(-0.390485\pi\)
0.337303 + 0.941396i \(0.390485\pi\)
\(354\) −8.53871 + 28.5442i −0.0241206 + 0.0806334i
\(355\) −190.207 + 190.207i −0.535795 + 0.535795i
\(356\) 96.9289 147.515i 0.272272 0.414369i
\(357\) 9.59938 9.59938i 0.0268890 0.0268890i
\(358\) 81.1961 + 150.508i 0.226805 + 0.420413i
\(359\) 33.6470 0.0937241 0.0468620 0.998901i \(-0.485078\pi\)
0.0468620 + 0.998901i \(0.485078\pi\)
\(360\) 372.119 + 32.3074i 1.03366 + 0.0897428i
\(361\) 4.47577i 0.0123983i
\(362\) 197.561 + 366.207i 0.545750 + 1.01162i
\(363\) −8.79687 8.79687i −0.0242338 0.0242338i
\(364\) −69.4796 335.740i −0.190878 0.922363i
\(365\) 289.351 + 289.351i 0.792741 + 0.792741i
\(366\) 2.85487 9.54360i 0.00780018 0.0260754i
\(367\) 240.758i 0.656016i −0.944675 0.328008i \(-0.893623\pi\)
0.944675 0.328008i \(-0.106377\pi\)
\(368\) 108.456 + 250.819i 0.294717 + 0.681573i
\(369\) 432.005 1.17075
\(370\) −256.871 76.8402i −0.694245 0.207676i
\(371\) −105.339 + 105.339i −0.283931 + 0.283931i
\(372\) 0.881999 + 4.26200i 0.00237096 + 0.0114570i
\(373\) 432.504 432.504i 1.15953 1.15953i 0.174951 0.984577i \(-0.444023\pi\)
0.984577 0.174951i \(-0.0559766\pi\)
\(374\) 93.2159 50.2882i 0.249240 0.134460i
\(375\) 24.6317 0.0656845
\(376\) 207.921 + 247.457i 0.552982 + 0.658131i
\(377\) 60.9166i 0.161583i
\(378\) 63.2306 34.1117i 0.167277 0.0902426i
\(379\) −174.716 174.716i −0.460993 0.460993i 0.437988 0.898981i \(-0.355691\pi\)
−0.898981 + 0.437988i \(0.855691\pi\)
\(380\) −218.889 + 333.126i −0.576024 + 0.876646i
\(381\) 15.6408 + 15.6408i 0.0410518 + 0.0410518i
\(382\) 204.757 + 61.2508i 0.536013 + 0.160343i
\(383\) 673.381i 1.75817i 0.476661 + 0.879087i \(0.341847\pi\)
−0.476661 + 0.879087i \(0.658153\pi\)
\(384\) 25.1372 8.37278i 0.0654616 0.0218041i
\(385\) −393.124 −1.02110
\(386\) −39.0838 + 130.654i −0.101253 + 0.338482i
\(387\) 488.266 488.266i 1.26167 1.26167i
\(388\) −376.746 247.551i −0.970995 0.638019i
\(389\) −274.646 + 274.646i −0.706031 + 0.706031i −0.965698 0.259667i \(-0.916387\pi\)
0.259667 + 0.965698i \(0.416387\pi\)
\(390\) −9.08689 16.8438i −0.0232997 0.0431892i
\(391\) −115.902 −0.296424
\(392\) 271.954 228.504i 0.693760 0.582919i
\(393\) 44.8459i 0.114112i
\(394\) −83.0637 153.970i −0.210822 0.390786i
\(395\) 399.960 + 399.960i 1.01256 + 1.01256i
\(396\) 273.795 56.6604i 0.691401 0.143082i
\(397\) −271.254 271.254i −0.683259 0.683259i 0.277474 0.960733i \(-0.410503\pi\)
−0.960733 + 0.277474i \(0.910503\pi\)
\(398\) 90.8298 303.637i 0.228216 0.762907i
\(399\) 38.2436i 0.0958487i
\(400\) 31.8819 13.7860i 0.0797046 0.0344649i
\(401\) −415.193 −1.03539 −0.517697 0.855564i \(-0.673210\pi\)
−0.517697 + 0.855564i \(0.673210\pi\)
\(402\) 12.8554 + 3.84556i 0.0319787 + 0.00956608i
\(403\) −32.9659 + 32.9659i −0.0818011 + 0.0818011i
\(404\) −539.467 + 111.640i −1.33532 + 0.276336i
\(405\) −294.296 + 294.296i −0.726658 + 0.726658i
\(406\) 116.842 63.0340i 0.287788 0.155256i
\(407\) −200.699 −0.493117
\(408\) −0.971991 + 11.1955i −0.00238233 + 0.0274398i
\(409\) 634.686i 1.55180i 0.630856 + 0.775900i \(0.282704\pi\)
−0.630856 + 0.775900i \(0.717296\pi\)
\(410\) 442.518 238.730i 1.07931 0.582268i
\(411\) −11.0023 11.0023i −0.0267696 0.0267696i
\(412\) 463.656 + 304.657i 1.12538 + 0.739460i
\(413\) −491.820 491.820i −1.19085 1.19085i
\(414\) −293.124 87.6849i −0.708028 0.211799i
\(415\) 422.525i 1.01813i
\(416\) 222.817 + 175.781i 0.535618 + 0.422550i
\(417\) −31.4467 −0.0754117
\(418\) −85.5113 + 285.858i −0.204573 + 0.683870i
\(419\) 19.2687 19.2687i 0.0459873 0.0459873i −0.683739 0.729726i \(-0.739647\pi\)
0.729726 + 0.683739i \(0.239647\pi\)
\(420\) 22.9047 34.8585i 0.0545350 0.0829963i
\(421\) 244.505 244.505i 0.580773 0.580773i −0.354343 0.935116i \(-0.615295\pi\)
0.935116 + 0.354343i \(0.115295\pi\)
\(422\) −264.598 490.468i −0.627009 1.16225i
\(423\) −361.883 −0.855515
\(424\) 10.6661 122.853i 0.0251559 0.289747i
\(425\) 14.7324i 0.0346644i
\(426\) −10.1433 18.8020i −0.0238106 0.0441361i
\(427\) 164.437 + 164.437i 0.385099 + 0.385099i
\(428\) 36.3840 + 175.815i 0.0850093 + 0.410783i
\(429\) −10.1301 10.1301i −0.0236133 0.0236133i
\(430\) 230.328 769.969i 0.535647 1.79063i
\(431\) 337.331i 0.782670i −0.920248 0.391335i \(-0.872013\pi\)
0.920248 0.391335i \(-0.127987\pi\)
\(432\) −21.9085 + 55.2894i −0.0507140 + 0.127985i
\(433\) −424.560 −0.980508 −0.490254 0.871580i \(-0.663096\pi\)
−0.490254 + 0.871580i \(0.663096\pi\)
\(434\) −97.3423 29.1189i −0.224291 0.0670943i
\(435\) 5.24027 5.24027i 0.0120466 0.0120466i
\(436\) −0.816565 3.94581i −0.00187285 0.00905003i
\(437\) 230.874 230.874i 0.528317 0.528317i
