Properties

Label 64.3.f.a.47.2
Level $64$
Weight $3$
Character 64.47
Analytic conductor $1.744$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,3,Mod(15,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.15");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 64.f (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.74387369191\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.2
Root \(-0.671462 + 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 64.47
Dual form 64.3.f.a.15.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.146365 + 0.146365i) q^{3} +(3.68585 - 3.68585i) q^{5} +9.66442 q^{7} +8.95715i q^{9} +(-5.51806 - 5.51806i) q^{11} +(-6.27131 - 6.27131i) q^{13} +1.07896i q^{15} -6.78623 q^{17} +(-13.5181 + 13.5181i) q^{19} +(-1.41454 + 1.41454i) q^{21} -17.0790 q^{23} -2.17092i q^{25} +(-2.62831 - 2.62831i) q^{27} +(4.85677 + 4.85677i) q^{29} +5.25662i q^{31} +1.61531 q^{33} +(35.6216 - 35.6216i) q^{35} +(-18.1856 + 18.1856i) q^{37} +1.83581 q^{39} -48.2302i q^{41} +(54.5113 + 54.5113i) q^{43} +(33.0147 + 33.0147i) q^{45} -40.4015i q^{47} +44.4011 q^{49} +(0.993270 - 0.993270i) q^{51} +(10.8996 - 10.8996i) q^{53} -40.6774 q^{55} -3.95715i q^{57} +(-50.8898 - 50.8898i) q^{59} +(-17.0147 - 17.0147i) q^{61} +86.5657i q^{63} -46.2302 q^{65} +(-22.9191 + 22.9191i) q^{67} +(2.49977 - 2.49977i) q^{69} +51.6047 q^{71} +78.5032i q^{73} +(0.317748 + 0.317748i) q^{75} +(-53.3288 - 53.3288i) q^{77} -108.512i q^{79} -79.8450 q^{81} +(-57.3173 + 57.3173i) q^{83} +(-25.0130 + 25.0130i) q^{85} -1.42173 q^{87} +44.1276i q^{89} +(-60.6086 - 60.6086i) q^{91} +(-0.769387 - 0.769387i) q^{93} +99.6510i q^{95} +112.700 q^{97} +(49.4261 - 49.4261i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 2 q^{5} + 4 q^{7} + 18 q^{11} - 2 q^{13} - 4 q^{17} - 30 q^{19} - 20 q^{21} - 60 q^{23} - 64 q^{27} - 18 q^{29} - 4 q^{33} + 100 q^{35} + 46 q^{37} + 196 q^{39} + 114 q^{43} + 66 q^{45}+ \cdots + 226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.146365 + 0.146365i −0.0487885 + 0.0487885i −0.731080 0.682292i \(-0.760983\pi\)
0.682292 + 0.731080i \(0.260983\pi\)
\(4\) 0 0
\(5\) 3.68585 3.68585i 0.737169 0.737169i −0.234860 0.972029i \(-0.575463\pi\)
0.972029 + 0.234860i \(0.0754632\pi\)
\(6\) 0 0
\(7\) 9.66442 1.38063 0.690316 0.723508i \(-0.257472\pi\)
0.690316 + 0.723508i \(0.257472\pi\)
\(8\) 0 0
\(9\) 8.95715i 0.995239i
\(10\) 0 0
\(11\) −5.51806 5.51806i −0.501642 0.501642i 0.410306 0.911948i \(-0.365422\pi\)
−0.911948 + 0.410306i \(0.865422\pi\)
\(12\) 0 0
\(13\) −6.27131 6.27131i −0.482408 0.482408i 0.423492 0.905900i \(-0.360804\pi\)
−0.905900 + 0.423492i \(0.860804\pi\)
\(14\) 0 0
\(15\) 1.07896i 0.0719308i
\(16\) 0 0
\(17\) −6.78623 −0.399190 −0.199595 0.979878i \(-0.563963\pi\)
−0.199595 + 0.979878i \(0.563963\pi\)
\(18\) 0 0
\(19\) −13.5181 + 13.5181i −0.711477 + 0.711477i −0.966844 0.255367i \(-0.917804\pi\)
0.255367 + 0.966844i \(0.417804\pi\)
\(20\) 0 0
\(21\) −1.41454 + 1.41454i −0.0673590 + 0.0673590i
\(22\) 0 0
\(23\) −17.0790 −0.742564 −0.371282 0.928520i \(-0.621082\pi\)
−0.371282 + 0.928520i \(0.621082\pi\)
\(24\) 0 0
\(25\) 2.17092i 0.0868370i
\(26\) 0 0
\(27\) −2.62831 2.62831i −0.0973447 0.0973447i
\(28\) 0 0
\(29\) 4.85677 + 4.85677i 0.167475 + 0.167475i 0.785868 0.618394i \(-0.212216\pi\)
−0.618394 + 0.785868i \(0.712216\pi\)
\(30\) 0 0
\(31\) 5.25662i 0.169568i 0.996399 + 0.0847841i \(0.0270201\pi\)
−0.996399 + 0.0847841i \(0.972980\pi\)
\(32\) 0 0
\(33\) 1.61531 0.0489487
\(34\) 0 0
\(35\) 35.6216 35.6216i 1.01776 1.01776i
\(36\) 0 0
\(37\) −18.1856 + 18.1856i −0.491503 + 0.491503i −0.908780 0.417276i \(-0.862985\pi\)
0.417276 + 0.908780i \(0.362985\pi\)
\(38\) 0 0
\(39\) 1.83581 0.0470720
\(40\) 0 0
\(41\) 48.2302i 1.17635i −0.808735 0.588173i \(-0.799848\pi\)
0.808735 0.588173i \(-0.200152\pi\)
\(42\) 0 0
\(43\) 54.5113 + 54.5113i 1.26771 + 1.26771i 0.947271 + 0.320435i \(0.103829\pi\)
0.320435 + 0.947271i \(0.396171\pi\)
\(44\) 0 0
\(45\) 33.0147 + 33.0147i 0.733660 + 0.733660i
\(46\) 0 0
\(47\) 40.4015i 0.859607i −0.902922 0.429804i \(-0.858583\pi\)
0.902922 0.429804i \(-0.141417\pi\)
\(48\) 0 0
\(49\) 44.4011 0.906144
\(50\) 0 0
\(51\) 0.993270 0.993270i 0.0194759 0.0194759i
\(52\) 0 0
\(53\) 10.8996 10.8996i 0.205653 0.205653i −0.596764 0.802417i \(-0.703547\pi\)
0.802417 + 0.596764i \(0.203547\pi\)
\(54\) 0 0
\(55\) −40.6774 −0.739590
\(56\) 0 0
\(57\) 3.95715i 0.0694238i
\(58\) 0 0
\(59\) −50.8898 50.8898i −0.862538 0.862538i 0.129094 0.991632i \(-0.458793\pi\)
−0.991632 + 0.129094i \(0.958793\pi\)
\(60\) 0 0
\(61\) −17.0147 17.0147i −0.278929 0.278929i 0.553752 0.832682i \(-0.313196\pi\)
−0.832682 + 0.553752i \(0.813196\pi\)
\(62\) 0 0
\(63\) 86.5657i 1.37406i
\(64\) 0 0
\(65\) −46.2302 −0.711233
\(66\) 0 0
\(67\) −22.9191 + 22.9191i −0.342077 + 0.342077i −0.857148 0.515071i \(-0.827766\pi\)
0.515071 + 0.857148i \(0.327766\pi\)
\(68\) 0 0
\(69\) 2.49977 2.49977i 0.0362286 0.0362286i
\(70\) 0 0
\(71\) 51.6047 0.726827 0.363414 0.931628i \(-0.381611\pi\)
0.363414 + 0.931628i \(0.381611\pi\)
\(72\) 0 0
\(73\) 78.5032i 1.07539i 0.843141 + 0.537693i \(0.180704\pi\)
