Properties

Label 1024.3.d.k.511.5
Level $1024$
Weight $3$
Character 1024.511
Analytic conductor $27.902$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1024,3,Mod(511,1024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1024, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1024.511");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1024.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.9019790705\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.653473922154496.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 13x^{8} - 28x^{6} + 52x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 511.5
Root \(1.35489 - 0.405301i\) of defining polynomial
Character \(\chi\) \(=\) 1024.511
Dual form 1024.3.d.k.511.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.206992 q^{3} -5.21257i q^{5} +9.66442i q^{7} -8.95715 q^{9} -7.80371 q^{11} -8.86897i q^{13} +1.07896i q^{15} +6.78623 q^{17} +19.1174 q^{19} -2.00046i q^{21} +17.0790i q^{23} -2.17092 q^{25} +3.71699 q^{27} -6.86851i q^{29} -5.25662i q^{31} +1.61531 q^{33} +50.3765 q^{35} +25.7183i q^{37} +1.83581i q^{39} +48.2302 q^{41} +77.0907 q^{43} +46.6898i q^{45} -40.4015i q^{47} -44.4011 q^{49} -1.40470 q^{51} +15.4144i q^{53} +40.6774i q^{55} -3.95715 q^{57} +71.9690 q^{59} +24.0624i q^{61} -86.5657i q^{63} -46.2302 q^{65} -32.4126 q^{67} -3.53521i q^{69} +51.6047i q^{71} -78.5032 q^{73} +0.449364 q^{75} -75.4184i q^{77} -108.512i q^{79} +79.8450 q^{81} +81.0589 q^{83} -35.3737i q^{85} +1.42173i q^{87} +44.1276 q^{89} +85.7135 q^{91} +1.08808i q^{93} -99.6510i q^{95} +112.700 q^{97} +69.8991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{9} + 8 q^{17} + 20 q^{25} - 8 q^{33} + 92 q^{49} + 72 q^{57} + 24 q^{65} + 96 q^{73} - 172 q^{81} - 160 q^{89} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1023\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.206992 −0.0689974 −0.0344987 0.999405i \(-0.510983\pi\)
−0.0344987 + 0.999405i \(0.510983\pi\)
\(4\) 0 0
\(5\) − 5.21257i − 1.04251i −0.853400 0.521257i \(-0.825463\pi\)
0.853400 0.521257i \(-0.174537\pi\)
\(6\) 0 0
\(7\) 9.66442i 1.38063i 0.723508 + 0.690316i \(0.242528\pi\)
−0.723508 + 0.690316i \(0.757472\pi\)
\(8\) 0 0
\(9\) −8.95715 −0.995239
\(10\) 0 0
\(11\) −7.80371 −0.709428 −0.354714 0.934975i \(-0.615422\pi\)
−0.354714 + 0.934975i \(0.615422\pi\)
\(12\) 0 0
\(13\) − 8.86897i − 0.682228i −0.940022 0.341114i \(-0.889196\pi\)
0.940022 0.341114i \(-0.110804\pi\)
\(14\) 0 0
\(15\) 1.07896i 0.0719308i
\(16\) 0 0
\(17\) 6.78623 0.399190 0.199595 0.979878i \(-0.436037\pi\)
0.199595 + 0.979878i \(0.436037\pi\)
\(18\) 0 0
\(19\) 19.1174 1.00618 0.503090 0.864234i \(-0.332196\pi\)
0.503090 + 0.864234i \(0.332196\pi\)
\(20\) 0 0
\(21\) − 2.00046i − 0.0952599i
\(22\) 0 0
\(23\) 17.0790i 0.742564i 0.928520 + 0.371282i \(0.121082\pi\)
−0.928520 + 0.371282i \(0.878918\pi\)
\(24\) 0 0
\(25\) −2.17092 −0.0868370
\(26\) 0 0
\(27\) 3.71699 0.137666
\(28\) 0 0
\(29\) − 6.86851i − 0.236845i −0.992963 0.118423i \(-0.962216\pi\)
0.992963 0.118423i \(-0.0377837\pi\)
\(30\) 0 0
\(31\) − 5.25662i − 0.169568i −0.996399 0.0847841i \(-0.972980\pi\)
0.996399 0.0847841i \(-0.0270201\pi\)
\(32\) 0 0
\(33\) 1.61531 0.0489487
\(34\) 0 0
\(35\) 50.3765 1.43933
\(36\) 0 0
\(37\) 25.7183i 0.695090i 0.937663 + 0.347545i \(0.112985\pi\)
−0.937663 + 0.347545i \(0.887015\pi\)
\(38\) 0 0
\(39\) 1.83581i 0.0470720i
\(40\) 0 0
\(41\) 48.2302 1.17635 0.588173 0.808735i \(-0.299848\pi\)
0.588173 + 0.808735i \(0.299848\pi\)
\(42\) 0 0
\(43\) 77.0907 1.79281 0.896403 0.443240i \(-0.146171\pi\)
0.896403 + 0.443240i \(0.146171\pi\)
\(44\) 0 0
\(45\) 46.6898i 1.03755i
\(46\) 0 0
\(47\) − 40.4015i − 0.859607i −0.902922 0.429804i \(-0.858583\pi\)
0.902922 0.429804i \(-0.141417\pi\)
\(48\) 0 0
\(49\) −44.4011 −0.906144
\(50\) 0 0
\(51\) −1.40470 −0.0275431
\(52\) 0 0
\(53\) 15.4144i 0.290837i 0.989370 + 0.145419i \(0.0464529\pi\)
−0.989370 + 0.145419i \(0.953547\pi\)
\(54\) 0 0
\(55\) 40.6774i 0.739590i
\(56\) 0 0
\(57\) −3.95715 −0.0694238
\(58\) 0 0
\(59\) 71.9690 1.21981 0.609907 0.792473i \(-0.291207\pi\)
0.609907 + 0.792473i \(0.291207\pi\)
\(60\) 0 0
\(61\) 24.0624i 0.394466i 0.980357 + 0.197233i \(0.0631955\pi\)
−0.980357 + 0.197233i \(0.936804\pi\)
\(62\) 0 0
\(63\) − 86.5657i − 1.37406i
\(64\) 0 0
\(65\) −46.2302 −0.711233
\(66\) 0 0
\(67\) −32.4126 −0.483769 −0.241885 0.970305i \(-0.577766\pi\)
−0.241885 + 0.970305i \(0.577766\pi\)
\(68\) 0 0
\(69\) − 3.53521i − 0.0512349i
\(70\) 0 0