\(438\) −28.6023 + 15.4304i −0.0653021 + 0.0352292i
\(439\) −162.004 −0.369029 −0.184514 0.982830i \(-0.559071\pi\)
−0.184514 + 0.982830i \(0.559071\pi\)
\(440\) 249.147 209.341i 0.566243 0.475775i
\(441\) 397.707i 0.901831i
\(442\) −105.940 + 57.1528i −0.239684 + 0.129305i
\(443\) 492.189 + 492.189i 1.11104 + 1.11104i 0.993010 + 0.118026i \(0.0376567\pi\)
0.118026 + 0.993010i \(0.462343\pi\)
\(444\) 11.6934 17.7960i 0.0263364 0.0400811i
\(445\) 162.648 + 162.648i 0.365500 + 0.365500i
\(446\) −30.2167 9.03900i −0.0677504 0.0202668i
\(447\) 42.7478i 0.0956327i
\(448\) −106.597 + 609.268i −0.237940 + 1.35997i
\(449\) 195.434 0.435266 0.217633 0.976031i \(-0.430166\pi\)
0.217633 + 0.976031i \(0.430166\pi\)
\(450\) −11.1457 + 37.2593i −0.0247682 + 0.0827983i
\(451\) 266.137 266.137i 0.590104 0.590104i
\(452\) −49.7720 32.7040i −0.110115 0.0723540i
\(453\) 32.2755 32.2755i 0.0712483 0.0712483i
\(454\) 267.630 + 496.089i 0.589494 + 1.09271i
\(455\) 446.788 0.981951
\(456\) −20.3650 24.2373i −0.0446600 0.0531521i
\(457\) 386.874i 0.846552i 0.906001 + 0.423276i \(0.139120\pi\)
−0.906001 + 0.423276i \(0.860880\pi\)
\(458\) 309.573 + 573.835i 0.675923 + 1.25291i
\(459\) −17.8363 17.8363i −0.0388590 0.0388590i
\(460\) −348.713 + 72.1642i −0.758071 + 0.156879i
\(461\) −174.401 174.401i −0.378310 0.378310i 0.492182 0.870492i \(-0.336199\pi\)
−0.870492 + 0.492182i \(0.836199\pi\)
\(462\) 8.94796 29.9123i 0.0193679 0.0647453i
\(463\) 60.5295i 0.130733i 0.997861 + 0.0653666i \(0.0208217\pi\)
−0.997861 + 0.0653666i \(0.979178\pi\)
\(464\) −40.4840 + 102.168i −0.0872500 + 0.220189i
\(465\) −5.67168 −0.0121972
\(466\) −660.656 197.628i −1.41772 0.424095i
\(467\) 306.482 306.482i 0.656279 0.656279i −0.298219 0.954497i \(-0.596393\pi\)
0.954497 + 0.298219i \(0.0963926\pi\)
\(468\) −311.170 + 64.3949i −0.664892 + 0.137596i
\(469\) −221.500 + 221.500i −0.472282 + 0.472282i
\(470\) −370.690 + 199.980i −0.788701 + 0.425489i
\(471\) −32.0718 −0.0680930
\(472\) 573.594 + 49.7995i 1.21524 + 0.105508i
\(473\) 601.593i 1.27187i
\(474\) −39.5360 + 21.3289i −0.0834093 + 0.0449977i
\(475\) −29.3467 29.3467i −0.0617825 0.0617825i
\(476\) −219.246 144.061i −0.460600 0.302650i
\(477\) 97.6295 + 97.6295i 0.204674 + 0.204674i
\(478\) 147.919 + 44.2485i 0.309454 + 0.0925700i
\(479\) 376.452i 0.785912i 0.919557 + 0.392956i \(0.128547\pi\)
−0.919557 + 0.392956i \(0.871453\pi\)
\(480\) 4.04623 + 34.2889i 0.00842964 + 0.0714351i
\(481\) 228.095 0.474210
\(482\) 168.219 562.344i 0.349002 1.16669i
\(483\) −24.1588 + 24.1588i −0.0500183 + 0.0500183i
\(484\) −132.018 + 200.917i −0.272764 + 0.415117i
\(485\) 415.393 415.393i 0.856481 0.856481i
\(486\) −47.4607 87.9747i −0.0976557 0.181018i
\(487\) 77.2033 0.158528 0.0792641 0.996854i \(-0.474743\pi\)
0.0792641 + 0.996854i \(0.474743\pi\)
\(488\) −191.778 16.6502i −0.392987 0.0341192i
\(489\) 16.6207i 0.0339892i
\(490\) 219.777 + 407.386i 0.448524 + 0.831400i
\(491\) −581.438 581.438i −1.18419 1.18419i −0.978648 0.205543i \(-0.934104\pi\)
−0.205543 0.978648i \(-0.565896\pi\)
\(492\) 8.09246 + 39.1045i 0.0164481 + 0.0794806i
\(493\) −32.9592 32.9592i −0.0668543 0.0668543i
\(494\) 97.1842 324.879i 0.196729 0.657650i
\(495\) 364.354i 0.736069i
\(496\) 77.1978 33.3809i 0.155641 0.0673002i
\(497\) 498.730 1.00348
\(498\) 32.1495 + 9.61717i 0.0645572 + 0.0193116i
\(499\) −174.006 + 174.006i −0.348709 + 0.348709i −0.859629 0.510920i \(-0.829305\pi\)
0.510920 + 0.859629i \(0.329305\pi\)
\(500\) −96.4603 466.117i −0.192921 0.932233i
\(501\) 15.6138 15.6138i 0.0311652 0.0311652i
\(502\) −198.228 + 106.940i −0.394876 + 0.213028i
\(503\) −355.262 −0.706286 −0.353143 0.935569i \(-0.614887\pi\)
−0.353143 + 0.935569i \(0.614887\pi\)
\(504\) −445.499 530.210i −0.883926 1.05200i
\(505\) 717.899i 1.42158i
\(506\) −234.597 + 126.561i −0.463631 + 0.250120i
\(507\) −13.2229 13.2229i −0.0260806 0.0260806i
\(508\) 234.726 357.228i 0.462059 0.703204i
\(509\) 279.667 + 279.667i 0.549444 + 0.549444i 0.926280 0.376836i \(-0.122988\pi\)
−0.376836 + 0.926280i \(0.622988\pi\)
\(510\) −14.0299 4.19689i −0.0275096 0.00822920i
\(511\) 758.688i 1.48471i
\(512\) −256.882 442.895i −0.501723 0.865029i
\(513\) 71.0592 0.138517
\(514\) −127.167 + 425.108i −0.247406 + 0.827059i
\(515\) −511.218 + 511.218i −0.992657 + 0.992657i
\(516\) 53.3435 + 35.0508i 0.103379 + 0.0679279i
\(517\) −222.938 + 222.938i −0.431215 + 0.431215i
\(518\) 236.023 + 437.501i 0.455644 + 0.844597i
\(519\) 52.2116 0.100600
\(520\) −283.157 + 237.917i −0.544533 + 0.457533i
\(521\) 705.745i 1.35460i 0.735708 + 0.677299i \(0.236849\pi\)