−0.843141 + 0.537693i \(0.819296\pi\)
\(74\) 0 0
\(75\) 0.317748 + 0.317748i 0.00423664 + 0.00423664i
\(76\) 0 0
\(77\) −53.3288 53.3288i −0.692582 0.692582i
\(78\) 0 0
\(79\) 108.512i 1.37357i −0.726859 0.686787i \(-0.759021\pi\)
0.726859 0.686787i \(-0.240979\pi\)
\(80\) 0 0
\(81\) −79.8450 −0.985741
\(82\) 0 0
\(83\) −57.3173 + 57.3173i −0.690570 + 0.690570i −0.962357 0.271788i \(-0.912385\pi\)
0.271788 + 0.962357i \(0.412385\pi\)
\(84\) 0 0
\(85\) −25.0130 + 25.0130i −0.294271 + 0.294271i
\(86\) 0 0
\(87\) −1.42173 −0.0163417
\(88\) 0 0
\(89\) 44.1276i 0.495816i 0.968784 + 0.247908i \(0.0797431\pi\)
−0.968784 + 0.247908i \(0.920257\pi\)
\(90\) 0 0
\(91\) −60.6086 60.6086i −0.666028 0.666028i
\(92\) 0 0
\(93\) −0.769387 0.769387i −0.00827298 0.00827298i
\(94\) 0 0
\(95\) 99.6510i 1.04896i
\(96\) 0 0
\(97\) 112.700 1.16185 0.580926 0.813956i \(-0.302691\pi\)
0.580926 + 0.813956i \(0.302691\pi\)
\(98\) 0 0
\(99\) 49.4261 49.4261i 0.499253 0.499253i
\(100\) 0 0
\(101\) 97.3859 97.3859i 0.964217 0.964217i −0.0351644 0.999382i \(-0.511195\pi\)
0.999382 + 0.0351644i \(0.0111955\pi\)
\(102\) 0 0
\(103\) 138.698 1.34658 0.673290 0.739379i \(-0.264881\pi\)
0.673290 + 0.739379i \(0.264881\pi\)
\(104\) 0 0
\(105\) 10.4275i 0.0993099i
\(106\) 0 0
\(107\) 31.7386 + 31.7386i 0.296622 + 0.296622i 0.839689 0.543067i \(-0.182737\pi\)
−0.543067 + 0.839689i \(0.682737\pi\)
\(108\) 0 0
\(109\) 0.712308 + 0.712308i 0.00653493 + 0.00653493i 0.710367 0.703832i \(-0.248529\pi\)
−0.703832 + 0.710367i \(0.748529\pi\)
\(110\) 0 0
\(111\) 5.32349i 0.0479594i
\(112\) 0 0
\(113\) 14.8888 0.131759 0.0658795 0.997828i \(-0.479015\pi\)
0.0658795 + 0.997828i \(0.479015\pi\)
\(114\) 0 0
\(115\) −62.9504 + 62.9504i −0.547395 + 0.547395i
\(116\) 0 0
\(117\) 56.1731 56.1731i 0.480112 0.480112i
\(118\) 0 0
\(119\) −65.5850 −0.551134
\(120\) 0 0
\(121\) 60.1021i 0.496711i
\(122\) 0 0
\(123\) 7.05923 + 7.05923i 0.0573921 + 0.0573921i
\(124\) 0 0
\(125\) 84.1445 + 84.1445i 0.673156 + 0.673156i
\(126\) 0 0
\(127\) 106.861i 0.841425i −0.907194 0.420712i \(-0.861780\pi\)
0.907194 0.420712i \(-0.138220\pi\)
\(128\) 0 0
\(129\) −15.9572 −0.123699
\(130\) 0 0
\(131\) 153.198 153.198i 1.16945 1.16945i 0.187116 0.982338i \(-0.440086\pi\)
0.982338 0.187116i \(-0.0599139\pi\)
\(132\) 0 0
\(133\) −130.644 + 130.644i −0.982287 + 0.982287i
\(134\) 0 0
\(135\) −19.3751 −0.143519
\(136\) 0 0
\(137\) 75.1700i 0.548686i −0.961632 0.274343i \(-0.911540\pi\)
0.961632 0.274343i \(-0.0884604\pi\)
\(138\) 0 0
\(139\) 107.425 + 107.425i 0.772843 + 0.772843i 0.978603 0.205760i \(-0.0659665\pi\)
−0.205760 + 0.978603i \(0.565966\pi\)
\(140\) 0 0
\(141\) 5.91339 + 5.91339i 0.0419389 + 0.0419389i
\(142\) 0 0
\(143\) 69.2109i 0.483992i
\(144\) 0 0
\(145\) 35.8026 0.246915
\(146\) 0 0
\(147\) −6.49879 + 6.49879i −0.0442094 + 0.0442094i
\(148\) 0 0
\(149\) −146.031 + 146.031i −0.980074 + 0.980074i −0.999805 0.0197310i \(-0.993719\pi\)
0.0197310 + 0.999805i \(0.493719\pi\)
\(150\) 0 0
\(151\) −220.513 −1.46035 −0.730175 0.683260i \(-0.760561\pi\)
−0.730175 + 0.683260i \(0.760561\pi\)
\(152\) 0 0
\(153\) 60.7853i 0.397290i
\(154\) 0 0
\(155\) 19.3751 + 19.3751i 0.125000 + 0.125000i
\(156\) 0 0
\(157\) −109.561 109.561i −0.697839 0.697839i 0.266105 0.963944i \(-0.414263\pi\)
−0.963944 + 0.266105i \(0.914263\pi\)
\(158\) 0 0
\(159\) 3.19066i 0.0200670i
\(160\) 0 0
\(161\) −165.058 −1.02521
\(162\) 0 0
\(163\) −56.7781 + 56.7781i −0.348332 + 0.348332i −0.859488 0.511156i \(-0.829217\pi\)
0.511156 + 0.859488i \(0.329217\pi\)
\(164\) 0 0
\(165\) 5.95377 5.95377i 0.0360835 0.0360835i
\(166\) 0 0
\(167\) −106.677 −0.638781 −0.319391 0.947623i \(-0.603478\pi\)
−0.319391 + 0.947623i \(0.603478\pi\)
\(168\) 0 0
\(169\) 90.3414i 0.534564i
\(170\) 0 0
\(171\) −121.083 121.083i −0.708090 0.708090i
\(172\) 0 0
\(173\) 178.360 + 178.360i 1.03098 + 1.03098i 0.999504 + 0.0314805i \(0.0100222\pi\)
0.0314805 + 0.999504i \(0.489978\pi\)
\(174\) 0 0
\(175\) 20.9807i 0.119890i
\(176\) 0 0
\(177\) 14.8970 0.0841639
\(178\) 0 0
\(179\) −60.4622 + 60.4622i −0.337778 + 0.337778i −0.855530 0.517753i \(-0.826769\pi\)
0.517753 + 0.855530i \(0.326769\pi\)
\(180\) 0 0
\(181\) 147.113 147.113i 0.812779 0.812779i −0.172271 0.985050i \(-0.555110\pi\)
0.985050 + 0.172271i \(0.0551105\pi\)
\(182\) 0 0
\(183\) 4.98073 0.0272171
\(184\) 0 0
\(185\) 134.059i 0.724642i
\(186\) 0 0
\(187\) 37.4468 + 37.4468i 0.200250 + 0.200250i
\(188\) 0 0
\(189\) −25.4011 25.4011i −0.134397 0.134397i
\(190\) 0 0
\(191\) 106.861i 0.559481i 0.960076 + 0.279741i \(0.0902485\pi\)
−0.960076 + 0.279741i \(0.909752\pi\)
\(192\) 0 0
\(193\) 68.1873 0.353302 0.176651 0.984274i \(-0.443474\pi\)
0.176651 + 0.984274i \(0.443474\pi\)
\(194\) 0 0
\(195\) 6.76650 6.76650i 0.0347000 0.0347000i
\(196\) 0 0
\(197\) −61.8529 + 61.8529i −0.313974 + 0.313974i −0.846447 0.532473i \(-0.821263\pi\)
0.532473 + 0.846447i \(0.321263\pi\)
\(198\) 0 0
\(199\) 158.466 0.796310 0.398155 0.917318i \(-0.369651\pi\)
0.398155 + 0.917318i \(0.369651\pi\)
\(200\) 0 0
\(201\) 6.70914i 0.0333788i
\(202\) 0 0
\(203\) 46.9379 + 46.9379i 0.231221 + 0.231221i