\(71\) 51.6047i 0.726827i 0.931628 + 0.363414i \(0.118389\pi\)
−0.931628 + 0.363414i \(0.881611\pi\)
\(72\) 0 0
\(73\) −78.5032 −1.07539 −0.537693 0.843141i \(-0.680704\pi\)
−0.537693 + 0.843141i \(0.680704\pi\)
\(74\) 0 0
\(75\) 0.449364 0.00599152
\(76\) 0 0
\(77\) − 75.4184i − 0.979459i
\(78\) 0 0
\(79\) − 108.512i − 1.37357i −0.726859 0.686787i \(-0.759021\pi\)
0.726859 0.686787i \(-0.240979\pi\)
\(80\) 0 0
\(81\) 79.8450 0.985741
\(82\) 0 0
\(83\) 81.0589 0.976613 0.488307 0.872672i \(-0.337615\pi\)
0.488307 + 0.872672i \(0.337615\pi\)
\(84\) 0 0
\(85\) − 35.3737i − 0.416161i
\(86\) 0 0
\(87\) 1.42173i 0.0163417i
\(88\) 0 0
\(89\) 44.1276 0.495816 0.247908 0.968784i \(-0.420257\pi\)
0.247908 + 0.968784i \(0.420257\pi\)
\(90\) 0 0
\(91\) 85.7135 0.941906
\(92\) 0 0
\(93\) 1.08808i 0.0116998i
\(94\) 0 0
\(95\) − 99.6510i − 1.04896i
\(96\) 0 0
\(97\) 112.700 1.16185 0.580926 0.813956i \(-0.302691\pi\)
0.580926 + 0.813956i \(0.302691\pi\)
\(98\) 0 0
\(99\) 69.8991 0.706051
\(100\) 0 0
\(101\) − 137.724i − 1.36361i −0.731534 0.681804i \(-0.761195\pi\)
0.731534 0.681804i \(-0.238805\pi\)
\(102\) 0 0
\(103\) 138.698i 1.34658i 0.739379 + 0.673290i \(0.235119\pi\)
−0.739379 + 0.673290i \(0.764881\pi\)
\(104\) 0 0
\(105\) −10.4275 −0.0993099
\(106\) 0 0
\(107\) 44.8851 0.419487 0.209743 0.977756i \(-0.432737\pi\)
0.209743 + 0.977756i \(0.432737\pi\)
\(108\) 0 0
\(109\) 1.00735i 0.00924179i 0.999989 + 0.00462089i \(0.00147088\pi\)
−0.999989 + 0.00462089i \(0.998529\pi\)
\(110\) 0 0
\(111\) − 5.32349i − 0.0479594i
\(112\) 0 0
\(113\) −14.8888 −0.131759 −0.0658795 0.997828i \(-0.520985\pi\)
−0.0658795 + 0.997828i \(0.520985\pi\)
\(114\) 0 0
\(115\) 89.0253 0.774133
\(116\) 0 0
\(117\) 79.4407i 0.678981i
\(118\) 0 0
\(119\) 65.5850i 0.551134i
\(120\) 0 0
\(121\) −60.1021 −0.496711
\(122\) 0 0
\(123\) −9.98326 −0.0811647
\(124\) 0 0
\(125\) − 118.998i − 0.951986i
\(126\) 0 0
\(127\) 106.861i 0.841425i 0.907194 + 0.420712i \(0.138220\pi\)
−0.907194 + 0.420712i \(0.861780\pi\)
\(128\) 0 0
\(129\) −15.9572 −0.123699
\(130\) 0 0
\(131\) 216.655 1.65386 0.826928 0.562307i \(-0.190086\pi\)
0.826928 + 0.562307i \(0.190086\pi\)
\(132\) 0 0
\(133\) 184.759i 1.38916i
\(134\) 0 0
\(135\) − 19.3751i − 0.143519i
\(136\) 0 0
\(137\) 75.1700 0.548686 0.274343 0.961632i \(-0.411540\pi\)
0.274343 + 0.961632i \(0.411540\pi\)
\(138\) 0 0
\(139\) 151.922 1.09297 0.546483 0.837471i \(-0.315966\pi\)
0.546483 + 0.837471i \(0.315966\pi\)
\(140\) 0 0
\(141\) 8.36280i 0.0593106i
\(142\) 0 0
\(143\) 69.2109i 0.483992i
\(144\) 0 0
\(145\) −35.8026 −0.246915
\(146\) 0 0
\(147\) 9.19067 0.0625216
\(148\) 0 0
\(149\) − 206.519i − 1.38603i −0.720921 0.693017i \(-0.756281\pi\)
0.720921 0.693017i \(-0.243719\pi\)
\(150\) 0 0
\(151\) 220.513i 1.46035i 0.683260 + 0.730175i \(0.260561\pi\)
−0.683260 + 0.730175i \(0.739439\pi\)
\(152\) 0 0
\(153\) −60.7853 −0.397290
\(154\) 0 0
\(155\) −27.4005 −0.176777
\(156\) 0 0
\(157\) 154.942i 0.986893i 0.869776 + 0.493447i \(0.164263\pi\)
−0.869776 + 0.493447i \(0.835737\pi\)
\(158\) 0 0
\(159\) − 3.19066i − 0.0200670i
\(160\) 0 0
\(161\) −165.058 −1.02521
\(162\) 0 0
\(163\) −80.2963 −0.492615 −0.246308 0.969192i \(-0.579217\pi\)
−0.246308 + 0.969192i \(0.579217\pi\)
\(164\) 0 0
\(165\) − 8.41990i − 0.0510297i
\(166\) 0 0
\(167\) − 106.677i − 0.638781i −0.947623 0.319391i \(-0.896522\pi\)
0.947623 0.319391i \(-0.103478\pi\)
\(168\) 0 0
\(169\) 90.3414 0.534564
\(170\) 0 0
\(171\) −171.238 −1.00139
\(172\) 0 0
\(173\) 252.240i 1.45803i 0.684496 + 0.729016i \(0.260022\pi\)
−0.684496 + 0.729016i \(0.739978\pi\)
\(174\) 0 0
\(175\) − 20.9807i − 0.119890i
\(176\) 0 0
\(177\) −14.8970 −0.0841639
\(178\) 0 0
\(179\) 85.5065 0.477690 0.238845 0.971058i \(-0.423231\pi\)
0.238845 + 0.971058i \(0.423231\pi\)
\(180\) 0 0
\(181\) 208.049i 1.14944i 0.818349 + 0.574721i \(0.194890\pi\)
−0.818349 + 0.574721i \(0.805110\pi\)
\(182\) 0 0
\(183\) − 4.98073i − 0.0272171i
\(184\) 0 0
\(185\) 134.059 0.724642
\(186\) 0 0
\(187\) −52.9578 −0.283197
\(188\) 0 0
\(189\) 35.9225i 0.190066i
\(190\) 0 0
\(191\) − 106.861i − 0.559481i −0.960076 0.279741i \(-0.909752\pi\)
0.960076 0.279741i \(-0.0902485\pi\)
\(192\) 0 0
\(193\) 68.1873 0.353302 0.176651 0.984274i \(-0.443474\pi\)
0.176651 + 0.984274i \(0.443474\pi\)
\(194\) 0 0
\(195\) 9.56927 0.0490732
\(196\) 0 0
\(197\) 87.4732i 0.444027i 0.975044 + 0.222013i \(0.0712628\pi\)
−0.975044 + 0.222013i \(0.928737\pi\)
\(198\) 0 0
\(199\) 158.466i 0.796310i 0.917318 + 0.398155i \(0.130349\pi\)
−0.917318 + 0.398155i \(0.869651\pi\)