−0.735708 + 0.677299i \(0.763151\pi\)
\(522\) −58.4210 108.291i −0.111918 0.207454i
\(523\) −186.762 186.762i −0.357098 0.357098i 0.505644 0.862742i \(-0.331255\pi\)
−0.862742 + 0.505644i \(0.831255\pi\)
\(524\) 848.640 175.621i 1.61954 0.335155i
\(525\) 3.07085 + 3.07085i 0.00584925 + 0.00584925i
\(526\) −214.498 + 717.051i −0.407791 + 1.36321i
\(527\) 35.6726i 0.0676899i
\(528\) 10.2576 + 23.7221i 0.0194273 + 0.0449283i
\(529\) −237.309 −0.448599
\(530\) 153.956 + 46.0544i 0.290484 + 0.0868952i
\(531\) −455.827 + 455.827i −0.858432 + 0.858432i
\(532\) 723.701 149.766i 1.36034 0.281515i
\(533\) −302.466 + 302.466i −0.567479 + 0.567479i
\(534\) −16.0777 + 8.67362i −0.0301081 + 0.0162427i
\(535\) −233.967 −0.437321
\(536\) 22.4281 258.329i 0.0418435 0.481956i
\(537\) 17.6992i 0.0329593i
\(538\) 891.092 480.727i 1.65630 0.893544i
\(539\) 245.008 + 245.008i 0.454560 + 0.454560i
\(540\) −64.7694 42.5585i −0.119943 0.0788120i
\(541\) 119.274 + 119.274i 0.220470 + 0.220470i 0.808696 0.588226i \(-0.200174\pi\)
−0.588226 + 0.808696i \(0.700174\pi\)
\(542\) 687.940 + 205.790i 1.26926 + 0.379686i
\(543\) 43.0645i 0.0793085i
\(544\) 215.663 25.4491i 0.396439 0.0467815i
\(545\) 5.25091 0.00963470
\(546\) −10.1694 + 33.9956i −0.0186253 + 0.0622629i
\(547\) −141.472 + 141.472i −0.258632 + 0.258632i −0.824498 0.565865i \(-0.808542\pi\)
0.565865 + 0.824498i \(0.308542\pi\)
\(548\) −165.115 + 251.288i −0.301305 + 0.458554i
\(549\) 152.403 152.403i 0.277602 0.277602i
\(550\) 16.0873 + 29.8199i 0.0292496 + 0.0542180i
\(551\) 131.308 0.238309
\(552\) 2.44622 28.1757i 0.00443155 0.0510429i
\(553\) 1048.71i 1.89640i
\(554\) −472.393 875.644i −0.852695 1.58059i
\(555\) 19.6216 + 19.6216i 0.0353542 + 0.0353542i
\(556\) 123.149 + 595.080i 0.221490 + 1.07029i
\(557\) 375.881 + 375.881i 0.674831 + 0.674831i 0.958826 0.283995i \(-0.0916599\pi\)
−0.283995 + 0.958826i \(0.591660\pi\)
\(558\) −26.9879 + 90.2185i −0.0483654 + 0.161682i
\(559\) 683.715i 1.22310i
\(560\) −749.340 296.926i −1.33811 0.530226i
\(561\) −10.9618 −0.0195398
\(562\) 366.724 + 109.701i 0.652533 + 0.195198i
\(563\) 305.349 305.349i 0.542360 0.542360i −0.381860 0.924220i \(-0.624716\pi\)
0.924220 + 0.381860i \(0.124716\pi\)
\(564\) −6.77891 32.7571i −0.0120193 0.0580800i
\(565\) 54.8777 54.8777i 0.0971287 0.0971287i
\(566\) 77.9444 42.0495i 0.137711 0.0742924i
\(567\) 771.656 1.36095
\(568\) −316.076 + 265.577i −0.556472 + 0.467565i
\(569\) 296.778i 0.521578i 0.965396 + 0.260789i \(0.0839827\pi\)
−0.965396 + 0.260789i \(0.916017\pi\)
\(570\) 36.3074 19.5872i 0.0636972 0.0343634i
\(571\) −347.717 347.717i −0.608961 0.608961i 0.333714 0.942674i \(-0.391698\pi\)
−0.942674 + 0.333714i \(0.891698\pi\)
\(572\) −152.026 + 231.367i −0.265779 + 0.404487i
\(573\) −15.6408 15.6408i −0.0272963 0.0272963i
\(574\) −893.129 267.170i −1.55597 0.465453i
\(575\) 37.0771i 0.0644820i
\(576\) 564.680 + 98.7960i 0.980348 + 0.171521i
\(577\) −189.382 −0.328218 −0.164109 0.986442i \(-0.552475\pi\)
−0.164109 + 0.986442i \(0.552475\pi\)
\(578\) 139.253 465.512i 0.240922 0.805385i
\(579\) 9.98027 9.98027i 0.0172371 0.0172371i
\(580\) −119.685 78.6425i −0.206354 0.135591i
\(581\) −553.939 + 553.939i −0.953423 + 0.953423i
\(582\) 22.1520 + 41.0616i 0.0380618 + 0.0705527i
\(583\) 120.289 0.206328
\(584\) 404.006 + 480.827i 0.691791 + 0.823334i
\(585\) 414.091i 0.707847i
\(586\) −123.668 229.236i −0.211038 0.391188i
\(587\) −641.187 641.187i −1.09231 1.09231i −0.995281 0.0970301i \(-0.969066\pi\)
−0.0970301 0.995281i \(-0.530934\pi\)
\(588\) −35.9999 + 7.44998i −0.0612243 + 0.0126700i
\(589\) −71.0592 71.0592i −0.120644 0.120644i
\(590\) −215.026 + 718.815i −0.364451 + 1.21833i
\(591\) 18.1063i 0.0306367i
\(592\) −382.555 151.588i −0.646207 0.256060i
\(593\) −127.909 −0.215697 −0.107849 0.994167i \(-0.534396\pi\)
−0.107849 + 0.994167i \(0.534396\pi\)
\(594\) −55.5792 16.6259i −0.0935676 0.0279898i
\(595\) 241.736 241.736i 0.406279 0.406279i
\(596\) 808.936 167.405i 1.35728 0.280881i
\(597\) −23.1939 + 23.1939i −0.0388508 + 0.0388508i
\(598\) 266.621 143.837i 0.445855 0.240530i
\(599\) 794.804 1.32688 0.663442 0.748227i \(-0.269095\pi\)
0.663442 + 0.748227i \(0.269095\pi\)
\(600\) −3.58144 0.310941i −0.00596907 0.000518235i
\(601\) 89.2746i 0.148543i −0.997238 0.0742717i \(-0.976337\pi\)
0.997238 0.0742717i \(-0.0236632\pi\)
\(602\) −1311.41 + 707.479i −2.17842 + 1.17522i
\(603\) 205.290 + 205.290i 0.340448 + 0.340448i
\(604\) −737.157 484.369i −1.22046 0.801936i
\(605\) −221.527 221.527i −0.366160 0.366160i
\(606\) 54.6241 + 16.3402i 0.0901388 + 0.0269641i