\(204\) 0 0
\(205\) −177.769 177.769i −0.867166 0.867166i
\(206\) 0 0
\(207\) 152.979i 0.739028i
\(208\) 0 0
\(209\) 149.187 0.713813
\(210\) 0 0
\(211\) 197.031 197.031i 0.933798 0.933798i −0.0641430 0.997941i \(-0.520431\pi\)
0.997941 + 0.0641430i \(0.0204314\pi\)
\(212\) 0 0
\(213\) −7.55315 + 7.55315i −0.0354608 + 0.0354608i
\(214\) 0 0
\(215\) 401.841 1.86903
\(216\) 0 0
\(217\) 50.8022i 0.234111i
\(218\) 0 0
\(219\) −11.4902 11.4902i −0.0524664 0.0524664i
\(220\) 0 0
\(221\) 42.5585 + 42.5585i 0.192573 + 0.192573i
\(222\) 0 0
\(223\) 15.7698i 0.0707168i −0.999375 0.0353584i \(-0.988743\pi\)
0.999375 0.0353584i \(-0.0112573\pi\)
\(224\) 0 0
\(225\) 19.4453 0.0864236
\(226\) 0 0
\(227\) −199.289 + 199.289i −0.877927 + 0.877927i −0.993320 0.115393i \(-0.963187\pi\)
0.115393 + 0.993320i \(0.463187\pi\)
\(228\) 0 0
\(229\) 230.522 230.522i 1.00664 1.00664i 0.00666715 0.999978i \(-0.497878\pi\)
0.999978 0.00666715i \(-0.00212224\pi\)
\(230\) 0 0
\(231\) 15.6110 0.0675801
\(232\) 0 0
\(233\) 344.791i 1.47979i 0.672722 + 0.739895i \(0.265125\pi\)
−0.672722 + 0.739895i \(0.734875\pi\)
\(234\) 0 0
\(235\) −148.914 148.914i −0.633676 0.633676i
\(236\) 0 0
\(237\) 15.8825 + 15.8825i 0.0670146 + 0.0670146i
\(238\) 0 0
\(239\) 77.1978i 0.323004i 0.986872 + 0.161502i \(0.0516337\pi\)
−0.986872 + 0.161502i \(0.948366\pi\)
\(240\) 0 0
\(241\) −293.483 −1.21777 −0.608885 0.793259i \(-0.708383\pi\)
−0.608885 + 0.793259i \(0.708383\pi\)
\(242\) 0 0
\(243\) 35.3413 35.3413i 0.145438 0.145438i
\(244\) 0 0
\(245\) 163.656 163.656i 0.667982 0.667982i
\(246\) 0 0
\(247\) 169.552 0.686445
\(248\) 0 0
\(249\) 16.7785i 0.0673837i
\(250\) 0 0
\(251\) −79.6322 79.6322i −0.317260 0.317260i 0.530454 0.847714i \(-0.322021\pi\)
−0.847714 + 0.530454i \(0.822021\pi\)
\(252\) 0 0
\(253\) 94.2427 + 94.2427i 0.372501 + 0.372501i
\(254\) 0 0
\(255\) 7.32208i 0.0287140i
\(256\) 0 0
\(257\) 221.860 0.863270 0.431635 0.902048i \(-0.357937\pi\)
0.431635 + 0.902048i \(0.357937\pi\)
\(258\) 0 0
\(259\) −175.753 + 175.753i −0.678585 + 0.678585i
\(260\) 0 0
\(261\) −43.5028 + 43.5028i −0.166678 + 0.166678i
\(262\) 0 0
\(263\) −374.223 −1.42290 −0.711451 0.702736i \(-0.751961\pi\)
−0.711451 + 0.702736i \(0.751961\pi\)
\(264\) 0 0
\(265\) 80.3486i 0.303202i
\(266\) 0 0
\(267\) −6.45876 6.45876i −0.0241901 0.0241901i
\(268\) 0 0
\(269\) −357.970 357.970i −1.33075 1.33075i −0.904704 0.426042i \(-0.859908\pi\)
−0.426042 0.904704i \(-0.640092\pi\)
\(270\) 0 0
\(271\) 359.030i 1.32484i 0.749135 + 0.662418i \(0.230470\pi\)
−0.749135 + 0.662418i \(0.769530\pi\)
\(272\) 0 0
\(273\) 17.7420 0.0649890
\(274\) 0 0
\(275\) −11.9793 + 11.9793i −0.0435610 + 0.0435610i
\(276\) 0 0
\(277\) −351.765 + 351.765i −1.26991 + 1.26991i −0.323775 + 0.946134i \(0.604952\pi\)
−0.946134 + 0.323775i \(0.895048\pi\)
\(278\) 0 0
\(279\) −47.0843 −0.168761
\(280\) 0 0
\(281\) 191.390i 0.681103i −0.940226 0.340552i \(-0.889386\pi\)
0.940226 0.340552i \(-0.110614\pi\)
\(282\) 0 0
\(283\) 31.3119 + 31.3119i 0.110643 + 0.110643i 0.760261 0.649618i \(-0.225071\pi\)
−0.649618 + 0.760261i \(0.725071\pi\)
\(284\) 0 0
\(285\) −14.5855 14.5855i −0.0511771 0.0511771i
\(286\) 0 0
\(287\) 466.117i 1.62410i
\(288\) 0 0
\(289\) −242.947 −0.840647
\(290\) 0 0
\(291\) −16.4953 + 16.4953i −0.0566850 + 0.0566850i
\(292\) 0 0
\(293\) −92.0889 + 92.0889i −0.314297 + 0.314297i −0.846572 0.532275i \(-0.821337\pi\)
0.532275 + 0.846572i \(0.321337\pi\)
\(294\) 0 0
\(295\) −375.144 −1.27167
\(296\) 0 0
\(297\) 29.0063i 0.0976643i
\(298\) 0 0
\(299\) 107.107 + 107.107i 0.358219 + 0.358219i
\(300\) 0 0
\(301\) 526.821 + 526.821i 1.75023 + 1.75023i
\(302\) 0 0
\(303\) 28.5079i 0.0940854i
\(304\) 0 0
\(305\) −125.427 −0.411236
\(306\) 0 0
\(307\) 257.566 257.566i 0.838978 0.838978i −0.149746 0.988724i \(-0.547846\pi\)
0.988724 + 0.149746i \(0.0478457\pi\)
\(308\) 0 0
\(309\) −20.3005 + 20.3005i −0.0656976 + 0.0656976i
\(310\) 0 0
\(311\) 130.914 0.420946 0.210473 0.977600i \(-0.432500\pi\)
0.210473 + 0.977600i \(0.432500\pi\)
\(312\) 0 0
\(313\) 51.8354i 0.165608i −0.996566 0.0828041i \(-0.973612\pi\)
0.996566 0.0828041i \(-0.0263876\pi\)
\(314\) 0 0
\(315\) 319.068 + 319.068i 1.01291 + 1.01291i
\(316\) 0 0
\(317\) −109.636 109.636i −0.345856 0.345856i 0.512707 0.858563i \(-0.328643\pi\)
−0.858563 + 0.512707i \(0.828643\pi\)
\(318\) 0 0
\(319\) 53.5999i 0.168025i
\(320\) 0 0
\(321\) −9.29086 −0.0289435
\(322\) 0 0
\(323\) 91.7367 91.7367i 0.284014 0.284014i
\(324\) 0 0
\(325\) −13.6145 + 13.6145i −0.0418909 + 0.0418909i
\(326\) 0 0
\(327\) −0.208514 −0.000637659
\(328\) 0 0
\(329\) 390.458i 1.18680i
\(330\) 0 0
\(331\) −323.226 323.226i −0.976515 0.976515i 0.0232157 0.999730i \(-0.492610\pi\)
−0.999730 + 0.0232157i \(0.992610\pi\)
\(332\) 0 0
\(333\) −162.891 162.891i −0.489163 0.489163i
\(334\) 0 0
\(335\) 168.953i 0.504337i
\(336\) 0 0
\(337\) 315.159 0.935191 0.467596 0.883943i \(-0.345120\pi\)
0.467596 + 0.883943i \(0.345120\pi\)
\(338\) 0 0
\(339\) −2.17920 + 2.17920i −0.00642832 + 0.00642832i
\(340\) 0 0
\(341\) 29.0063 29.0063i 0.0850625 0.0850625i
\(342\) 0 0
\(343\) −44.4459 −0.129580