\(200\) 0 0
\(201\) 6.70914 0.0333788
\(202\) 0 0
\(203\) 66.3802 0.326996
\(204\) 0 0
\(205\) − 251.403i − 1.22636i
\(206\) 0 0
\(207\) − 152.979i − 0.739028i
\(208\) 0 0
\(209\) −149.187 −0.713813
\(210\) 0 0
\(211\) −278.644 −1.32059 −0.660295 0.751007i \(-0.729569\pi\)
−0.660295 + 0.751007i \(0.729569\pi\)
\(212\) 0 0
\(213\) − 10.6818i − 0.0501492i
\(214\) 0 0
\(215\) − 401.841i − 1.86903i
\(216\) 0 0
\(217\) 50.8022 0.234111
\(218\) 0 0
\(219\) 16.2495 0.0741988
\(220\) 0 0
\(221\) − 60.1869i − 0.272339i
\(222\) 0 0
\(223\) 15.7698i 0.0707168i 0.999375 + 0.0353584i \(0.0112573\pi\)
−0.999375 + 0.0353584i \(0.988743\pi\)
\(224\) 0 0
\(225\) 19.4453 0.0864236
\(226\) 0 0
\(227\) −281.838 −1.24158 −0.620788 0.783978i \(-0.713187\pi\)
−0.620788 + 0.783978i \(0.713187\pi\)
\(228\) 0 0
\(229\) − 326.007i − 1.42361i −0.702377 0.711805i \(-0.747878\pi\)
0.702377 0.711805i \(-0.252122\pi\)
\(230\) 0 0
\(231\) 15.6110i 0.0675801i
\(232\) 0 0
\(233\) −344.791 −1.47979 −0.739895 0.672722i \(-0.765125\pi\)
−0.739895 + 0.672722i \(0.765125\pi\)
\(234\) 0 0
\(235\) −210.596 −0.896153
\(236\) 0 0
\(237\) 22.4612i 0.0947729i
\(238\) 0 0
\(239\) 77.1978i 0.323004i 0.986872 + 0.161502i \(0.0516337\pi\)
−0.986872 + 0.161502i \(0.948366\pi\)
\(240\) 0 0
\(241\) 293.483 1.21777 0.608885 0.793259i \(-0.291617\pi\)
0.608885 + 0.793259i \(0.291617\pi\)
\(242\) 0 0
\(243\) −49.9802 −0.205680
\(244\) 0 0
\(245\) 231.444i 0.944669i
\(246\) 0 0
\(247\) − 169.552i − 0.686445i
\(248\) 0 0
\(249\) −16.7785 −0.0673837
\(250\) 0 0
\(251\) 112.617 0.448673 0.224337 0.974512i \(-0.427979\pi\)
0.224337 + 0.974512i \(0.427979\pi\)
\(252\) 0 0
\(253\) − 133.279i − 0.526796i
\(254\) 0 0
\(255\) 7.32208i 0.0287140i
\(256\) 0 0
\(257\) 221.860 0.863270 0.431635 0.902048i \(-0.357937\pi\)
0.431635 + 0.902048i \(0.357937\pi\)
\(258\) 0 0
\(259\) −248.553 −0.959664
\(260\) 0 0
\(261\) 61.5223i 0.235718i
\(262\) 0 0
\(263\) − 374.223i − 1.42290i −0.702736 0.711451i \(-0.748039\pi\)
0.702736 0.711451i \(-0.251961\pi\)
\(264\) 0 0
\(265\) 80.3486 0.303202
\(266\) 0 0
\(267\) −9.13407 −0.0342100
\(268\) 0 0
\(269\) − 506.247i − 1.88196i −0.338465 0.940979i \(-0.609908\pi\)
0.338465 0.940979i \(-0.390092\pi\)
\(270\) 0 0
\(271\) 359.030i 1.32484i 0.749135 + 0.662418i \(0.230470\pi\)
−0.749135 + 0.662418i \(0.769530\pi\)
\(272\) 0 0
\(273\) −17.7420 −0.0649890
\(274\) 0 0
\(275\) 16.9413 0.0616046
\(276\) 0 0
\(277\) − 497.471i − 1.79592i −0.440074 0.897961i \(-0.645048\pi\)
0.440074 0.897961i \(-0.354952\pi\)
\(278\) 0 0
\(279\) 47.0843i 0.168761i
\(280\) 0 0
\(281\) −191.390 −0.681103 −0.340552 0.940226i \(-0.610614\pi\)
−0.340552 + 0.940226i \(0.610614\pi\)
\(282\) 0 0
\(283\) −44.2818 −0.156473 −0.0782363 0.996935i \(-0.524929\pi\)
−0.0782363 + 0.996935i \(0.524929\pi\)
\(284\) 0 0
\(285\) 20.6270i 0.0723753i
\(286\) 0 0
\(287\) 466.117i 1.62410i
\(288\) 0 0
\(289\) −242.947 −0.840647
\(290\) 0 0
\(291\) −23.3279 −0.0801647
\(292\) 0 0
\(293\) 130.233i 0.444483i 0.974992 + 0.222241i \(0.0713373\pi\)
−0.974992 + 0.222241i \(0.928663\pi\)
\(294\) 0 0
\(295\) − 375.144i − 1.27167i
\(296\) 0 0
\(297\) −29.0063 −0.0976643
\(298\) 0 0
\(299\) 151.473 0.506598
\(300\) 0 0
\(301\) 745.037i 2.47521i
\(302\) 0 0
\(303\) 28.5079i 0.0940854i
\(304\) 0 0
\(305\) 125.427 0.411236
\(306\) 0 0
\(307\) −364.254 −1.18649 −0.593247 0.805020i \(-0.702154\pi\)
−0.593247 + 0.805020i \(0.702154\pi\)
\(308\) 0 0
\(309\) − 28.7093i − 0.0929104i
\(310\) 0 0
\(311\) − 130.914i − 0.420946i −0.977600 0.210473i \(-0.932500\pi\)
0.977600 0.210473i \(-0.0675004\pi\)
\(312\) 0 0
\(313\) −51.8354 −0.165608 −0.0828041 0.996566i \(-0.526388\pi\)
−0.0828041 + 0.996566i \(0.526388\pi\)
\(314\) 0 0
\(315\) −451.230 −1.43248
\(316\) 0 0
\(317\) 155.049i 0.489114i 0.969635 + 0.244557i \(0.0786425\pi\)
−0.969635 + 0.244557i \(0.921357\pi\)
\(318\) 0 0
\(319\) 53.5999i 0.168025i
\(320\) 0 0
\(321\) −9.29086 −0.0289435
\(322\) 0 0
\(323\) 129.735 0.401657
\(324\) 0 0
\(325\) 19.2539i 0.0592426i
\(326\) 0 0
\(327\) − 0.208514i 0 0.000637659i
\(328\) 0 0
\(329\) 390.458 1.18680
\(330\) 0 0
\(331\) −457.111 −1.38100 −0.690500 0.723332i \(-0.742610\pi\)
−0.690500 + 0.723332i \(0.742610\pi\)
\(332\) 0 0
\(333\) − 230.363i − 0.691781i
\(334\) 0 0
\(335\) 168.953i 0.504337i
\(336\) 0 0
\(337\) −315.159 −0.935191 −0.467596 0.883943i \(-0.654880\pi\)
−0.467596 + 0.883943i \(0.654880\pi\)
\(338\) 0 0
\(339\) 3.08186 0.00909102
\(340\) 0 0
\(341\) 41.0211i 0.120297i
\(342\) 0 0