\(607\) 316.002i 0.520596i −0.965528 0.260298i \(-0.916179\pi\)
0.965528 0.260298i \(-0.0838208\pi\)
\(608\) −378.903 + 480.291i −0.623195 + 0.789953i
\(609\) −13.7402 −0.0225619
\(610\) 71.8926 240.332i 0.117857 0.393986i
\(611\) 253.370 253.370i 0.414682 0.414682i
\(612\) −133.518 + 203.201i −0.218167 + 0.332027i
\(613\) −192.003 + 192.003i −0.313219 + 0.313219i −0.846155 0.532936i \(-0.821089\pi\)
0.532936 + 0.846155i \(0.321089\pi\)
\(614\) −345.892 641.157i −0.563341 1.04423i
\(615\) −52.0385 −0.0846154
\(616\) −601.086 52.1864i −0.975789 0.0847182i
\(617\) 105.762i 0.171413i −0.996320 0.0857066i \(-0.972685\pi\)
0.996320 0.0857066i \(-0.0273148\pi\)
\(618\) −27.2621 50.5339i −0.0441134 0.0817701i
\(619\) 553.819 + 553.819i 0.894699 + 0.894699i 0.994961 0.100262i \(-0.0319681\pi\)
−0.100262 + 0.994961i \(0.531968\pi\)
\(620\) 22.2109 + 107.328i 0.0358241 + 0.173109i
\(621\) 44.8888 + 44.8888i 0.0722846 + 0.0722846i
\(622\) 75.0378 250.846i 0.120640 0.403289i
\(623\) 426.468i 0.684539i
\(624\) −11.6579 26.9604i −0.0186825 0.0432057i
\(625\) 674.560 1.07930
\(626\) 99.3221 + 29.7111i 0.158661 + 0.0474619i
\(627\) 21.8358 21.8358i 0.0348258 0.0348258i
\(628\) 125.597 + 606.909i 0.199995 + 0.966416i
\(629\) 123.412 123.412i 0.196203 0.196203i
\(630\) 794.252 428.484i 1.26072 0.680133i
\(631\) 762.907 1.20904 0.604522 0.796589i \(-0.293364\pi\)
0.604522 + 0.796589i \(0.293364\pi\)
\(632\) 558.444 + 664.632i 0.883614 + 1.05163i
\(633\) 57.6772i 0.0911172i
\(634\) 272.916 147.233i 0.430468 0.232229i
\(635\) 393.873 + 393.873i 0.620272 + 0.620272i
\(636\) −7.00846 + 10.6661i −0.0110196 + 0.0167706i
\(637\) −278.453 278.453i −0.437132 0.437132i
\(638\) −102.703 30.7225i −0.160977 0.0481544i
\(639\) 462.232i 0.723367i
\(640\) 633.018 210.847i 0.989091 0.329449i
\(641\) −412.834 −0.644046 −0.322023 0.946732i \(-0.604363\pi\)
−0.322023 + 0.946732i \(0.604363\pi\)
\(642\) 5.32536 17.8023i 0.00829495 0.0277294i
\(643\) −372.515 + 372.515i −0.579339 + 0.579339i −0.934721 0.355382i \(-0.884351\pi\)
0.355382 + 0.934721i \(0.384351\pi\)
\(644\) 551.777 + 362.560i 0.856797 + 0.562982i
\(645\) −58.8156 + 58.8156i −0.0911870 + 0.0911870i
\(646\) −123.195 228.359i −0.190705 0.353497i
\(647\) −1170.94 −1.80980 −0.904899 0.425627i \(-0.860054\pi\)
−0.904899 + 0.425627i \(0.860054\pi\)
\(648\) −489.046 + 410.912i −0.754701 + 0.634123i
\(649\) 561.625i 0.865370i
\(650\) −18.2833 33.8905i −0.0281281 0.0521392i
\(651\) 7.43568 + 7.43568i 0.0114219 + 0.0114219i
\(652\) −314.521 + 65.0884i −0.482394 + 0.0998288i
\(653\) 13.7523 + 13.7523i 0.0210602 + 0.0210602i 0.717558 0.696498i \(-0.245260\pi\)
−0.696498 + 0.717558i \(0.745260\pi\)
\(654\) −0.119517 + 0.399536i −0.000182748 + 0.000610911i
\(655\) 1129.33i 1.72417i
\(656\) 708.301 306.274i 1.07973 0.466882i
\(657\) −703.165 −1.07027
\(658\) 748.158 + 223.804i 1.13702 + 0.340127i
\(659\) 283.149 283.149i 0.429664 0.429664i −0.458850 0.888514i \(-0.651738\pi\)
0.888514 + 0.458850i \(0.151738\pi\)
\(660\) −32.9808 + 6.82520i −0.0499709 + 0.0103412i
\(661\) 287.535 287.535i 0.435000 0.435000i −0.455325 0.890325i \(-0.650477\pi\)
0.890325 + 0.455325i \(0.150477\pi\)
\(662\) −804.604 + 434.068i −1.21541 + 0.655692i
\(663\) 12.4582 0.0187907
\(664\) 56.0894 646.041i 0.0844720 0.972953i
\(665\) 963.069i 1.44822i
\(666\) 405.484 218.751i 0.608834 0.328454i
\(667\) 82.9486 + 82.9486i 0.124361 + 0.124361i
\(668\) −356.611 234.321i −0.533849 0.350780i
\(669\) 2.30816 + 2.30816i 0.00345017 + 0.00345017i
\(670\) 323.731 + 96.8408i 0.483181 + 0.144539i
\(671\) 187.776i 0.279845i
\(672\) 39.6486 50.2580i 0.0590009 0.0747887i
\(673\) −45.5265 −0.0676471 −0.0338236 0.999428i \(-0.510768\pi\)
−0.0338236 + 0.999428i \(0.510768\pi\)
\(674\) −180.644 + 603.879i −0.268018 + 0.895962i
\(675\) 5.70586 5.70586i 0.00845312 0.00845312i
\(676\) −198.440 + 302.004i −0.293550 + 0.446752i
\(677\) 208.341 208.341i 0.307742 0.307742i −0.536291 0.844033i \(-0.680175\pi\)
0.844033 + 0.536291i \(0.180175\pi\)
\(678\) 2.92650 + 5.42466i 0.00431637 + 0.00800098i
\(679\) −1089.18 −1.60409
\(680\) −24.4772 + 281.929i −0.0359958 + 0.414602i
\(681\) 58.3382i 0.0856655i
\(682\) 38.9532 + 72.2051i 0.0571162 + 0.105873i
\(683\) −219.645 219.645i −0.321589 0.321589i 0.527787 0.849377i \(-0.323022\pi\)
−0.849377 + 0.527787i \(0.823022\pi\)
\(684\) −138.806 670.739i −0.202932 0.980612i
\(685\) −277.065 277.065i −0.404475 0.404475i
\(686\) −25.4756 + 85.1631i −0.0371365 + 0.124144i
\(687\) 67.4808i 0.0982254i
\(688\) 454.383 1146.71i 0.660441 1.66672i
\(689\) −136.710 −0.198418
\(690\) 35.3091 + 10.5623i 0.0511726 + 0.0153078i