\(344\) 0 0
\(345\) 18.4275i 0.0534132i
\(346\) 0 0
\(347\) 307.568 + 307.568i 0.886363 + 0.886363i 0.994172 0.107809i \(-0.0343835\pi\)
−0.107809 + 0.994172i \(0.534384\pi\)
\(348\) 0 0
\(349\) 170.461 + 170.461i 0.488427 + 0.488427i 0.907810 0.419382i \(-0.137753\pi\)
−0.419382 + 0.907810i \(0.637753\pi\)
\(350\) 0 0
\(351\) 32.9659i 0.0939198i
\(352\) 0 0
\(353\) 238.136 0.674606 0.337303 0.941396i \(-0.390485\pi\)
0.337303 + 0.941396i \(0.390485\pi\)
\(354\) 0 0
\(355\) 190.207 190.207i 0.535795 0.535795i
\(356\) 0 0
\(357\) 9.59938 9.59938i 0.0268890 0.0268890i
\(358\) 0 0
\(359\) −33.6470 −0.0937241 −0.0468620 0.998901i \(-0.514922\pi\)
−0.0468620 + 0.998901i \(0.514922\pi\)
\(360\) 0 0
\(361\) 4.47577i 0.0123983i
\(362\) 0 0
\(363\) 8.79687 + 8.79687i 0.0242338 + 0.0242338i
\(364\) 0 0
\(365\) 289.351 + 289.351i 0.792741 + 0.792741i
\(366\) 0 0
\(367\) 240.758i 0.656016i 0.944675 + 0.328008i \(0.106377\pi\)
−0.944675 + 0.328008i \(0.893623\pi\)
\(368\) 0 0
\(369\) 432.005 1.17075
\(370\) 0 0
\(371\) 105.339 105.339i 0.283931 0.283931i
\(372\) 0 0
\(373\) 432.504 432.504i 1.15953 1.15953i 0.174951 0.984577i \(-0.444023\pi\)
0.984577 0.174951i \(-0.0559766\pi\)
\(374\) 0 0
\(375\) −24.6317 −0.0656845
\(376\) 0 0
\(377\) 60.9166i 0.161583i
\(378\) 0 0
\(379\) 174.716 + 174.716i 0.460993 + 0.460993i 0.898981 0.437988i \(-0.144309\pi\)
−0.437988 + 0.898981i \(0.644309\pi\)
\(380\) 0 0
\(381\) 15.6408 + 15.6408i 0.0410518 + 0.0410518i
\(382\) 0 0
\(383\) 673.381i 1.75817i −0.476661 0.879087i \(-0.658153\pi\)
0.476661 0.879087i \(-0.341847\pi\)
\(384\) 0 0
\(385\) −393.124 −1.02110
\(386\) 0 0
\(387\) −488.266 + 488.266i −1.26167 + 1.26167i
\(388\) 0 0
\(389\) −274.646 + 274.646i −0.706031 + 0.706031i −0.965698 0.259667i \(-0.916387\pi\)
0.259667 + 0.965698i \(0.416387\pi\)
\(390\) 0 0
\(391\) 115.902 0.296424
\(392\) 0 0
\(393\) 44.8459i 0.114112i
\(394\) 0 0
\(395\) −399.960 399.960i −1.01256 1.01256i
\(396\) 0 0
\(397\) −271.254 271.254i −0.683259 0.683259i 0.277474 0.960733i \(-0.410503\pi\)
−0.960733 + 0.277474i \(0.910503\pi\)
\(398\) 0 0
\(399\) 38.2436i 0.0958487i
\(400\) 0 0
\(401\) −415.193 −1.03539 −0.517697 0.855564i \(-0.673210\pi\)
−0.517697 + 0.855564i \(0.673210\pi\)
\(402\) 0 0
\(403\) 32.9659 32.9659i 0.0818011 0.0818011i
\(404\) 0 0
\(405\) −294.296 + 294.296i −0.726658 + 0.726658i
\(406\) 0 0
\(407\) 200.699 0.493117
\(408\) 0 0
\(409\) 634.686i 1.55180i 0.630856 + 0.775900i \(0.282704\pi\)
−0.630856 + 0.775900i \(0.717296\pi\)
\(410\) 0 0
\(411\) 11.0023 + 11.0023i 0.0267696 + 0.0267696i
\(412\) 0 0
\(413\) −491.820 491.820i −1.19085 1.19085i
\(414\) 0 0
\(415\) 422.525i 1.01813i
\(416\) 0 0
\(417\) −31.4467 −0.0754117
\(418\) 0 0
\(419\) −19.2687 + 19.2687i −0.0459873 + 0.0459873i −0.729726 0.683739i \(-0.760353\pi\)
0.683739 + 0.729726i \(0.260353\pi\)
\(420\) 0 0
\(421\) 244.505 244.505i 0.580773 0.580773i −0.354343 0.935116i \(-0.615295\pi\)
0.935116 + 0.354343i \(0.115295\pi\)
\(422\) 0 0
\(423\) 361.883 0.855515
\(424\) 0 0
\(425\) 14.7324i 0.0346644i
\(426\) 0 0
\(427\) −164.437 164.437i −0.385099 0.385099i
\(428\) 0 0
\(429\) −10.1301 10.1301i −0.0236133 0.0236133i
\(430\) 0 0
\(431\) 337.331i 0.782670i 0.920248 + 0.391335i \(0.127987\pi\)
−0.920248 + 0.391335i \(0.872013\pi\)
\(432\) 0 0
\(433\) −424.560 −0.980508 −0.490254 0.871580i \(-0.663096\pi\)
−0.490254 + 0.871580i \(0.663096\pi\)
\(434\) 0 0
\(435\) −5.24027 + 5.24027i −0.0120466 + 0.0120466i
\(436\) 0 0
\(437\) 230.874 230.874i 0.528317 0.528317i
\(438\) 0 0
\(439\) 162.004 0.369029 0.184514 0.982830i \(-0.440929\pi\)
0.184514 + 0.982830i \(0.440929\pi\)
\(440\) 0 0
\(441\) 397.707i 0.901831i
\(442\) 0 0
\(443\) −492.189 492.189i −1.11104 1.11104i −0.993010 0.118026i \(-0.962343\pi\)
−0.118026 0.993010i \(-0.537657\pi\)
\(444\) 0 0
\(445\) 162.648 + 162.648i 0.365500 + 0.365500i
\(446\) 0 0
\(447\) 42.7478i 0.0956327i
\(448\) 0 0
\(449\) 195.434 0.435266 0.217633 0.976031i \(-0.430166\pi\)
0.217633 + 0.976031i \(0.430166\pi\)
\(450\) 0 0
\(451\) −266.137 + 266.137i −0.590104 + 0.590104i
\(452\) 0 0
\(453\) 32.2755 32.2755i 0.0712483 0.0712483i
\(454\) 0 0
\(455\) −446.788 −0.981951
\(456\) 0 0
\(457\) 386.874i 0.846552i 0.906001 + 0.423276i \(0.139120\pi\)
−0.906001 + 0.423276i \(0.860880\pi\)
\(458\) 0 0
\(459\) 17.8363 + 17.8363i 0.0388590 + 0.0388590i
\(460\) 0 0
\(461\) −174.401 174.401i −0.378310 0.378310i 0.492182 0.870492i \(-0.336199\pi\)
−0.870492 + 0.492182i \(0.836199\pi\)
\(462\) 0 0
\(463\) 60.5295i 0.130733i −0.997861 0.0653666i \(-0.979178\pi\)
0.997861 0.0653666i \(-0.0208217\pi\)
\(464\) 0 0
\(465\) −5.67168 −0.0121972
\(466\) 0 0
\(467\) −306.482 + 306.482i −0.656279 + 0.656279i −0.954497 0.298219i \(-0.903607\pi\)
0.298219 + 0.954497i \(0.403607\pi\)
\(468\) 0 0
\(469\) −221.500 + 221.500i −0.472282 + 0.472282i
\(470\) 0 0
\(471\) 32.0718 0.0680930
\(472\) 0 0
\(473\) 601.593i 1.27187i
\(474\) 0 0
\(475\) 29.3467 + 29.3467i 0.0617825 + 0.0617825i
\(476\) 0 0
\(477\) 97.6295 + 97.6295i 0.204674 + 0.204674i
\(478\) 0 0
\(479\) 376.452i 0.785912i −0.919557 0.392956i \(-0.871453\pi\)