\(343\) 44.4459i 0.129580i
\(344\) 0 0
\(345\) −18.4275 −0.0534132
\(346\) 0 0
\(347\) −434.967 −1.25351 −0.626753 0.779218i \(-0.715616\pi\)
−0.626753 + 0.779218i \(0.715616\pi\)
\(348\) 0 0
\(349\) − 241.068i − 0.690740i −0.938467 0.345370i \(-0.887753\pi\)
0.938467 0.345370i \(-0.112247\pi\)
\(350\) 0 0
\(351\) − 32.9659i − 0.0939198i
\(352\) 0 0
\(353\) 238.136 0.674606 0.337303 0.941396i \(-0.390485\pi\)
0.337303 + 0.941396i \(0.390485\pi\)
\(354\) 0 0
\(355\) 268.993 0.757728
\(356\) 0 0
\(357\) − 13.5756i − 0.0380268i
\(358\) 0 0
\(359\) − 33.6470i − 0.0937241i −0.998901 0.0468620i \(-0.985078\pi\)
0.998901 0.0468620i \(-0.0149221\pi\)
\(360\) 0 0
\(361\) 4.47577 0.0123983
\(362\) 0 0
\(363\) 12.4407 0.0342718
\(364\) 0 0
\(365\) 409.203i 1.12111i
\(366\) 0 0
\(367\) 240.758i 0.656016i 0.944675 + 0.328008i \(0.106377\pi\)
−0.944675 + 0.328008i \(0.893623\pi\)
\(368\) 0 0
\(369\) −432.005 −1.17075
\(370\) 0 0
\(371\) −148.971 −0.401539
\(372\) 0 0
\(373\) 611.653i 1.63982i 0.572492 + 0.819910i \(0.305977\pi\)
−0.572492 + 0.819910i \(0.694023\pi\)
\(374\) 0 0
\(375\) 24.6317i 0.0656845i
\(376\) 0 0
\(377\) −60.9166 −0.161583
\(378\) 0 0
\(379\) −247.086 −0.651943 −0.325971 0.945380i \(-0.605691\pi\)
−0.325971 + 0.945380i \(0.605691\pi\)
\(380\) 0 0
\(381\) − 22.1194i − 0.0580561i
\(382\) 0 0
\(383\) 673.381i 1.75817i 0.476661 + 0.879087i \(0.341847\pi\)
−0.476661 + 0.879087i \(0.658153\pi\)
\(384\) 0 0
\(385\) −393.124 −1.02110
\(386\) 0 0
\(387\) −690.513 −1.78427
\(388\) 0 0
\(389\) 388.408i 0.998478i 0.866464 + 0.499239i \(0.166387\pi\)
−0.866464 + 0.499239i \(0.833613\pi\)
\(390\) 0 0
\(391\) 115.902i 0.296424i
\(392\) 0 0
\(393\) −44.8459 −0.114112
\(394\) 0 0
\(395\) −565.628 −1.43197
\(396\) 0 0
\(397\) − 383.611i − 0.966275i −0.875545 0.483137i \(-0.839497\pi\)
0.875545 0.483137i \(-0.160503\pi\)
\(398\) 0 0
\(399\) − 38.2436i − 0.0958487i
\(400\) 0 0
\(401\) 415.193 1.03539 0.517697 0.855564i \(-0.326790\pi\)
0.517697 + 0.855564i \(0.326790\pi\)
\(402\) 0 0
\(403\) −46.6208 −0.115684
\(404\) 0 0
\(405\) − 416.198i − 1.02765i
\(406\) 0 0
\(407\) − 200.699i − 0.493117i
\(408\) 0 0
\(409\) 634.686 1.55180 0.775900 0.630856i \(-0.217296\pi\)
0.775900 + 0.630856i \(0.217296\pi\)
\(410\) 0 0
\(411\) −15.5596 −0.0378579
\(412\) 0 0
\(413\) 695.539i 1.68411i
\(414\) 0 0
\(415\) − 422.525i − 1.01813i
\(416\) 0 0
\(417\) −31.4467 −0.0754117
\(418\) 0 0
\(419\) −27.2500 −0.0650358 −0.0325179 0.999471i \(-0.510353\pi\)
−0.0325179 + 0.999471i \(0.510353\pi\)
\(420\) 0 0
\(421\) − 345.783i − 0.821337i −0.911785 0.410668i \(-0.865295\pi\)
0.911785 0.410668i \(-0.134705\pi\)
\(422\) 0 0
\(423\) 361.883i 0.855515i
\(424\) 0 0
\(425\) −14.7324 −0.0346644
\(426\) 0 0
\(427\) −232.549 −0.544612
\(428\) 0 0
\(429\) − 14.3261i − 0.0333942i
\(430\) 0 0
\(431\) 337.331i 0.782670i 0.920248 + 0.391335i \(0.127987\pi\)
−0.920248 + 0.391335i \(0.872013\pi\)
\(432\) 0 0
\(433\) 424.560 0.980508 0.490254 0.871580i \(-0.336904\pi\)
0.490254 + 0.871580i \(0.336904\pi\)
\(434\) 0 0
\(435\) 7.41086 0.0170365
\(436\) 0 0
\(437\) 326.506i 0.747153i
\(438\) 0 0
\(439\) − 162.004i − 0.369029i −0.982830 0.184514i \(-0.940929\pi\)
0.982830 0.184514i \(-0.0590712\pi\)
\(440\) 0 0
\(441\) 397.707 0.901831
\(442\) 0 0
\(443\) 696.061 1.57124 0.785622 0.618707i \(-0.212343\pi\)
0.785622 + 0.618707i \(0.212343\pi\)
\(444\) 0 0
\(445\) − 230.018i − 0.516895i
\(446\) 0 0
\(447\) 42.7478i 0.0956327i
\(448\) 0 0
\(449\) 195.434 0.435266 0.217633 0.976031i \(-0.430166\pi\)
0.217633 + 0.976031i \(0.430166\pi\)
\(450\) 0 0
\(451\) −376.374 −0.834533
\(452\) 0 0
\(453\) − 45.6444i − 0.100760i
\(454\) 0 0
\(455\) − 446.788i − 0.981951i
\(456\) 0 0
\(457\) −386.874 −0.846552 −0.423276 0.906001i \(-0.639120\pi\)
−0.423276 + 0.906001i \(0.639120\pi\)
\(458\) 0 0
\(459\) 25.2243 0.0549550
\(460\) 0 0
\(461\) − 246.640i − 0.535011i −0.963556 0.267505i \(-0.913801\pi\)
0.963556 0.267505i \(-0.0861993\pi\)
\(462\) 0 0
\(463\) − 60.5295i − 0.130733i −0.997861 0.0653666i \(-0.979178\pi\)
0.997861 0.0653666i \(-0.0208217\pi\)
\(464\) 0 0
\(465\) 5.67168 0.0121972
\(466\) 0 0
\(467\) 433.431 0.928118 0.464059 0.885804i \(-0.346393\pi\)
0.464059 + 0.885804i \(0.346393\pi\)
\(468\) 0 0
\(469\) − 313.249i − 0.667908i
\(470\) 0 0
\(471\) − 32.0718i − 0.0680930i
\(472\) 0 0
\(473\) −601.593 −1.27187
\(474\) 0 0
\(475\) −41.5025 −0.0873736
\(476\) 0 0
\(477\) − 138.069i − 0.289453i
\(478\) 0 0
\(479\) 376.452i 0.785912i 0.919557 + 0.392956i \(0.128547\pi\)
