Properties

Label 2-2e7-128.101-c1-0-10
Degree $2$
Conductor $128$
Sign $0.981 + 0.189i$
Analytic cond. $1.02208$
Root an. cond. $1.01098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.793 + 1.17i)2-s + (1.68 − 0.898i)3-s + (−0.742 − 1.85i)4-s + (−1.56 − 1.91i)5-s + (−0.281 + 2.68i)6-s + (3.63 − 2.43i)7-s + (2.76 + 0.603i)8-s + (0.353 − 0.529i)9-s + (3.48 − 0.321i)10-s + (−4.39 + 1.33i)11-s + (−2.91 − 2.45i)12-s + (1.74 + 1.42i)13-s + (−0.0388 + 6.19i)14-s + (−4.35 − 1.80i)15-s + (−2.89 + 2.75i)16-s + (3.75 − 1.55i)17-s + ⋯
L(s)  = 1  + (−0.560 + 0.827i)2-s + (0.970 − 0.518i)3-s + (−0.371 − 0.928i)4-s + (−0.701 − 0.854i)5-s + (−0.114 + 1.09i)6-s + (1.37 − 0.919i)7-s + (0.976 + 0.213i)8-s + (0.117 − 0.176i)9-s + (1.10 − 0.101i)10-s + (−1.32 + 0.401i)11-s + (−0.842 − 0.709i)12-s + (0.483 + 0.396i)13-s + (−0.0103 + 1.65i)14-s + (−1.12 − 0.466i)15-s + (−0.724 + 0.689i)16-s + (0.909 − 0.376i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $0.981 + 0.189i$
Analytic conductor: \(1.02208\)
Root analytic conductor: \(1.01098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{128} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 128,\ (\ :1/2),\ 0.981 + 0.189i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02299 - 0.0980705i\)
\(L(\frac12)\) \(\approx\) \(1.02299 - 0.0980705i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.793 - 1.17i)T \)
good3 \( 1 + (-1.68 + 0.898i)T + (1.66 - 2.49i)T^{2} \)
5 \( 1 + (1.56 + 1.91i)T + (-0.975 + 4.90i)T^{2} \)
7 \( 1 + (-3.63 + 2.43i)T + (2.67 - 6.46i)T^{2} \)
11 \( 1 + (4.39 - 1.33i)T + (9.14 - 6.11i)T^{2} \)
13 \( 1 + (-1.74 - 1.42i)T + (2.53 + 12.7i)T^{2} \)
17 \( 1 + (-3.75 + 1.55i)T + (12.0 - 12.0i)T^{2} \)
19 \( 1 + (-0.804 - 8.16i)T + (-18.6 + 3.70i)T^{2} \)
23 \( 1 + (1.74 - 0.347i)T + (21.2 - 8.80i)T^{2} \)
29 \( 1 + (-0.598 + 1.97i)T + (-24.1 - 16.1i)T^{2} \)
31 \( 1 + (3.81 + 3.81i)T + 31iT^{2} \)
37 \( 1 + (1.04 + 0.102i)T + (36.2 + 7.21i)T^{2} \)
41 \( 1 + (-0.711 - 3.57i)T + (-37.8 + 15.6i)T^{2} \)
43 \( 1 + (0.793 + 0.423i)T + (23.8 + 35.7i)T^{2} \)
47 \( 1 + (-1.43 - 3.46i)T + (-33.2 + 33.2i)T^{2} \)
53 \( 1 + (-1.79 - 5.91i)T + (-44.0 + 29.4i)T^{2} \)
59 \( 1 + (4.26 - 3.49i)T + (11.5 - 57.8i)T^{2} \)
61 \( 1 + (2.89 + 5.41i)T + (-33.8 + 50.7i)T^{2} \)
67 \( 1 + (2.61 + 4.89i)T + (-37.2 + 55.7i)T^{2} \)
71 \( 1 + (-0.916 - 1.37i)T + (-27.1 + 65.5i)T^{2} \)
73 \( 1 + (-6.52 - 4.36i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (4.05 - 9.80i)T + (-55.8 - 55.8i)T^{2} \)
83 \( 1 + (0.630 - 0.0621i)T + (81.4 - 16.1i)T^{2} \)
89 \( 1 + (-3.26 - 0.649i)T + (82.2 + 34.0i)T^{2} \)
97 \( 1 + (12.6 + 12.6i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76355045996499708643853754561, −12.51954024286557126994115700370, −11.08739180895677751576310876865, −9.959551090229819163050929908092, −8.507370103133028687115291104304, −7.76869991972290422110601982939, −7.66199479188589657737530140411, −5.43741241230721573118911457962, −4.24003204819980336188134041832, −1.54360325812182180933004949612, 2.54110431857810722440460355564, 3.45210484051890464526484260178, 5.09211553610704047339388490087, 7.54490164628953767390668762033, 8.301739592640086702681419332310, 9.006578995458521407068255385024, 10.47816478386126404860251873630, 11.11111147183805602827016805586, 12.03027316090919291868381780690, 13.38296094840089922269989269265

Graph of the $Z$-function along the critical line