0.919557 0.392956i \(-0.128547\pi\)
\(480\) 0 0
\(481\) 228.095 0.474210
\(482\) 0 0
\(483\) 24.1588 24.1588i 0.0500183 0.0500183i
\(484\) 0 0
\(485\) 415.393 415.393i 0.856481 0.856481i
\(486\) 0 0
\(487\) −77.2033 −0.158528 −0.0792641 0.996854i \(-0.525257\pi\)
−0.0792641 + 0.996854i \(0.525257\pi\)
\(488\) 0 0
\(489\) 16.6207i 0.0339892i
\(490\) 0 0
\(491\) 581.438 + 581.438i 1.18419 + 1.18419i 0.978648 + 0.205543i \(0.0658960\pi\)
0.205543 + 0.978648i \(0.434104\pi\)
\(492\) 0 0
\(493\) −32.9592 32.9592i −0.0668543 0.0668543i
\(494\) 0 0
\(495\) 364.354i 0.736069i
\(496\) 0 0
\(497\) 498.730 1.00348
\(498\) 0 0
\(499\) 174.006 174.006i 0.348709 0.348709i −0.510920 0.859629i \(-0.670695\pi\)
0.859629 + 0.510920i \(0.170695\pi\)
\(500\) 0 0
\(501\) 15.6138 15.6138i 0.0311652 0.0311652i
\(502\) 0 0
\(503\) 355.262 0.706286 0.353143 0.935569i \(-0.385113\pi\)
0.353143 + 0.935569i \(0.385113\pi\)
\(504\) 0 0
\(505\) 717.899i 1.42158i
\(506\) 0 0
\(507\) 13.2229 + 13.2229i 0.0260806 + 0.0260806i
\(508\) 0 0
\(509\) 279.667 + 279.667i 0.549444 + 0.549444i 0.926280 0.376836i \(-0.122988\pi\)
−0.376836 + 0.926280i \(0.622988\pi\)
\(510\) 0 0
\(511\) 758.688i 1.48471i
\(512\) 0 0
\(513\) 71.0592 0.138517
\(514\) 0 0
\(515\) 511.218 511.218i 0.992657 0.992657i
\(516\) 0 0
\(517\) −222.938 + 222.938i −0.431215 + 0.431215i
\(518\) 0 0
\(519\) −52.2116 −0.100600
\(520\) 0 0
\(521\) 705.745i 1.35460i 0.735708 + 0.677299i \(0.236849\pi\)
−0.735708 + 0.677299i \(0.763151\pi\)
\(522\) 0 0
\(523\) 186.762 + 186.762i 0.357098 + 0.357098i 0.862742 0.505644i \(-0.168745\pi\)
−0.505644 + 0.862742i \(0.668745\pi\)
\(524\) 0 0
\(525\) 3.07085 + 3.07085i 0.00584925 + 0.00584925i
\(526\) 0 0
\(527\) 35.6726i 0.0676899i
\(528\) 0 0
\(529\) −237.309 −0.448599
\(530\) 0 0
\(531\) 455.827 455.827i 0.858432 0.858432i
\(532\) 0 0
\(533\) −302.466 + 302.466i −0.567479 + 0.567479i
\(534\) 0 0
\(535\) 233.967 0.437321
\(536\) 0 0
\(537\) 17.6992i 0.0329593i
\(538\) 0 0
\(539\) −245.008 245.008i −0.454560 0.454560i
\(540\) 0 0
\(541\) 119.274 + 119.274i 0.220470 + 0.220470i 0.808696 0.588226i \(-0.200174\pi\)
−0.588226 + 0.808696i \(0.700174\pi\)
\(542\) 0 0
\(543\) 43.0645i 0.0793085i
\(544\) 0 0
\(545\) 5.25091 0.00963470
\(546\) 0 0
\(547\) 141.472 141.472i 0.258632 0.258632i −0.565865 0.824498i \(-0.691458\pi\)
0.824498 + 0.565865i \(0.191458\pi\)
\(548\) 0 0
\(549\) 152.403 152.403i 0.277602 0.277602i
\(550\) 0 0
\(551\) −131.308 −0.238309
\(552\) 0 0
\(553\) 1048.71i 1.89640i
\(554\) 0 0
\(555\) −19.6216 19.6216i −0.0353542 0.0353542i
\(556\) 0 0
\(557\) 375.881 + 375.881i 0.674831 + 0.674831i 0.958826 0.283995i \(-0.0916599\pi\)
−0.283995 + 0.958826i \(0.591660\pi\)
\(558\) 0 0
\(559\) 683.715i 1.22310i
\(560\) 0 0
\(561\) −10.9618 −0.0195398
\(562\) 0 0
\(563\) −305.349 + 305.349i −0.542360 + 0.542360i −0.924220 0.381860i \(-0.875284\pi\)
0.381860 + 0.924220i \(0.375284\pi\)
\(564\) 0 0
\(565\) 54.8777 54.8777i 0.0971287 0.0971287i
\(566\) 0 0
\(567\) −771.656 −1.36095
\(568\) 0 0
\(569\) 296.778i 0.521578i 0.965396 + 0.260789i \(0.0839827\pi\)
−0.965396 + 0.260789i \(0.916017\pi\)
\(570\) 0 0
\(571\) 347.717 + 347.717i 0.608961 + 0.608961i 0.942674 0.333714i \(-0.108302\pi\)
−0.333714 + 0.942674i \(0.608302\pi\)
\(572\) 0 0
\(573\) −15.6408 15.6408i −0.0272963 0.0272963i
\(574\) 0 0
\(575\) 37.0771i 0.0644820i
\(576\) 0 0
\(577\) −189.382 −0.328218 −0.164109 0.986442i \(-0.552475\pi\)
−0.164109 + 0.986442i \(0.552475\pi\)
\(578\) 0 0
\(579\) −9.98027 + 9.98027i −0.0172371 + 0.0172371i
\(580\) 0 0
\(581\) −553.939 + 553.939i −0.953423 + 0.953423i
\(582\) 0 0
\(583\) −120.289 −0.206328
\(584\) 0 0
\(585\) 414.091i 0.707847i
\(586\) 0 0
\(587\) 641.187 + 641.187i 1.09231 + 1.09231i 0.995281 + 0.0970301i \(0.0309343\pi\)
0.0970301 + 0.995281i \(0.469066\pi\)
\(588\) 0 0
\(589\) −71.0592 71.0592i −0.120644 0.120644i
\(590\) 0 0
\(591\) 18.1063i 0.0306367i
\(592\) 0 0
\(593\) −127.909 −0.215697 −0.107849 0.994167i \(-0.534396\pi\)
−0.107849 + 0.994167i \(0.534396\pi\)
\(594\) 0 0
\(595\) −241.736 + 241.736i −0.406279 + 0.406279i
\(596\) 0 0
\(597\) −23.1939 + 23.1939i −0.0388508 + 0.0388508i
\(598\) 0 0
\(599\) −794.804 −1.32688 −0.663442 0.748227i \(-0.730905\pi\)
−0.663442 + 0.748227i \(0.730905\pi\)
\(600\) 0 0
\(601\) 89.2746i 0.148543i −0.997238 0.0742717i \(-0.976337\pi\)
0.997238 0.0742717i \(-0.0236632\pi\)
\(602\) 0 0
\(603\) −205.290 205.290i −0.340448 0.340448i
\(604\) 0 0
\(605\) −221.527 221.527i −0.366160 0.366160i
\(606\) 0 0
\(607\) 316.002i 0.520596i 0.965528 + 0.260298i \(0.0838208\pi\)
−0.965528 + 0.260298i \(0.916179\pi\)
\(608\) 0 0
\(609\) −13.7402 −0.0225619
\(610\) 0 0
\(611\) −253.370 + 253.370i −0.414682 + 0.414682i
\(612\) 0 0
\(613\) −192.003 + 192.003i −0.313219 + 0.313219i −0.846155 0.532936i \(-0.821089\pi\)
0.532936 + 0.846155i \(0.321089\pi\)
\(614\) 0 0
\(615\) 52.0385 0.0846154
\(616\) 0 0
\(617\) 105.762i 0.171413i −0.996320 0.0857066i \(-0.972685\pi\)
0.996320 0.0857066i \(-0.0273148\pi\)
\(618\) 0 0
\(619\) −553.819 553.819i −0.894699 0.894699i 0.100262 0.994961i \(-0.468032\pi\)