−0.919557 + 0.392956i \(0.871453\pi\)
\(480\) 0 0
\(481\) 228.095 0.474210
\(482\) 0 0
\(483\) 34.1658 0.0707366
\(484\) 0 0
\(485\) − 587.455i − 1.21125i
\(486\) 0 0
\(487\) − 77.2033i − 0.158528i −0.996854 0.0792641i \(-0.974743\pi\)
0.996854 0.0792641i \(-0.0252571\pi\)
\(488\) 0 0
\(489\) 16.6207 0.0339892
\(490\) 0 0
\(491\) 822.277 1.67470 0.837350 0.546668i \(-0.184104\pi\)
0.837350 + 0.546668i \(0.184104\pi\)
\(492\) 0 0
\(493\) − 46.6113i − 0.0945462i
\(494\) 0 0
\(495\) − 364.354i − 0.736069i
\(496\) 0 0
\(497\) −498.730 −1.00348
\(498\) 0 0
\(499\) −246.081 −0.493149 −0.246574 0.969124i \(-0.579305\pi\)
−0.246574 + 0.969124i \(0.579305\pi\)
\(500\) 0 0
\(501\) 22.0812i 0.0440742i
\(502\) 0 0
\(503\) − 355.262i − 0.706286i −0.935569 0.353143i \(-0.885113\pi\)
0.935569 0.353143i \(-0.114887\pi\)
\(504\) 0 0
\(505\) −717.899 −1.42158
\(506\) 0 0
\(507\) −18.7000 −0.0368835
\(508\) 0 0
\(509\) − 395.509i − 0.777032i −0.921442 0.388516i \(-0.872988\pi\)
0.921442 0.388516i \(-0.127012\pi\)
\(510\) 0 0
\(511\) − 758.688i − 1.48471i
\(512\) 0 0
\(513\) 71.0592 0.138517
\(514\) 0 0
\(515\) 722.972 1.40383
\(516\) 0 0
\(517\) 315.282i 0.609830i
\(518\) 0 0
\(519\) − 52.2116i − 0.100600i
\(520\) 0 0
\(521\) −705.745 −1.35460 −0.677299 0.735708i \(-0.736849\pi\)
−0.677299 + 0.735708i \(0.736849\pi\)
\(522\) 0 0
\(523\) 264.122 0.505013 0.252506 0.967595i \(-0.418745\pi\)
0.252506 + 0.967595i \(0.418745\pi\)
\(524\) 0 0
\(525\) 4.34284i 0.00827208i
\(526\) 0 0
\(527\) − 35.6726i − 0.0676899i
\(528\) 0 0
\(529\) 237.309 0.448599
\(530\) 0 0
\(531\) −644.637 −1.21401
\(532\) 0 0
\(533\) − 427.752i − 0.802536i
\(534\) 0 0
\(535\) − 233.967i − 0.437321i
\(536\) 0 0
\(537\) −17.6992 −0.0329593
\(538\) 0 0
\(539\) 346.493 0.642845
\(540\) 0 0
\(541\) − 168.679i − 0.311792i −0.987774 0.155896i \(-0.950174\pi\)
0.987774 0.155896i \(-0.0498264\pi\)
\(542\) 0 0
\(543\) − 43.0645i − 0.0793085i
\(544\) 0 0
\(545\) 5.25091 0.00963470
\(546\) 0 0
\(547\) 200.072 0.365762 0.182881 0.983135i \(-0.441458\pi\)
0.182881 + 0.983135i \(0.441458\pi\)
\(548\) 0 0
\(549\) − 215.531i − 0.392588i
\(550\) 0 0
\(551\) − 131.308i − 0.238309i
\(552\) 0 0
\(553\) 1048.71 1.89640
\(554\) 0 0
\(555\) −27.7491 −0.0499984
\(556\) 0 0
\(557\) 531.576i 0.954355i 0.878807 + 0.477178i \(0.158340\pi\)
−0.878807 + 0.477178i \(0.841660\pi\)
\(558\) 0 0
\(559\) − 683.715i − 1.22310i
\(560\) 0 0
\(561\) 10.9618 0.0195398
\(562\) 0 0
\(563\) 431.828 0.767012 0.383506 0.923538i \(-0.374716\pi\)
0.383506 + 0.923538i \(0.374716\pi\)
\(564\) 0 0
\(565\) 77.6088i 0.137361i
\(566\) 0 0
\(567\) 771.656i 1.36095i
\(568\) 0 0
\(569\) 296.778 0.521578 0.260789 0.965396i \(-0.416017\pi\)
0.260789 + 0.965396i \(0.416017\pi\)
\(570\) 0 0
\(571\) −491.745 −0.861201 −0.430600 0.902543i \(-0.641698\pi\)
−0.430600 + 0.902543i \(0.641698\pi\)
\(572\) 0 0
\(573\) 22.1194i 0.0386027i
\(574\) 0 0
\(575\) − 37.0771i − 0.0644820i
\(576\) 0 0
\(577\) −189.382 −0.328218 −0.164109 0.986442i \(-0.552475\pi\)
−0.164109 + 0.986442i \(0.552475\pi\)
\(578\) 0 0
\(579\) −14.1142 −0.0243769
\(580\) 0 0
\(581\) 783.387i 1.34834i
\(582\) 0 0
\(583\) − 120.289i − 0.206328i
\(584\) 0 0
\(585\) 414.091 0.707847
\(586\) 0 0
\(587\) 906.775 1.54476 0.772381 0.635160i \(-0.219066\pi\)
0.772381 + 0.635160i \(0.219066\pi\)
\(588\) 0 0
\(589\) − 100.493i − 0.170616i
\(590\) 0 0
\(591\) − 18.1063i − 0.0306367i
\(592\) 0 0
\(593\) 127.909 0.215697 0.107849 0.994167i \(-0.465604\pi\)
0.107849 + 0.994167i \(0.465604\pi\)
\(594\) 0 0
\(595\) 341.867 0.574566
\(596\) 0 0
\(597\) − 32.8011i − 0.0549433i
\(598\) 0 0
\(599\) 794.804i 1.32688i 0.748227 + 0.663442i \(0.230905\pi\)
−0.748227 + 0.663442i \(0.769095\pi\)
\(600\) 0 0
\(601\) −89.2746 −0.148543 −0.0742717 0.997238i \(-0.523663\pi\)
−0.0742717 + 0.997238i \(0.523663\pi\)
\(602\) 0 0
\(603\) 290.324 0.481466
\(604\) 0 0
\(605\) 313.286i 0.517829i
\(606\) 0 0
\(607\) − 316.002i − 0.520596i −0.965528 0.260298i \(-0.916179\pi\)
0.965528 0.260298i \(-0.0838208\pi\)
\(608\) 0 0
\(609\) −13.7402 −0.0225619
\(610\) 0 0
\(611\) −358.320 −0.586448
\(612\) 0 0
\(613\) 271.534i 0.442959i 0.975165 + 0.221479i \(0.0710885\pi\)
−0.975165 + 0.221479i \(0.928911\pi\)
\(614\) 0 0
\(615\) 52.0385i 0.0846154i
\(616\) 0 0
\(617\) 105.762 0.171413 0.0857066 0.996320i \(-0.472685\pi\)
0.0857066 + 0.996320i \(0.472685\pi\)
\(618\) 0 0
\(619\) −783.218 −1.26530 −0.632648 0.774440i \(-0.718032\pi\)
−0.632648 + 0.774440i \(0.718032\pi\)
\(620\) 0 0
\(621\) 63.4823i 0.102226i