\(691\) 692.991 692.991i 1.00288 1.00288i 0.00288571 0.999996i \(-0.499081\pi\)
0.999996 0.00288571i \(-0.000918553\pi\)
\(692\) −204.466 988.024i −0.295471 1.42778i
\(693\) 477.675 477.675i 0.689285 0.689285i
\(694\) 765.625 413.040i 1.10321 0.595158i
\(695\) −791.905 −1.13943
\(696\) 8.70800 7.31673i 0.0125115 0.0105125i
\(697\) 327.301i 0.469585i
\(698\) −424.327 + 228.916i −0.607918 + 0.327960i
\(699\) 50.4655 + 50.4655i 0.0721967 + 0.0721967i
\(700\) 46.0854 70.1370i 0.0658363 0.100196i
\(701\) 195.377 + 195.377i 0.278712 + 0.278712i 0.832595 0.553883i \(-0.186854\pi\)
−0.553883 + 0.832595i \(0.686854\pi\)
\(702\) 63.1661 + 18.8955i 0.0899802 + 0.0269166i
\(703\) 491.668i 0.699386i
\(704\) 408.735 287.008i 0.580589 0.407682i
\(705\) 43.5917 0.0618322
\(706\) −136.495 + 456.294i −0.193336 + 0.646308i
\(707\) −941.179 + 941.179i −1.33123 + 1.33123i
\(708\) −49.7995 32.7221i −0.0703383 0.0462177i
\(709\) 318.083 318.083i 0.448636 0.448636i −0.446265 0.894901i \(-0.647246\pi\)
0.894901 + 0.446265i \(0.147246\pi\)
\(710\) −255.434 473.480i −0.359766 0.666874i
\(711\) −971.962 −1.36703
\(712\) 227.097 + 270.279i 0.318956 + 0.379606i
\(713\) 89.7775i 0.125915i
\(714\) 12.8912 + 23.8956i 0.0180549 + 0.0334673i
\(715\) −255.101 255.101i −0.356784 0.356784i
\(716\) −334.929 + 69.3118i −0.467778 + 0.0968042i
\(717\) −11.2991 11.2991i −0.0157589 0.0157589i
\(718\) −19.2859 + 64.4711i −0.0268605 + 0.0897926i
\(719\) 1122.38i 1.56103i −0.625139 0.780514i \(-0.714958\pi\)
0.625139 0.780514i \(-0.285042\pi\)
\(720\) −275.197 + 694.501i −0.382217 + 0.964585i
\(721\) 1340.43 1.85913
\(722\) 8.57606 + 2.56544i 0.0118782 + 0.00355324i
\(723\) −42.9557 + 42.9557i −0.0594132 + 0.0594132i
\(724\) −814.929 + 168.645i −1.12559 + 0.232935i
\(725\) 10.5437 10.5437i 0.0145430 0.0145430i
\(726\) 21.8979 11.8135i 0.0301625 0.0162721i
\(727\) 529.192 0.727911 0.363956 0.931416i \(-0.381426\pi\)
0.363956 + 0.931416i \(0.381426\pi\)
\(728\) 683.138 + 59.3102i 0.938376 + 0.0814700i
\(729\) 708.260i 0.971549i
\(730\) −720.277 + 388.576i −0.986681 + 0.532295i
\(731\) 369.926 + 369.926i 0.506055 + 0.506055i
\(732\) 16.6502 + 10.9405i 0.0227462 + 0.0149460i
\(733\) −263.121 263.121i −0.358965 0.358965i 0.504466 0.863431i \(-0.331689\pi\)
−0.863431 + 0.504466i \(0.831689\pi\)
\(734\) 461.317 + 137.998i 0.628498 + 0.188008i
\(735\) 47.9070i 0.0651797i
\(736\) −542.761 + 64.0481i −0.737447 + 0.0870218i
\(737\) 252.938 0.343200
\(738\) −247.618 + 827.767i −0.335525 + 1.12164i
\(739\) −44.5459 + 44.5459i −0.0602787 + 0.0602787i −0.736603 0.676325i \(-0.763572\pi\)
0.676325 + 0.736603i \(0.263572\pi\)
\(740\) 294.468 448.148i 0.397929 0.605606i
\(741\) −24.8165 + 24.8165i −0.0334906 + 0.0334906i
\(742\) −141.462 262.218i −0.190649 0.353393i
\(743\) 762.894 1.02678 0.513388 0.858157i \(-0.328390\pi\)
0.513388 + 0.858157i \(0.328390\pi\)
\(744\) −8.67200 0.752905i −0.0116559 0.00101197i
\(745\) 1076.50i 1.44496i
\(746\) 580.820 + 1076.63i 0.778578 + 1.44320i
\(747\) 513.400 + 513.400i 0.687282 + 0.687282i
\(748\) 42.9277 + 207.436i 0.0573900 + 0.277321i
\(749\) 306.735 + 306.735i 0.409526 + 0.409526i
\(750\) −14.1185 + 47.1969i −0.0188246 + 0.0629292i
\(751\) 1342.93i 1.78819i 0.447876 + 0.894095i \(0.352180\pi\)
−0.447876 + 0.894095i \(0.647820\pi\)
\(752\) −593.331 + 256.561i −0.789004 + 0.341171i
\(753\) 23.3108 0.0309573
\(754\) 116.723 + 34.9163i 0.154805 + 0.0463082i
\(755\) 812.776 812.776i 1.07652 1.07652i
\(756\) 29.1189 + 140.709i 0.0385171 + 0.186123i
\(757\) −394.830 + 394.830i −0.521573 + 0.521573i −0.918046 0.396474i \(-0.870234\pi\)
0.396474 + 0.918046i \(0.370234\pi\)
\(758\) 434.920 234.631i 0.573772 0.309539i
\(759\) 27.5878 0.0363475
\(760\) −512.840 610.356i −0.674790 0.803101i
\(761\) 480.213i 0.631029i −0.948921 0.315514i \(-0.897823\pi\)
0.948921 0.315514i \(-0.102177\pi\)
\(762\) −38.9343 + 21.0043i −0.0510949 + 0.0275647i
\(763\) −6.88404 6.88404i −0.00902233 0.00902233i
\(764\) −234.726 + 357.228i −0.307233 + 0.467576i
\(765\) −224.045 224.045i −0.292870 0.292870i
\(766\) −1290.27 385.970i −1.68442 0.503878i
\(767\) 638.291i 0.832191i
\(768\) 1.63490 + 52.9647i 0.00212878 + 0.0689645i
\(769\) 472.763 0.614777 0.307388 0.951584i \(-0.400545\pi\)
0.307388 + 0.951584i \(0.400545\pi\)
\(770\) 225.332 753.267i 0.292639 0.978269i
\(771\) 32.4727 32.4727i 0.0421177 0.0421177i
\(772\) −227.945 149.777i −0.295265 0.194012i
\(773\) 857.735 857.735i 1.10962 1.10962i 0.116418 0.993200i \(-0.462859\pi\)
0.993200 0.116418i \(-0.0371412\pi\)
\(774\) 655.704 + 1215.44i 0.847163 + 1.57033i