−0.994961 + 0.100262i \(0.968032\pi\)
\(620\) 0 0
\(621\) 44.8888 + 44.8888i 0.0722846 + 0.0722846i
\(622\) 0 0
\(623\) 426.468i 0.684539i
\(624\) 0 0
\(625\) 674.560 1.07930
\(626\) 0 0
\(627\) −21.8358 + 21.8358i −0.0348258 + 0.0348258i
\(628\) 0 0
\(629\) 123.412 123.412i 0.196203 0.196203i
\(630\) 0 0
\(631\) −762.907 −1.20904 −0.604522 0.796589i \(-0.706636\pi\)
−0.604522 + 0.796589i \(0.706636\pi\)
\(632\) 0 0
\(633\) 57.6772i 0.0911172i
\(634\) 0 0
\(635\) −393.873 393.873i −0.620272 0.620272i
\(636\) 0 0
\(637\) −278.453 278.453i −0.437132 0.437132i
\(638\) 0 0
\(639\) 462.232i 0.723367i
\(640\) 0 0
\(641\) −412.834 −0.644046 −0.322023 0.946732i \(-0.604363\pi\)
−0.322023 + 0.946732i \(0.604363\pi\)
\(642\) 0 0
\(643\) 372.515 372.515i 0.579339 0.579339i −0.355382 0.934721i \(-0.615649\pi\)
0.934721 + 0.355382i \(0.115649\pi\)
\(644\) 0 0
\(645\) −58.8156 + 58.8156i −0.0911870 + 0.0911870i
\(646\) 0 0
\(647\) 1170.94 1.80980 0.904899 0.425627i \(-0.139946\pi\)
0.904899 + 0.425627i \(0.139946\pi\)
\(648\) 0 0
\(649\) 561.625i 0.865370i
\(650\) 0 0
\(651\) −7.43568 7.43568i −0.0114219 0.0114219i
\(652\) 0 0
\(653\) 13.7523 + 13.7523i 0.0210602 + 0.0210602i 0.717558 0.696498i \(-0.245260\pi\)
−0.696498 + 0.717558i \(0.745260\pi\)
\(654\) 0 0
\(655\) 1129.33i 1.72417i
\(656\) 0 0
\(657\) −703.165 −1.07027
\(658\) 0 0
\(659\) −283.149 + 283.149i −0.429664 + 0.429664i −0.888514 0.458850i \(-0.848262\pi\)
0.458850 + 0.888514i \(0.348262\pi\)
\(660\) 0 0
\(661\) 287.535 287.535i 0.435000 0.435000i −0.455325 0.890325i \(-0.650477\pi\)
0.890325 + 0.455325i \(0.150477\pi\)
\(662\) 0 0
\(663\) −12.4582 −0.0187907
\(664\) 0 0
\(665\) 963.069i 1.44822i
\(666\) 0 0
\(667\) −82.9486 82.9486i −0.124361 0.124361i
\(668\) 0 0
\(669\) 2.30816 + 2.30816i 0.00345017 + 0.00345017i
\(670\) 0 0
\(671\) 187.776i 0.279845i
\(672\) 0 0
\(673\) −45.5265 −0.0676471 −0.0338236 0.999428i \(-0.510768\pi\)
−0.0338236 + 0.999428i \(0.510768\pi\)
\(674\) 0 0
\(675\) −5.70586 + 5.70586i −0.00845312 + 0.00845312i
\(676\) 0 0
\(677\) 208.341 208.341i 0.307742 0.307742i −0.536291 0.844033i \(-0.680175\pi\)
0.844033 + 0.536291i \(0.180175\pi\)
\(678\) 0 0
\(679\) 1089.18 1.60409
\(680\) 0 0
\(681\) 58.3382i 0.0856655i
\(682\) 0 0
\(683\) 219.645 + 219.645i 0.321589 + 0.321589i 0.849377 0.527787i \(-0.176978\pi\)
−0.527787 + 0.849377i \(0.676978\pi\)
\(684\) 0 0
\(685\) −277.065 277.065i −0.404475 0.404475i
\(686\) 0 0
\(687\) 67.4808i 0.0982254i
\(688\) 0 0
\(689\) −136.710 −0.198418
\(690\) 0 0
\(691\) −692.991 + 692.991i −1.00288 + 1.00288i −0.00288571 + 0.999996i \(0.500919\pi\)
−0.999996 + 0.00288571i \(0.999081\pi\)
\(692\) 0 0
\(693\) 477.675 477.675i 0.689285 0.689285i
\(694\) 0 0
\(695\) 791.905 1.13943
\(696\) 0 0
\(697\) 327.301i 0.469585i
\(698\) 0 0
\(699\) −50.4655 50.4655i −0.0721967 0.0721967i
\(700\) 0 0
\(701\) 195.377 + 195.377i 0.278712 + 0.278712i 0.832595 0.553883i \(-0.186854\pi\)
−0.553883 + 0.832595i \(0.686854\pi\)
\(702\) 0 0
\(703\) 491.668i 0.699386i
\(704\) 0 0
\(705\) 43.5917 0.0618322
\(706\) 0 0
\(707\) 941.179 941.179i 1.33123 1.33123i
\(708\) 0 0
\(709\) 318.083 318.083i 0.448636 0.448636i −0.446265 0.894901i \(-0.647246\pi\)
0.894901 + 0.446265i \(0.147246\pi\)
\(710\) 0 0
\(711\) 971.962 1.36703
\(712\) 0 0
\(713\) 89.7775i 0.125915i
\(714\) 0 0
\(715\) 255.101 + 255.101i 0.356784 + 0.356784i
\(716\) 0 0
\(717\) −11.2991 11.2991i −0.0157589 0.0157589i
\(718\) 0 0
\(719\) 1122.38i 1.56103i 0.625139 + 0.780514i \(0.285042\pi\)
−0.625139 + 0.780514i \(0.714958\pi\)
\(720\) 0 0
\(721\) 1340.43 1.85913
\(722\) 0 0
\(723\) 42.9557 42.9557i 0.0594132 0.0594132i
\(724\) 0 0
\(725\) 10.5437 10.5437i 0.0145430 0.0145430i
\(726\) 0 0
\(727\) −529.192 −0.727911 −0.363956 0.931416i \(-0.618574\pi\)
−0.363956 + 0.931416i \(0.618574\pi\)
\(728\) 0 0
\(729\) 708.260i 0.971549i
\(730\) 0 0
\(731\) −369.926 369.926i −0.506055 0.506055i
\(732\) 0 0
\(733\) −263.121 263.121i −0.358965 0.358965i 0.504466 0.863431i \(-0.331689\pi\)
−0.863431 + 0.504466i \(0.831689\pi\)
\(734\) 0 0
\(735\) 47.9070i 0.0651797i
\(736\) 0 0
\(737\) 252.938 0.343200
\(738\) 0 0
\(739\) 44.5459 44.5459i 0.0602787 0.0602787i −0.676325 0.736603i \(-0.736428\pi\)
0.736603 + 0.676325i \(0.236428\pi\)
\(740\) 0 0
\(741\) −24.8165 + 24.8165i −0.0334906 + 0.0334906i
\(742\) 0 0
\(743\) −762.894 −1.02678 −0.513388 0.858157i \(-0.671610\pi\)
−0.513388 + 0.858157i \(0.671610\pi\)
\(744\) 0 0
\(745\) 1076.50i 1.44496i
\(746\) 0 0
\(747\) −513.400 513.400i −0.687282 0.687282i
\(748\) 0 0
\(749\) 306.735 + 306.735i 0.409526 + 0.409526i
\(750\) 0 0
\(751\) 1342.93i 1.78819i −0.447876 0.894095i \(-0.647820\pi\)
0.447876 0.894095i \(-0.352180\pi\)
\(752\) 0 0
\(753\) 23.3108 0.0309573
\(754\) 0 0
\(755\) −812.776 + 812.776i −1.07652 + 1.07652i
\(756\) 0 0
\(757\) −394.830 + 394.830i −0.521573 + 0.521573i −0.918046 0.396474i \(-0.870234\pi\)
0.396474 + 0.918046i \(0.370234\pi\)
\(758\) 0 0
\(759\) −27.5878 −0.0363475
\(760\) 0 0
\(761\) 480.213i 0.631029i −0.948921 0.315514i \(-0.897823\pi\)
0.948921 0.315514i \(-0.102177\pi\)
\(762\) 0 0