\(622\) 0 0
\(623\) 426.468i 0.684539i
\(624\) 0 0
\(625\) −674.560 −1.07930
\(626\) 0 0
\(627\) 30.8805 0.0492512
\(628\) 0 0
\(629\) 174.531i 0.277473i
\(630\) 0 0
\(631\) 762.907i 1.20904i 0.796589 + 0.604522i \(0.206636\pi\)
−0.796589 + 0.604522i \(0.793364\pi\)
\(632\) 0 0
\(633\) 57.6772 0.0911172
\(634\) 0 0
\(635\) 557.020 0.877198
\(636\) 0 0
\(637\) 393.792i 0.618197i
\(638\) 0 0
\(639\) − 462.232i − 0.723367i
\(640\) 0 0
\(641\) −412.834 −0.644046 −0.322023 0.946732i \(-0.604363\pi\)
−0.322023 + 0.946732i \(0.604363\pi\)
\(642\) 0 0
\(643\) 526.815 0.819308 0.409654 0.912241i \(-0.365649\pi\)
0.409654 + 0.912241i \(0.365649\pi\)
\(644\) 0 0
\(645\) 83.1778i 0.128958i
\(646\) 0 0
\(647\) 1170.94i 1.80980i 0.425627 + 0.904899i \(0.360054\pi\)
−0.425627 + 0.904899i \(0.639946\pi\)
\(648\) 0 0
\(649\) −561.625 −0.865370
\(650\) 0 0
\(651\) −10.5156 −0.0161531
\(652\) 0 0
\(653\) 19.4487i 0.0297836i 0.999889 + 0.0148918i \(0.00474038\pi\)
−0.999889 + 0.0148918i \(0.995260\pi\)
\(654\) 0 0
\(655\) − 1129.33i − 1.72417i
\(656\) 0 0
\(657\) 703.165 1.07027
\(658\) 0 0
\(659\) 400.433 0.607637 0.303818 0.952730i \(-0.401738\pi\)
0.303818 + 0.952730i \(0.401738\pi\)
\(660\) 0 0
\(661\) 406.636i 0.615182i 0.951519 + 0.307591i \(0.0995229\pi\)
−0.951519 + 0.307591i \(0.900477\pi\)
\(662\) 0 0
\(663\) 12.4582i 0.0187907i
\(664\) 0 0
\(665\) 963.069 1.44822
\(666\) 0 0
\(667\) 117.307 0.175873
\(668\) 0 0
\(669\) − 3.26423i − 0.00487927i
\(670\) 0 0
\(671\) − 187.776i − 0.279845i
\(672\) 0 0
\(673\) −45.5265 −0.0676471 −0.0338236 0.999428i \(-0.510768\pi\)
−0.0338236 + 0.999428i \(0.510768\pi\)
\(674\) 0 0
\(675\) −8.06930 −0.0119545
\(676\) 0 0
\(677\) − 294.639i − 0.435213i −0.976037 0.217606i \(-0.930175\pi\)
0.976037 0.217606i \(-0.0698249\pi\)
\(678\) 0 0
\(679\) 1089.18i 1.60409i
\(680\) 0 0
\(681\) 58.3382 0.0856655
\(682\) 0 0
\(683\) 310.626 0.454796 0.227398 0.973802i \(-0.426978\pi\)
0.227398 + 0.973802i \(0.426978\pi\)
\(684\) 0 0
\(685\) − 391.829i − 0.572013i
\(686\) 0 0
\(687\) 67.4808i 0.0982254i
\(688\) 0 0
\(689\) 136.710 0.198418
\(690\) 0 0
\(691\) 980.037 1.41829 0.709144 0.705063i \(-0.249081\pi\)
0.709144 + 0.705063i \(0.249081\pi\)
\(692\) 0 0
\(693\) 675.534i 0.974797i
\(694\) 0 0
\(695\) − 791.905i − 1.13943i
\(696\) 0 0
\(697\) 327.301 0.469585
\(698\) 0 0
\(699\) 71.3690 0.102102
\(700\) 0 0
\(701\) − 276.305i − 0.394158i −0.980388 0.197079i \(-0.936854\pi\)
0.980388 0.197079i \(-0.0631456\pi\)
\(702\) 0 0
\(703\) 491.668i 0.699386i
\(704\) 0 0
\(705\) 43.5917 0.0618322
\(706\) 0 0
\(707\) 1331.03 1.88264
\(708\) 0 0
\(709\) − 449.838i − 0.634468i −0.948347 0.317234i \(-0.897246\pi\)
0.948347 0.317234i \(-0.102754\pi\)
\(710\) 0 0
\(711\) 971.962i 1.36703i
\(712\) 0 0
\(713\) 89.7775 0.125915
\(714\) 0 0
\(715\) 360.767 0.504569
\(716\) 0 0
\(717\) − 15.9793i − 0.0222864i
\(718\) 0 0
\(719\) 1122.38i 1.56103i 0.625139 + 0.780514i \(0.285042\pi\)
−0.625139 + 0.780514i \(0.714958\pi\)
\(720\) 0 0
\(721\) −1340.43 −1.85913
\(722\) 0 0
\(723\) −60.7486 −0.0840229
\(724\) 0 0
\(725\) 14.9110i 0.0205669i
\(726\) 0 0
\(727\) 529.192i 0.727911i 0.931416 + 0.363956i \(0.118574\pi\)
−0.931416 + 0.363956i \(0.881426\pi\)
\(728\) 0 0
\(729\) −708.260 −0.971549
\(730\) 0 0
\(731\) 523.155 0.715670
\(732\) 0 0
\(733\) 372.110i 0.507653i 0.967250 + 0.253826i \(0.0816892\pi\)
−0.967250 + 0.253826i \(0.918311\pi\)
\(734\) 0 0
\(735\) − 47.9070i − 0.0651797i
\(736\) 0 0
\(737\) 252.938 0.343200
\(738\) 0 0
\(739\) 62.9975 0.0852469 0.0426235 0.999091i \(-0.486428\pi\)
0.0426235 + 0.999091i \(0.486428\pi\)
\(740\) 0 0
\(741\) 35.0959i 0.0473629i
\(742\) 0 0
\(743\) − 762.894i − 1.02678i −0.858157 0.513388i \(-0.828390\pi\)
0.858157 0.513388i \(-0.171610\pi\)
\(744\) 0 0
\(745\) −1076.50 −1.44496
\(746\) 0 0
\(747\) −726.057 −0.971964
\(748\) 0 0
\(749\) 433.789i 0.579157i
\(750\) 0 0
\(751\) − 1342.93i − 1.78819i −0.447876 0.894095i \(-0.647820\pi\)
0.447876 0.894095i \(-0.352180\pi\)
\(752\) 0 0
\(753\) −23.3108 −0.0309573
\(754\) 0 0
\(755\) 1149.44 1.52244
\(756\) 0 0
\(757\) − 558.375i − 0.737615i −0.929506 0.368808i \(-0.879766\pi\)
0.929506 0.368808i \(-0.120234\pi\)
\(758\) 0 0
\(759\) 27.5878i 0.0363475i
\(760\) 0 0
\(761\) −480.213 −0.631029 −0.315514 0.948921i \(-0.602177\pi\)
−0.315514 + 0.948921i \(0.602177\pi\)
\(762\) 0 0
\(763\) −9.73550 −0.0127595
\(764\) 0 0
\(765\) 316.848i 0.414180i
\(766\) 0 0
\(767\) − 638.291i − 0.832191i
\(768\) 0 0
\(769\) 472.763 0.614777 0.307388 0.951584i \(-0.400545\pi\)