\(775\) −11.4117 −0.0147248
\(776\) 690.279 579.993i 0.889534 0.747414i
\(777\) 51.4485i 0.0662143i
\(778\) −368.828 683.673i −0.474072 0.878757i
\(779\) −651.978 651.978i −0.836942 0.836942i
\(780\) 37.4829 7.75688i 0.0480550 0.00994472i
\(781\) −284.758 284.758i −0.364607 0.364607i
\(782\) 66.4329 222.080i 0.0849525 0.283990i
\(783\) 25.5302i 0.0326056i
\(784\) 281.959 + 652.067i 0.359641 + 0.831719i
\(785\) −807.648 −1.02885
\(786\) −85.9295 25.7049i −0.109325 0.0327034i
\(787\) 170.355 170.355i 0.216462 0.216462i −0.590544 0.807006i \(-0.701087\pi\)
0.807006 + 0.590544i \(0.201087\pi\)
\(788\) 342.633 70.9061i 0.434814 0.0899823i
\(789\) 54.7733 54.7733i 0.0694212 0.0694212i
\(790\) −995.615 + 537.115i −1.26027 + 0.679893i
\(791\) −143.891 −0.181911
\(792\) −48.3672 + 557.097i −0.0610698 + 0.703405i
\(793\) 213.409i 0.269116i
\(794\) 675.229 364.273i 0.850415 0.458782i
\(795\) −11.7603 11.7603i −0.0147928 0.0147928i
\(796\) 529.739 + 348.079i 0.665501 + 0.437285i
\(797\) 835.571 + 835.571i 1.04840 + 1.04840i 0.998768 + 0.0496277i \(0.0158035\pi\)
0.0496277 + 0.998768i \(0.484197\pi\)
\(798\) −73.2788 21.9206i −0.0918281 0.0274694i
\(799\) 274.174i 0.343147i
\(800\) 8.14121 + 68.9909i 0.0101765 + 0.0862386i
\(801\) −395.258 −0.493456
\(802\) 237.981 795.553i 0.296735 0.991962i
\(803\) −433.185 + 433.185i −0.539458 + 0.539458i
\(804\) −14.7370 + 22.4281i −0.0183296 + 0.0278957i
\(805\) −608.380 + 608.380i −0.755751 + 0.755751i
\(806\) −44.2706 82.0615i −0.0549263 0.101813i
\(807\) −104.789 −0.129850
\(808\) 95.2996 1097.67i 0.117945 1.35850i
\(809\) 371.926i 0.459735i −0.973222 0.229868i \(-0.926171\pi\)
0.973222 0.229868i \(-0.0738293\pi\)
\(810\) −395.217 732.589i −0.487923 0.904430i
\(811\) −275.629 275.629i −0.339863 0.339863i 0.516453 0.856316i \(-0.327252\pi\)
−0.856316 + 0.516453i \(0.827252\pi\)
\(812\) 53.8080 + 260.011i 0.0662660 + 0.320211i
\(813\) −52.5497 52.5497i −0.0646367 0.0646367i
\(814\) 115.037 384.560i 0.141323 0.472432i
\(815\) 418.550i 0.513559i
\(816\) −20.8945 8.27948i −0.0256061 0.0101464i
\(817\) −1473.77 −1.80389
\(818\) −1216.13 363.791i −1.48671 0.444732i
\(819\) −542.880 + 542.880i −0.662858 + 0.662858i
\(820\) 203.788 + 984.748i 0.248522 + 1.20091i
\(821\) −904.923 + 904.923i −1.10222 + 1.10222i −0.108079 + 0.994142i \(0.534470\pi\)
−0.994142 + 0.108079i \(0.965530\pi\)
\(822\) 27.3879 14.7752i 0.0333186 0.0179747i
\(823\) 523.237 0.635768 0.317884 0.948130i \(-0.397028\pi\)
0.317884 + 0.948130i \(0.397028\pi\)
\(824\) −849.515 + 713.789i −1.03096 + 0.866249i
\(825\) 3.50671i 0.00425055i
\(826\) 1224.28 660.477i 1.48218 0.799608i
\(827\) 722.805 + 722.805i 0.874008 + 0.874008i 0.992906 0.118898i \(-0.0379363\pi\)
−0.118898 + 0.992906i \(0.537936\pi\)
\(828\) 336.027 511.397i 0.405830 0.617629i
\(829\) −286.380 286.380i −0.345453 0.345453i 0.512960 0.858413i \(-0.328549\pi\)
−0.858413 + 0.512960i \(0.828549\pi\)
\(830\) 809.603 + 242.184i 0.975426 + 0.291788i
\(831\) 102.972i 0.123914i
\(832\) −464.530 + 326.187i −0.558329 + 0.392051i
\(833\) −301.316 −0.361724
\(834\) 18.0247 60.2552i 0.0216123 0.0722484i
\(835\) 393.193 393.193i 0.470890 0.470890i
\(836\) −498.720 327.698i −0.596555 0.391983i
\(837\) 13.8160 13.8160i 0.0165066 0.0165066i
\(838\) 25.8763 + 47.9653i 0.0308787 + 0.0572378i
\(839\) 1353.58 1.61333 0.806666 0.591008i \(-0.201270\pi\)
0.806666 + 0.591008i \(0.201270\pi\)
\(840\) 53.6639 + 63.8681i 0.0638856 + 0.0760334i
\(841\) 793.824i 0.943904i
\(842\) 328.352 + 608.645i 0.389967 + 0.722856i
\(843\) −28.0129 28.0129i −0.0332300 0.0332300i
\(844\) 1091.45 225.870i 1.29319 0.267618i
\(845\) −332.984 332.984i −0.394064 0.394064i
\(846\) 207.425 693.406i 0.245183 0.819629i
\(847\) 580.852i 0.685776i
\(848\) 229.286 + 90.8546i 0.270384 + 0.107140i
\(849\) −9.16597 −0.0107962
\(850\) −28.2288 8.44435i −0.0332104 0.00993453i
\(851\) −310.591 + 310.591i −0.364972 + 0.364972i
\(852\) 41.8405 8.65867i 0.0491086 0.0101628i
\(853\) −668.253 + 668.253i −0.783415 + 0.783415i −0.980405 0.196990i \(-0.936883\pi\)
0.196990 + 0.980405i \(0.436883\pi\)
\(854\) −409.332 + 220.827i −0.479311 + 0.258579i
\(855\) 892.589 1.04396
\(856\) −357.735 31.0586i −0.417915 0.0362834i
\(857\) 488.688i 0.570230i −0.958493 0.285115i \(-0.907968\pi\)
0.958493 0.285115i \(-0.0920319\pi\)
\(858\) 25.2167 13.6039i 0.0293901 0.0158554i
\(859\) −268.818 268.818i −0.312943 0.312943i 0.533106 0.846048i \(-0.321025\pi\)
−0.846048 + 0.533106i \(0.821025\pi\)
\(860\) 1343.32 + 882.666i 1.56200 + 1.02636i
\(861\) 68.2234 + 68.2234i 0.0792374 + 0.0792374i
\(862\) 646.361 + 193.352i 0.749839 + 0.224306i