\(763\) 6.88404 + 6.88404i 0.00902233 + 0.00902233i
\(764\) 0 0
\(765\) −224.045 224.045i −0.292870 0.292870i
\(766\) 0 0
\(767\) 638.291i 0.832191i
\(768\) 0 0
\(769\) 472.763 0.614777 0.307388 0.951584i \(-0.400545\pi\)
0.307388 + 0.951584i \(0.400545\pi\)
\(770\) 0 0
\(771\) −32.4727 + 32.4727i −0.0421177 + 0.0421177i
\(772\) 0 0
\(773\) 857.735 857.735i 1.10962 1.10962i 0.116418 0.993200i \(-0.462859\pi\)
0.993200 0.116418i \(-0.0371412\pi\)
\(774\) 0 0
\(775\) 11.4117 0.0147248
\(776\) 0 0
\(777\) 51.4485i 0.0662143i
\(778\) 0 0
\(779\) 651.978 + 651.978i 0.836942 + 0.836942i
\(780\) 0 0
\(781\) −284.758 284.758i −0.364607 0.364607i
\(782\) 0 0
\(783\) 25.5302i 0.0326056i
\(784\) 0 0
\(785\) −807.648 −1.02885
\(786\) 0 0
\(787\) −170.355 + 170.355i −0.216462 + 0.216462i −0.807006 0.590544i \(-0.798913\pi\)
0.590544 + 0.807006i \(0.298913\pi\)
\(788\) 0 0
\(789\) 54.7733 54.7733i 0.0694212 0.0694212i
\(790\) 0 0
\(791\) 143.891 0.181911
\(792\) 0 0
\(793\) 213.409i 0.269116i
\(794\) 0 0
\(795\) 11.7603 + 11.7603i 0.0147928 + 0.0147928i
\(796\) 0 0
\(797\) 835.571 + 835.571i 1.04840 + 1.04840i 0.998768 + 0.0496277i \(0.0158035\pi\)
0.0496277 + 0.998768i \(0.484197\pi\)
\(798\) 0 0
\(799\) 274.174i 0.343147i
\(800\) 0 0
\(801\) −395.258 −0.493456
\(802\) 0 0
\(803\) 433.185 433.185i 0.539458 0.539458i
\(804\) 0 0
\(805\) −608.380 + 608.380i −0.755751 + 0.755751i
\(806\) 0 0
\(807\) 104.789 0.129850
\(808\) 0 0
\(809\) 371.926i 0.459735i −0.973222 0.229868i \(-0.926171\pi\)
0.973222 0.229868i \(-0.0738293\pi\)
\(810\) 0 0
\(811\) 275.629 + 275.629i 0.339863 + 0.339863i 0.856316 0.516453i \(-0.172748\pi\)
−0.516453 + 0.856316i \(0.672748\pi\)
\(812\) 0 0
\(813\) −52.5497 52.5497i −0.0646367 0.0646367i
\(814\) 0 0
\(815\) 418.550i 0.513559i
\(816\) 0 0
\(817\) −1473.77 −1.80389
\(818\) 0 0
\(819\) 542.880 542.880i 0.662858 0.662858i
\(820\) 0 0
\(821\) −904.923 + 904.923i −1.10222 + 1.10222i −0.108079 + 0.994142i \(0.534470\pi\)
−0.994142 + 0.108079i \(0.965530\pi\)
\(822\) 0 0
\(823\) −523.237 −0.635768 −0.317884 0.948130i \(-0.602972\pi\)
−0.317884 + 0.948130i \(0.602972\pi\)
\(824\) 0 0
\(825\) 3.50671i 0.00425055i
\(826\) 0 0
\(827\) −722.805 722.805i −0.874008 0.874008i 0.118898 0.992906i \(-0.462064\pi\)
−0.992906 + 0.118898i \(0.962064\pi\)
\(828\) 0 0
\(829\) −286.380 286.380i −0.345453 0.345453i 0.512960 0.858413i \(-0.328549\pi\)
−0.858413 + 0.512960i \(0.828549\pi\)
\(830\) 0 0
\(831\) 102.972i 0.123914i
\(832\) 0 0
\(833\) −301.316 −0.361724
\(834\) 0 0
\(835\) −393.193 + 393.193i −0.470890 + 0.470890i
\(836\) 0 0
\(837\) 13.8160 13.8160i 0.0165066 0.0165066i
\(838\) 0 0
\(839\) −1353.58 −1.61333 −0.806666 0.591008i \(-0.798730\pi\)
−0.806666 + 0.591008i \(0.798730\pi\)
\(840\) 0 0
\(841\) 793.824i 0.943904i
\(842\) 0 0
\(843\) 28.0129 + 28.0129i 0.0332300 + 0.0332300i
\(844\) 0 0
\(845\) −332.984 332.984i −0.394064 0.394064i
\(846\) 0 0
\(847\) 580.852i 0.685776i
\(848\) 0 0
\(849\) −9.16597 −0.0107962
\(850\) 0 0
\(851\) 310.591 310.591i 0.364972 0.364972i
\(852\) 0 0
\(853\) −668.253 + 668.253i −0.783415 + 0.783415i −0.980405 0.196990i \(-0.936883\pi\)
0.196990 + 0.980405i \(0.436883\pi\)
\(854\) 0 0
\(855\) −892.589 −1.04396
\(856\) 0 0
\(857\) 488.688i 0.570230i −0.958493 0.285115i \(-0.907968\pi\)
0.958493 0.285115i \(-0.0920319\pi\)
\(858\) 0 0
\(859\) 268.818 + 268.818i 0.312943 + 0.312943i 0.846048 0.533106i \(-0.178975\pi\)
−0.533106 + 0.846048i \(0.678975\pi\)
\(860\) 0 0
\(861\) 68.2234 + 68.2234i 0.0792374 + 0.0792374i
\(862\) 0 0
\(863\) 152.667i 0.176903i −0.996080 0.0884514i \(-0.971808\pi\)
0.996080 0.0884514i \(-0.0281918\pi\)
\(864\) 0 0
\(865\) 1314.82 1.52002
\(866\) 0 0
\(867\) 35.5591 35.5591i 0.0410139 0.0410139i
\(868\) 0 0
\(869\) −598.777 + 598.777i −0.689042 + 0.689042i
\(870\) 0 0
\(871\) 287.466 0.330041
\(872\) 0 0
\(873\) 1009.47i 1.15632i
\(874\) 0 0
\(875\) 813.208 + 813.208i 0.929380 + 0.929380i
\(876\) 0 0
\(877\) 162.637 + 162.637i 0.185447 + 0.185447i 0.793725 0.608277i \(-0.208139\pi\)
−0.608277 + 0.793725i \(0.708139\pi\)
\(878\) 0 0
\(879\) 26.9573i 0.0306681i
\(880\) 0 0
\(881\) 873.243 0.991196 0.495598 0.868552i \(-0.334949\pi\)
0.495598 + 0.868552i \(0.334949\pi\)
\(882\) 0 0
\(883\) 230.025 230.025i 0.260504 0.260504i −0.564755 0.825259i \(-0.691029\pi\)
0.825259 + 0.564755i \(0.191029\pi\)
\(884\) 0 0
\(885\) 54.9081 54.9081i 0.0620430 0.0620430i
\(886\) 0 0
\(887\) −430.685 −0.485552 −0.242776 0.970082i \(-0.578058\pi\)
−0.242776 + 0.970082i \(0.578058\pi\)
\(888\) 0 0
\(889\) 1032.75i 1.16170i
\(890\) 0 0
\(891\) 440.589 + 440.589i 0.494489 + 0.494489i
\(892\) 0 0
\(893\) 546.150 + 546.150i 0.611590 + 0.611590i
\(894\) 0 0
\(895\) 445.709i 0.497999i
\(896\) 0 0
\(897\) −31.3537 −0.0349539
\(898\) 0 0
\(899\) −25.5302 + 25.5302i −0.0283984 + 0.0283984i
\(900\) 0 0
\(901\) −73.9673 + 73.9673i −0.0820947 + 0.0820947i
\(902\) 0 0
\(903\) −154.217 −0.170783
\(904\) 0 0
\(905\) 1084.47i 1.19831i
\(906\) 0 0
\(907\) −22.2262 22.2262i −0.0245052 0.0245052i 0.694748 0.719253i \(-0.255516\pi\)
−0.719253 + 0.694748i \(0.755516\pi\)
\(908\) 0 0