0.307388 + 0.951584i \(0.400545\pi\)
\(770\) 0 0
\(771\) −45.9234 −0.0595634
\(772\) 0 0
\(773\) − 1213.02i − 1.56924i −0.619979 0.784619i \(-0.712859\pi\)
0.619979 0.784619i \(-0.287141\pi\)
\(774\) 0 0
\(775\) 11.4117i 0.0147248i
\(776\) 0 0
\(777\) 51.4485 0.0662143
\(778\) 0 0
\(779\) 922.036 1.18362
\(780\) 0 0
\(781\) − 402.708i − 0.515632i
\(782\) 0 0
\(783\) − 25.5302i − 0.0326056i
\(784\) 0 0
\(785\) 807.648 1.02885
\(786\) 0 0
\(787\) 240.919 0.306123 0.153062 0.988217i \(-0.451087\pi\)
0.153062 + 0.988217i \(0.451087\pi\)
\(788\) 0 0
\(789\) 77.4612i 0.0981764i
\(790\) 0 0
\(791\) − 143.891i − 0.181911i
\(792\) 0 0
\(793\) 213.409 0.269116
\(794\) 0 0
\(795\) −16.6315 −0.0209202
\(796\) 0 0
\(797\) − 1181.68i − 1.48266i −0.671143 0.741328i \(-0.734197\pi\)
0.671143 0.741328i \(-0.265803\pi\)
\(798\) 0 0
\(799\) − 274.174i − 0.343147i
\(800\) 0 0
\(801\) −395.258 −0.493456
\(802\) 0 0
\(803\) 612.616 0.762909
\(804\) 0 0
\(805\) 860.379i 1.06879i
\(806\) 0 0
\(807\) 104.789i 0.129850i
\(808\) 0 0
\(809\) 371.926 0.459735 0.229868 0.973222i \(-0.426171\pi\)
0.229868 + 0.973222i \(0.426171\pi\)
\(810\) 0 0
\(811\) 389.798 0.480639 0.240320 0.970694i \(-0.422748\pi\)
0.240320 + 0.970694i \(0.422748\pi\)
\(812\) 0 0
\(813\) − 74.3165i − 0.0914102i
\(814\) 0 0
\(815\) 418.550i 0.513559i
\(816\) 0 0
\(817\) 1473.77 1.80389
\(818\) 0 0
\(819\) −767.749 −0.937422
\(820\) 0 0
\(821\) − 1279.76i − 1.55878i −0.626542 0.779388i \(-0.715530\pi\)
0.626542 0.779388i \(-0.284470\pi\)
\(822\) 0 0
\(823\) 523.237i 0.635768i 0.948130 + 0.317884i \(0.102972\pi\)
−0.948130 + 0.317884i \(0.897028\pi\)
\(824\) 0 0
\(825\) −3.50671 −0.00425055
\(826\) 0 0
\(827\) 1022.20 1.23603 0.618017 0.786165i \(-0.287936\pi\)
0.618017 + 0.786165i \(0.287936\pi\)
\(828\) 0 0
\(829\) 405.003i 0.488544i 0.969707 + 0.244272i \(0.0785489\pi\)
−0.969707 + 0.244272i \(0.921451\pi\)
\(830\) 0 0
\(831\) 102.972i 0.123914i
\(832\) 0 0
\(833\) −301.316 −0.361724
\(834\) 0 0
\(835\) −556.059 −0.665939
\(836\) 0 0
\(837\) − 19.5388i − 0.0233438i
\(838\) 0 0
\(839\) − 1353.58i − 1.61333i −0.591008 0.806666i \(-0.701270\pi\)
0.591008 0.806666i \(-0.298730\pi\)
\(840\) 0 0
\(841\) 793.824 0.943904
\(842\) 0 0
\(843\) 39.6162 0.0469943
\(844\) 0 0
\(845\) − 470.911i − 0.557291i
\(846\) 0 0
\(847\) − 580.852i − 0.685776i
\(848\) 0 0
\(849\) 9.16597 0.0107962
\(850\) 0 0
\(851\) −439.243 −0.516149
\(852\) 0 0
\(853\) − 945.053i − 1.10792i −0.832544 0.553958i \(-0.813117\pi\)
0.832544 0.553958i \(-0.186883\pi\)
\(854\) 0 0
\(855\) 892.589i 1.04396i
\(856\) 0 0
\(857\) −488.688 −0.570230 −0.285115 0.958493i \(-0.592032\pi\)
−0.285115 + 0.958493i \(0.592032\pi\)
\(858\) 0 0
\(859\) −380.166 −0.442568 −0.221284 0.975209i \(-0.571025\pi\)
−0.221284 + 0.975209i \(0.571025\pi\)
\(860\) 0 0
\(861\) − 96.4824i − 0.112059i
\(862\) 0 0
\(863\) 152.667i 0.176903i 0.996080 + 0.0884514i \(0.0281918\pi\)
−0.996080 + 0.0884514i \(0.971808\pi\)
\(864\) 0 0
\(865\) 1314.82 1.52002
\(866\) 0 0
\(867\) 50.2881 0.0580024
\(868\) 0 0
\(869\) 846.799i 0.974452i
\(870\) 0 0
\(871\) 287.466i 0.330041i
\(872\) 0 0
\(873\) −1009.47 −1.15632
\(874\) 0 0
\(875\) 1150.05 1.31434
\(876\) 0 0
\(877\) 230.004i 0.262262i 0.991365 + 0.131131i \(0.0418609\pi\)
−0.991365 + 0.131131i \(0.958139\pi\)
\(878\) 0 0
\(879\) − 26.9573i − 0.0306681i
\(880\) 0 0
\(881\) −873.243 −0.991196 −0.495598 0.868552i \(-0.665051\pi\)
−0.495598 + 0.868552i \(0.665051\pi\)
\(882\) 0 0
\(883\) −325.304 −0.368408 −0.184204 0.982888i \(-0.558971\pi\)
−0.184204 + 0.982888i \(0.558971\pi\)
\(884\) 0 0
\(885\) 77.6517i 0.0877421i
\(886\) 0 0
\(887\) 430.685i 0.485552i 0.970082 + 0.242776i \(0.0780580\pi\)
−0.970082 + 0.242776i \(0.921942\pi\)
\(888\) 0 0
\(889\) −1032.75 −1.16170
\(890\) 0 0
\(891\) −623.087 −0.699312
\(892\) 0 0
\(893\) − 772.373i − 0.864920i
\(894\) 0 0
\(895\) − 445.709i − 0.497999i
\(896\) 0 0
\(897\) −31.3537 −0.0349539
\(898\) 0 0
\(899\) −36.1051 −0.0401614
\(900\) 0 0
\(901\) 104.606i 0.116099i
\(902\) 0 0
\(903\) − 154.217i − 0.170783i
\(904\) 0 0
\(905\) 1084.47 1.19831
\(906\) 0 0
\(907\) −31.4326 −0.0346556 −0.0173278 0.999850i \(-0.505516\pi\)
−0.0173278 + 0.999850i \(0.505516\pi\)
\(908\) 0 0
\(909\) 1233.62i 1.35712i
\(910\) 0 0
\(911\) − 1399.85i − 1.53661i −0.640083 0.768306i \(-0.721100\pi\)
0.640083 0.768306i \(-0.278900\pi\)
\(912\) 0 0
\(913\) −632.560 −0.692837
\(914\) 0 0
\(915\) −25.9624 −0.0283742
\(916\) 0 0
\(917\) 2093.85i 2.28337i
\(918\) 0 0