\(863\) 152.667i 0.176903i 0.996080 + 0.0884514i \(0.0281918\pi\)
−0.996080 + 0.0884514i \(0.971808\pi\)
\(864\) −93.3828 73.6698i −0.108082 0.0852660i
\(865\) 1314.82 1.52002
\(866\) 243.351 813.502i 0.281005 0.939379i
\(867\) −35.5591 + 35.5591i −0.0410139 + 0.0410139i
\(868\) 111.590 169.828i 0.128560 0.195654i
\(869\) −598.777 + 598.777i −0.689042 + 0.689042i
\(870\) 7.03728 + 13.0445i 0.00808882 + 0.0149937i
\(871\) −287.466 −0.330041
\(872\) 8.02864 + 0.697048i 0.00920715 + 0.000799367i
\(873\) 1009.47i 1.15632i
\(874\) 310.047 + 574.713i 0.354744 + 0.657566i
\(875\) −813.208 813.208i −0.929380 0.929380i
\(876\) −13.1719 63.6495i −0.0150364 0.0726592i
\(877\) 162.637 + 162.637i 0.185447 + 0.185447i 0.793725 0.608277i \(-0.208139\pi\)
−0.608277 + 0.793725i \(0.708139\pi\)
\(878\) 92.8576 310.416i 0.105760 0.353549i
\(879\) 26.9573i 0.0306681i
\(880\) 258.313 + 597.382i 0.293537 + 0.678844i
\(881\) 873.243 0.991196 0.495598 0.868552i \(-0.334949\pi\)
0.495598 + 0.868552i \(0.334949\pi\)
\(882\) −762.049 227.959i −0.864001 0.258457i
\(883\) −230.025 + 230.025i −0.260504 + 0.260504i −0.825259 0.564755i \(-0.808971\pi\)
0.564755 + 0.825259i \(0.308971\pi\)
\(884\) −48.7876 235.752i −0.0551896 0.266688i
\(885\) 54.9081 54.9081i 0.0620430 0.0620430i
\(886\) −1225.20 + 660.972i −1.38285 + 0.746018i
\(887\) 430.685 0.485552 0.242776 0.970082i \(-0.421942\pi\)
0.242776 + 0.970082i \(0.421942\pi\)
\(888\) 27.3966 + 32.6061i 0.0308521 + 0.0367186i
\(889\) 1032.75i 1.16170i
\(890\) −404.877 + 218.423i −0.454918 + 0.245419i
\(891\) −440.589 440.589i −0.494489 0.494489i
\(892\) 34.6394 52.7174i 0.0388334 0.0591002i
\(893\) 546.150 + 546.150i 0.611590 + 0.611590i
\(894\) −81.9093 24.5023i −0.0916212 0.0274075i
\(895\) 445.709i 0.497999i
\(896\) −1106.32 553.473i −1.23474 0.617716i
\(897\) −31.3537 −0.0349539
\(898\) −112.020 + 374.473i −0.124743 + 0.417008i
\(899\) 25.5302 25.5302i 0.0283984 0.0283984i
\(900\) −65.0041 42.7127i −0.0722268 0.0474586i
\(901\) −73.9673 + 73.9673i −0.0820947 + 0.0820947i
\(902\) 357.401 + 662.491i 0.396232 + 0.734469i
\(903\) 154.217 0.170783
\(904\) 91.1928 76.6230i 0.100877 0.0847600i
\(905\) 1084.47i 1.19831i
\(906\) 43.3435 + 80.3429i 0.0478405 + 0.0886787i
\(907\) 22.2262 + 22.2262i 0.0245052 + 0.0245052i 0.719253 0.694748i \(-0.244484\pi\)
−0.694748 + 0.719253i \(0.744484\pi\)
\(908\) −1103.96 + 228.459i −1.21582 + 0.251606i
\(909\) 872.301 + 872.301i 0.959627 + 0.959627i
\(910\) −256.091 + 856.093i −0.281419 + 0.940761i
\(911\) 1399.85i 1.53661i 0.640083 + 0.768306i \(0.278900\pi\)
−0.640083 + 0.768306i \(0.721100\pi\)
\(912\) 58.1142 25.1290i 0.0637217 0.0275537i
\(913\) 632.560 0.692837
\(914\) −741.292 221.750i −0.811042 0.242615i
\(915\) −18.3582 + 18.3582i −0.0200636 + 0.0200636i
\(916\) −1276.97 + 264.262i −1.39407 + 0.288496i
\(917\) 1480.57 1480.57i 1.61458 1.61458i
\(918\) 44.3997 23.9528i 0.0483657 0.0260924i
\(919\) −806.944 −0.878068 −0.439034 0.898470i \(-0.644679\pi\)
−0.439034 + 0.898470i \(0.644679\pi\)
\(920\) 61.6018 709.534i 0.0669585 0.771232i
\(921\) 75.3976i 0.0818650i
\(922\) 434.134 234.207i 0.470861 0.254020i
\(923\) 323.629 + 323.629i 0.350628 + 0.350628i
\(924\) 52.1864 + 34.2905i 0.0564788 + 0.0371109i
\(925\) 39.4796 + 39.4796i 0.0426806 + 0.0426806i
\(926\) −115.981 34.6945i −0.125249 0.0374670i
\(927\) 1242.34i 1.34017i
\(928\) −172.559 136.132i −0.185947 0.146694i
\(929\) −1620.69 −1.74455 −0.872276 0.489013i \(-0.837357\pi\)
−0.872276 + 0.489013i \(0.837357\pi\)
\(930\) 3.25091 10.8675i 0.00349560 0.0116855i
\(931\) 600.216 600.216i 0.644701 0.644701i
\(932\) 757.354 1152.61i 0.812611 1.23671i
\(933\) −19.1613 + 19.1613i −0.0205373 + 0.0205373i
\(934\) 411.582 + 762.922i 0.440666 + 0.816833i
\(935\) −276.046 −0.295237
\(936\) 54.9697 633.144i 0.0587283 0.676436i
\(937\) 598.181i 0.638400i −0.947687 0.319200i \(-0.896586\pi\)
0.947687 0.319200i \(-0.103414\pi\)
\(938\) −297.458 551.378i −0.317119 0.587823i
\(939\) −7.58691 7.58691i −0.00807978 0.00807978i
\(940\) −170.710 824.905i −0.181606 0.877559i
\(941\) −977.842 977.842i −1.03915 1.03915i −0.999202 0.0399498i \(-0.987280\pi\)
−0.0399498 0.999202i \(-0.512720\pi\)
\(942\) 18.3830 61.4530i 0.0195149 0.0652367i
\(943\) 823.721i 0.873511i
\(944\) −424.195 + 1070.52i −0.449360 + 1.13403i
\(945\) −187.249 −0.198147
\(946\) 1152.72 + 344.823i 1.21852 + 0.364506i
\(947\) −827.881 + 827.881i −0.874215 + 0.874215i −0.992929 0.118714i \(-0.962123\pi\)
0.118714 + 0.992929i \(0.462123\pi\)
\(948\) −18.2071 87.9806i −0.0192058 0.0928065i
\(949\) 492.317 492.317i 0.518775 0.518775i