\(909\) 872.301 + 872.301i 0.959627 + 0.959627i
\(910\) 0 0
\(911\) 1399.85i 1.53661i −0.640083 0.768306i \(-0.721100\pi\)
0.640083 0.768306i \(-0.278900\pi\)
\(912\) 0 0
\(913\) 632.560 0.692837
\(914\) 0 0
\(915\) 18.3582 18.3582i 0.0200636 0.0200636i
\(916\) 0 0
\(917\) 1480.57 1480.57i 1.61458 1.61458i
\(918\) 0 0
\(919\) 806.944 0.878068 0.439034 0.898470i \(-0.355321\pi\)
0.439034 + 0.898470i \(0.355321\pi\)
\(920\) 0 0
\(921\) 75.3976i 0.0818650i
\(922\) 0 0
\(923\) −323.629 323.629i −0.350628 0.350628i
\(924\) 0 0
\(925\) 39.4796 + 39.4796i 0.0426806 + 0.0426806i
\(926\) 0 0
\(927\) 1242.34i 1.34017i
\(928\) 0 0
\(929\) −1620.69 −1.74455 −0.872276 0.489013i \(-0.837357\pi\)
−0.872276 + 0.489013i \(0.837357\pi\)
\(930\) 0 0
\(931\) −600.216 + 600.216i −0.644701 + 0.644701i
\(932\) 0 0
\(933\) −19.1613 + 19.1613i −0.0205373 + 0.0205373i
\(934\) 0 0
\(935\) 276.046 0.295237
\(936\) 0 0
\(937\) 598.181i 0.638400i −0.947687 0.319200i \(-0.896586\pi\)
0.947687 0.319200i \(-0.103414\pi\)
\(938\) 0 0
\(939\) 7.58691 + 7.58691i 0.00807978 + 0.00807978i
\(940\) 0 0
\(941\) −977.842 977.842i −1.03915 1.03915i −0.999202 0.0399498i \(-0.987280\pi\)
−0.0399498 0.999202i \(-0.512720\pi\)
\(942\) 0 0
\(943\) 823.721i 0.873511i
\(944\) 0 0
\(945\) −187.249 −0.198147
\(946\) 0 0
\(947\) 827.881 827.881i 0.874215 0.874215i −0.118714 0.992929i \(-0.537877\pi\)
0.992929 + 0.118714i \(0.0378771\pi\)
\(948\) 0 0
\(949\) 492.317 492.317i 0.518775 0.518775i
\(950\) 0 0
\(951\) 32.0939 0.0337476
\(952\) 0 0
\(953\) 1846.78i 1.93786i 0.247333 + 0.968930i \(0.420446\pi\)
−0.247333 + 0.968930i \(0.579554\pi\)
\(954\) 0 0
\(955\) 393.873 + 393.873i 0.412432 + 0.412432i
\(956\) 0 0
\(957\) 7.84517 + 7.84517i 0.00819767 + 0.00819767i
\(958\) 0 0
\(959\) 726.475i 0.757534i
\(960\) 0 0
\(961\) 933.368 0.971247
\(962\) 0 0
\(963\) −284.287 + 284.287i −0.295210 + 0.295210i
\(964\) 0 0
\(965\) 251.328 251.328i 0.260443 0.260443i
\(966\) 0 0
\(967\) 363.922 0.376341 0.188170 0.982136i \(-0.439744\pi\)
0.188170 + 0.982136i \(0.439744\pi\)
\(968\) 0 0
\(969\) 26.8542i 0.0277133i
\(970\) 0 0
\(971\) −1161.30 1161.30i −1.19598 1.19598i −0.975360 0.220619i \(-0.929192\pi\)
−0.220619 0.975360i \(-0.570808\pi\)
\(972\) 0 0
\(973\) 1038.20 + 1038.20i 1.06701 + 1.06701i
\(974\) 0 0
\(975\) 3.98540i 0.00408759i
\(976\) 0 0
\(977\) 1159.63 1.18693 0.593467 0.804858i \(-0.297759\pi\)
0.593467 + 0.804858i \(0.297759\pi\)
\(978\) 0 0
\(979\) 243.499 243.499i 0.248722 0.248722i
\(980\) 0 0
\(981\) −6.38025 + 6.38025i −0.00650382 + 0.00650382i
\(982\) 0 0
\(983\) 1780.51 1.81131 0.905653 0.424020i \(-0.139382\pi\)
0.905653 + 0.424020i \(0.139382\pi\)
\(984\) 0 0
\(985\) 455.961i 0.462904i
\(986\) 0 0
\(987\) 57.1495 + 57.1495i 0.0579022 + 0.0579022i
\(988\) 0 0
\(989\) −930.997 930.997i −0.941352 0.941352i
\(990\) 0 0
\(991\) 675.783i 0.681920i −0.940078 0.340960i \(-0.889248\pi\)
0.940078 0.340960i \(-0.110752\pi\)
\(992\) 0 0
\(993\) 94.6184 0.0952854
\(994\) 0 0
\(995\) 584.080 584.080i 0.587015 0.587015i
\(996\) 0 0
\(997\) 9.44963 9.44963i 0.00947806 0.00947806i −0.702352 0.711830i \(-0.747867\pi\)
0.711830 + 0.702352i \(0.247867\pi\)
\(998\) 0 0
\(999\) 95.5948 0.0956905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.3.f.a.47.2 6
3.2 odd 2 576.3.m.a.559.1 6
4.3 odd 2 16.3.f.a.3.2 6
8.3 odd 2 128.3.f.b.95.2 6
8.5 even 2 128.3.f.a.95.2 6
12.11 even 2 144.3.m.a.19.2 6
16.3 odd 4 128.3.f.a.31.2 6
16.5 even 4 16.3.f.a.11.2 yes 6
16.11 odd 4 inner 64.3.f.a.15.2 6
16.13 even 4 128.3.f.b.31.2 6
20.3 even 4 400.3.k.c.99.3 6
20.7 even 4 400.3.k.d.99.1 6
20.19 odd 2 400.3.r.c.51.2 6
24.5 odd 2 1152.3.m.b.991.3 6
24.11 even 2 1152.3.m.a.991.3 6
32.3 odd 8 1024.3.d.k.511.8 12
32.5 even 8 1024.3.c.j.1023.6 12
32.11 odd 8 1024.3.c.j.1023.5 12
32.13 even 8 1024.3.d.k.511.7 12
32.19 odd 8 1024.3.d.k.511.5 12
32.21 even 8 1024.3.c.j.1023.7 12
32.27 odd 8 1024.3.c.j.1023.8 12
32.29 even 8 1024.3.d.k.511.6 12
48.5 odd 4 144.3.m.a.91.2 6
48.11 even 4 576.3.m.a.271.1 6
48.29 odd 4 1152.3.m.a.415.3 6
48.35 even 4 1152.3.m.b.415.3 6
80.37 odd 4 400.3.k.c.299.3 6
80.53 odd 4 400.3.k.d.299.1 6
80.69 even 4 400.3.r.c.251.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.3.f.a.3.2 6 4.3 odd 2
16.3.f.a.11.2 yes 6 16.5 even 4
64.3.f.a.15.2 6 16.11 odd 4 inner
64.3.f.a.47.2 6 1.1 even 1 trivial
128.3.f.a.31.2 6 16.3 odd 4
128.3.f.a.95.2 6 8.5 even 2
128.3.f.b.31.2 6 16.13 even 4
128.3.f.b.95.2 6 8.3 odd 2
144.3.m.a.19.2 6 12.11 even 2
144.3.m.a.91.2 6 48.5 odd 4
400.3.k.c.99.3 6 20.3 even 4
400.3.k.c.299.3 6 80.37 odd 4
400.3.k.d.99.1 6 20.7 even 4
400.3.k.d.299.1 6 80.53 odd 4
400.3.r.c.51.2 6 20.19 odd 2
400.3.r.c.251.2 6 80.69 even 4
576.3.m.a.271.1 6 48.11 even 4
576.3.m.a.559.1 6 3.2 odd 2
1024.3.c.j.1023.5 12 32.11 odd 8
1024.3.c.j.1023.6 12 32.5 even 8
1024.3.c.j.1023.7 12 32.21 even 8
1024.3.c.j.1023.8 12 32.27 odd 8
1024.3.d.k.511.5 12 32.19 odd 8
1024.3.d.k.511.6 12 32.29 even 8
1024.3.d.k.511.7 12 32.13 even 8
1024.3.d.k.511.8 12 32.3 odd 8
1152.3.m.a.415.3 6 48.29 odd 4
1152.3.m.a.991.3 6 24.11 even 2
1152.3.m.b.415.3 6 48.35 even 4
1152.3.m.b.991.3 6 24.5 odd 2