\(919\) − 806.944i − 0.878068i −0.898470 0.439034i \(-0.855321\pi\)
0.898470 0.439034i \(-0.144679\pi\)
\(920\) 0 0
\(921\) 75.3976 0.0818650
\(922\) 0 0
\(923\) 457.681 0.495862
\(924\) 0 0
\(925\) − 55.8326i − 0.0603595i
\(926\) 0 0
\(927\) − 1242.34i − 1.34017i
\(928\) 0 0
\(929\) −1620.69 −1.74455 −0.872276 0.489013i \(-0.837357\pi\)
−0.872276 + 0.489013i \(0.837357\pi\)
\(930\) 0 0
\(931\) −848.834 −0.911744
\(932\) 0 0
\(933\) 27.0982i 0.0290442i
\(934\) 0 0
\(935\) 276.046i 0.295237i
\(936\) 0 0
\(937\) 598.181 0.638400 0.319200 0.947687i \(-0.396586\pi\)
0.319200 + 0.947687i \(0.396586\pi\)
\(938\) 0 0
\(939\) 10.7295 0.0114265
\(940\) 0 0
\(941\) − 1382.88i − 1.46958i −0.678294 0.734791i \(-0.737280\pi\)
0.678294 0.734791i \(-0.262720\pi\)
\(942\) 0 0
\(943\) 823.721i 0.873511i
\(944\) 0 0
\(945\) 187.249 0.198147
\(946\) 0 0
\(947\) −1170.80 −1.23633 −0.618163 0.786050i \(-0.712123\pi\)
−0.618163 + 0.786050i \(0.712123\pi\)
\(948\) 0 0
\(949\) 696.242i 0.733659i
\(950\) 0 0
\(951\) − 32.0939i − 0.0337476i
\(952\) 0 0
\(953\) 1846.78 1.93786 0.968930 0.247333i \(-0.0795543\pi\)
0.968930 + 0.247333i \(0.0795543\pi\)
\(954\) 0 0
\(955\) −557.020 −0.583267
\(956\) 0 0
\(957\) − 11.0947i − 0.0115933i
\(958\) 0 0
\(959\) 726.475i 0.757534i
\(960\) 0 0
\(961\) 933.368 0.971247
\(962\) 0 0
\(963\) −402.043 −0.417490
\(964\) 0 0
\(965\) − 355.431i − 0.368323i
\(966\) 0 0
\(967\) 363.922i 0.376341i 0.982136 + 0.188170i \(0.0602557\pi\)
−0.982136 + 0.188170i \(0.939744\pi\)
\(968\) 0 0
\(969\) −26.8542 −0.0277133
\(970\) 0 0
\(971\) −1642.32 −1.69137 −0.845685 0.533683i \(-0.820808\pi\)
−0.845685 + 0.533683i \(0.820808\pi\)
\(972\) 0 0
\(973\) 1468.24i 1.50898i
\(974\) 0 0
\(975\) − 3.98540i − 0.00408759i
\(976\) 0 0
\(977\) −1159.63 −1.18693 −0.593467 0.804858i \(-0.702241\pi\)
−0.593467 + 0.804858i \(0.702241\pi\)
\(978\) 0 0
\(979\) −344.359 −0.351746
\(980\) 0 0
\(981\) − 9.02303i − 0.00919779i
\(982\) 0 0
\(983\) − 1780.51i − 1.81131i −0.424020 0.905653i \(-0.639382\pi\)
0.424020 0.905653i \(-0.360618\pi\)
\(984\) 0 0
\(985\) 455.961 0.462904
\(986\) 0 0
\(987\) −80.8216 −0.0818861
\(988\) 0 0
\(989\) 1316.63i 1.33127i
\(990\) 0 0
\(991\) 675.783i 0.681920i 0.940078 + 0.340960i \(0.110752\pi\)
−0.940078 + 0.340960i \(0.889248\pi\)
\(992\) 0 0
\(993\) 94.6184 0.0952854
\(994\) 0 0
\(995\) 826.014 0.830165
\(996\) 0 0
\(997\) − 13.3638i − 0.0134040i −0.999978 0.00670200i \(-0.997867\pi\)
0.999978 0.00670200i \(-0.00213333\pi\)
\(998\) 0 0
\(999\) 95.5948i 0.0956905i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1024.3.d.k.511.5 12
4.3 odd 2 inner 1024.3.d.k.511.7 12
8.3 odd 2 inner 1024.3.d.k.511.6 12
8.5 even 2 inner 1024.3.d.k.511.8 12
16.3 odd 4 1024.3.c.j.1023.7 12
16.5 even 4 1024.3.c.j.1023.8 12
16.11 odd 4 1024.3.c.j.1023.6 12
16.13 even 4 1024.3.c.j.1023.5 12
32.3 odd 8 16.3.f.a.11.2 yes 6
32.5 even 8 16.3.f.a.3.2 6
32.11 odd 8 128.3.f.a.95.2 6
32.13 even 8 128.3.f.a.31.2 6
32.19 odd 8 128.3.f.b.31.2 6
32.21 even 8 128.3.f.b.95.2 6
32.27 odd 8 64.3.f.a.47.2 6
32.29 even 8 64.3.f.a.15.2 6
96.5 odd 8 144.3.m.a.19.2 6
96.11 even 8 1152.3.m.b.991.3 6
96.29 odd 8 576.3.m.a.271.1 6
96.35 even 8 144.3.m.a.91.2 6
96.53 odd 8 1152.3.m.a.991.3 6
96.59 even 8 576.3.m.a.559.1 6
96.77 odd 8 1152.3.m.b.415.3 6
96.83 even 8 1152.3.m.a.415.3 6
160.3 even 8 400.3.k.d.299.1 6
160.37 odd 8 400.3.k.d.99.1 6
160.67 even 8 400.3.k.c.299.3 6
160.69 even 8 400.3.r.c.51.2 6
160.99 odd 8 400.3.r.c.251.2 6
160.133 odd 8 400.3.k.c.99.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.3.f.a.3.2 6 32.5 even 8
16.3.f.a.11.2 yes 6 32.3 odd 8
64.3.f.a.15.2 6 32.29 even 8
64.3.f.a.47.2 6 32.27 odd 8
128.3.f.a.31.2 6 32.13 even 8
128.3.f.a.95.2 6 32.11 odd 8
128.3.f.b.31.2 6 32.19 odd 8
128.3.f.b.95.2 6 32.21 even 8
144.3.m.a.19.2 6 96.5 odd 8
144.3.m.a.91.2 6 96.35 even 8
400.3.k.c.99.3 6 160.133 odd 8
400.3.k.c.299.3 6 160.67 even 8
400.3.k.d.99.1 6 160.37 odd 8
400.3.k.d.299.1 6 160.3 even 8
400.3.r.c.51.2 6 160.69 even 8
400.3.r.c.251.2 6 160.99 odd 8
576.3.m.a.271.1 6 96.29 odd 8
576.3.m.a.559.1 6 96.59 even 8
1024.3.c.j.1023.5 12 16.13 even 4
1024.3.c.j.1023.6 12 16.11 odd 4
1024.3.c.j.1023.7 12 16.3 odd 4
1024.3.c.j.1023.8 12 16.5 even 4
1024.3.d.k.511.5 12 1.1 even 1 trivial
1024.3.d.k.511.6 12 8.3 odd 2 inner
1024.3.d.k.511.7 12 4.3 odd 2 inner
1024.3.d.k.511.8 12 8.5 even 2 inner
1152.3.m.a.415.3 6 96.83 even 8
1152.3.m.a.991.3 6 96.53 odd 8
1152.3.m.b.415.3 6 96.77 odd 8
1152.3.m.b.991.3 6 96.11 even 8