\(950\) 73.0523 39.4103i 0.0768972 0.0414846i
\(951\) −32.0939 −0.0337476
\(952\) 401.704 337.524i 0.421958 0.354542i
\(953\) 1846.78i 1.93786i 0.247333 + 0.968930i \(0.420446\pi\)
−0.247333 + 0.968930i \(0.579554\pi\)
\(954\) −243.028 + 131.109i −0.254746 + 0.137431i
\(955\) −393.873 393.873i −0.412432 0.412432i
\(956\) −169.570 + 258.066i −0.177374 + 0.269944i
\(957\) 7.84517 + 7.84517i 0.00819767 + 0.00819767i
\(958\) −721.321 215.776i −0.752945 0.225236i
\(959\) 726.475i 0.757534i
\(960\) −68.0203 11.9008i −0.0708545 0.0123966i
\(961\) 933.368 0.971247
\(962\) −130.740 + 437.055i −0.135905 + 0.454319i
\(963\) 284.287 284.287i 0.295210 0.295210i
\(964\) 981.090 + 644.651i 1.01773 + 0.668725i
\(965\) 251.328 251.328i 0.260443 0.260443i
\(966\) −32.4435 60.1383i −0.0335854 0.0622550i
\(967\) −363.922 −0.376341 −0.188170 0.982136i \(-0.560256\pi\)
−0.188170 + 0.982136i \(0.560256\pi\)
\(968\) −309.307 368.122i −0.319532 0.380291i
\(969\) 26.8542i 0.0277133i
\(970\) 557.841 + 1034.03i 0.575094 + 1.06601i
\(971\) 1161.30 + 1161.30i 1.19598 + 1.19598i 0.975360 + 0.220619i \(0.0708076\pi\)
0.220619 + 0.975360i \(0.429192\pi\)
\(972\) 195.773 40.5141i 0.201412 0.0416811i
\(973\) 1038.20 + 1038.20i 1.06701 + 1.06701i
\(974\) −44.2516 + 147.930i −0.0454328 + 0.151878i
\(975\) 3.98540i 0.00408759i
\(976\) 141.827 357.923i 0.145315 0.366724i
\(977\) 1159.63 1.18693 0.593467 0.804858i \(-0.297759\pi\)
0.593467 + 0.804858i \(0.297759\pi\)
\(978\) 31.8470 + 9.52670i 0.0325634 + 0.00974100i
\(979\) −243.499 + 243.499i −0.248722 + 0.248722i
\(980\) −906.567 + 187.609i −0.925068 + 0.191438i
\(981\) −6.38025 + 6.38025i −0.00650382 + 0.00650382i
\(982\) 1447.37 780.826i 1.47390 0.795139i
\(983\) −1780.51 −1.81131 −0.905653 0.424020i \(-0.860618\pi\)
−0.905653 + 0.424020i \(0.860618\pi\)
\(984\) −79.5668 6.90800i −0.0808605 0.00702033i
\(985\) 455.961i 0.462904i
\(986\) 82.0449 44.2616i 0.0832098 0.0448901i
\(987\) −57.1495 57.1495i −0.0579022 0.0579022i
\(988\) 566.799 + 372.430i 0.573683 + 0.376954i
\(989\) −930.997 930.997i −0.941352 0.941352i
\(990\) −698.141 208.841i −0.705193 0.210951i
\(991\) 675.783i 0.681920i 0.940078 + 0.340960i \(0.110752\pi\)
−0.940078 + 0.340960i \(0.889248\pi\)
\(992\) 19.7129 + 167.053i 0.0198719 + 0.168400i
\(993\) 94.6184 0.0952854
\(994\) −285.863 + 955.619i −0.287589 + 0.961388i
\(995\) −584.080 + 584.080i −0.587015 + 0.587015i
\(996\) −36.8550 + 56.0894i −0.0370031 + 0.0563146i
\(997\) 9.44963 9.44963i 0.00947806 0.00947806i −0.702352 0.711830i \(-0.747867\pi\)
0.711830 + 0.702352i \(0.247867\pi\)
\(998\) −233.676 433.151i −0.234145 0.434019i
\(999\) −95.5948 −0.0956905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.3.f.a.3.2 6
3.2 odd 2 144.3.m.a.19.2 6
4.3 odd 2 64.3.f.a.47.2 6
5.2 odd 4 400.3.k.d.99.1 6
5.3 odd 4 400.3.k.c.99.3 6
5.4 even 2 400.3.r.c.51.2 6
8.3 odd 2 128.3.f.a.95.2 6
8.5 even 2 128.3.f.b.95.2 6
12.11 even 2 576.3.m.a.559.1 6
16.3 odd 4 128.3.f.b.31.2 6
16.5 even 4 64.3.f.a.15.2 6
16.11 odd 4 inner 16.3.f.a.11.2 yes 6
16.13 even 4 128.3.f.a.31.2 6
24.5 odd 2 1152.3.m.a.991.3 6
24.11 even 2 1152.3.m.b.991.3 6
32.3 odd 8 1024.3.d.k.511.6 12
32.5 even 8 1024.3.c.j.1023.8 12
32.11 odd 8 1024.3.c.j.1023.7 12
32.13 even 8 1024.3.d.k.511.5 12
32.19 odd 8 1024.3.d.k.511.7 12
32.21 even 8 1024.3.c.j.1023.5 12
32.27 odd 8 1024.3.c.j.1023.6 12
32.29 even 8 1024.3.d.k.511.8 12
48.5 odd 4 576.3.m.a.271.1 6
48.11 even 4 144.3.m.a.91.2 6
48.29 odd 4 1152.3.m.b.415.3 6
48.35 even 4 1152.3.m.a.415.3 6
80.27 even 4 400.3.k.c.299.3 6
80.43 even 4 400.3.k.d.299.1 6
80.59 odd 4 400.3.r.c.251.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.3.f.a.3.2 6 1.1 even 1 trivial
16.3.f.a.11.2 yes 6 16.11 odd 4 inner
64.3.f.a.15.2 6 16.5 even 4
64.3.f.a.47.2 6 4.3 odd 2
128.3.f.a.31.2 6 16.13 even 4
128.3.f.a.95.2 6 8.3 odd 2
128.3.f.b.31.2 6 16.3 odd 4
128.3.f.b.95.2 6 8.5 even 2
144.3.m.a.19.2 6 3.2 odd 2
144.3.m.a.91.2 6 48.11 even 4
400.3.k.c.99.3 6 5.3 odd 4
400.3.k.c.299.3 6 80.27 even 4
400.3.k.d.99.1 6 5.2 odd 4
400.3.k.d.299.1 6 80.43 even 4
400.3.r.c.51.2 6 5.4 even 2
400.3.r.c.251.2 6 80.59 odd 4
576.3.m.a.271.1 6 48.5 odd 4
576.3.m.a.559.1 6 12.11 even 2
1024.3.c.j.1023.5 12 32.21 even 8
1024.3.c.j.1023.6 12 32.27 odd 8
1024.3.c.j.1023.7 12 32.11 odd 8
1024.3.c.j.1023.8 12 32.5 even 8
1024.3.d.k.511.5 12 32.13 even 8
1024.3.d.k.511.6 12 32.3 odd 8
1024.3.d.k.511.7 12 32.19 odd 8
1024.3.d.k.511.8 12 32.29 even 8
1152.3.m.a.415.3 6 48.35 even 4
1152.3.m.a.991.3 6 24.5 odd 2
1152.3.m.b.415.3 6 48.29 odd 4
1152.3.m.b.991.3 6 24.11 even 2