L(s) = 1 | + (−0.793 + 1.17i)2-s + (1.68 − 0.898i)3-s + (−0.742 − 1.85i)4-s + (−1.56 − 1.91i)5-s + (−0.281 + 2.68i)6-s + (3.63 − 2.43i)7-s + (2.76 + 0.603i)8-s + (0.353 − 0.529i)9-s + (3.48 − 0.321i)10-s + (−4.39 + 1.33i)11-s + (−2.91 − 2.45i)12-s + (1.74 + 1.42i)13-s + (−0.0388 + 6.19i)14-s + (−4.35 − 1.80i)15-s + (−2.89 + 2.75i)16-s + (3.75 − 1.55i)17-s + ⋯ |
L(s) = 1 | + (−0.560 + 0.827i)2-s + (0.970 − 0.518i)3-s + (−0.371 − 0.928i)4-s + (−0.701 − 0.854i)5-s + (−0.114 + 1.09i)6-s + (1.37 − 0.919i)7-s + (0.976 + 0.213i)8-s + (0.117 − 0.176i)9-s + (1.10 − 0.101i)10-s + (−1.32 + 0.401i)11-s + (−0.842 − 0.709i)12-s + (0.483 + 0.396i)13-s + (−0.0103 + 1.65i)14-s + (−1.12 − 0.466i)15-s + (−0.724 + 0.689i)16-s + (0.909 − 0.376i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02299 - 0.0980705i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02299 - 0.0980705i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.793 - 1.17i)T \) |
good | 3 | \( 1 + (-1.68 + 0.898i)T + (1.66 - 2.49i)T^{2} \) |
| 5 | \( 1 + (1.56 + 1.91i)T + (-0.975 + 4.90i)T^{2} \) |
| 7 | \( 1 + (-3.63 + 2.43i)T + (2.67 - 6.46i)T^{2} \) |
| 11 | \( 1 + (4.39 - 1.33i)T + (9.14 - 6.11i)T^{2} \) |
| 13 | \( 1 + (-1.74 - 1.42i)T + (2.53 + 12.7i)T^{2} \) |
| 17 | \( 1 + (-3.75 + 1.55i)T + (12.0 - 12.0i)T^{2} \) |
| 19 | \( 1 + (-0.804 - 8.16i)T + (-18.6 + 3.70i)T^{2} \) |
| 23 | \( 1 + (1.74 - 0.347i)T + (21.2 - 8.80i)T^{2} \) |
| 29 | \( 1 + (-0.598 + 1.97i)T + (-24.1 - 16.1i)T^{2} \) |
| 31 | \( 1 + (3.81 + 3.81i)T + 31iT^{2} \) |
| 37 | \( 1 + (1.04 + 0.102i)T + (36.2 + 7.21i)T^{2} \) |
| 41 | \( 1 + (-0.711 - 3.57i)T + (-37.8 + 15.6i)T^{2} \) |
| 43 | \( 1 + (0.793 + 0.423i)T + (23.8 + 35.7i)T^{2} \) |
| 47 | \( 1 + (-1.43 - 3.46i)T + (-33.2 + 33.2i)T^{2} \) |
| 53 | \( 1 + (-1.79 - 5.91i)T + (-44.0 + 29.4i)T^{2} \) |
| 59 | \( 1 + (4.26 - 3.49i)T + (11.5 - 57.8i)T^{2} \) |
| 61 | \( 1 + (2.89 + 5.41i)T + (-33.8 + 50.7i)T^{2} \) |
| 67 | \( 1 + (2.61 + 4.89i)T + (-37.2 + 55.7i)T^{2} \) |
| 71 | \( 1 + (-0.916 - 1.37i)T + (-27.1 + 65.5i)T^{2} \) |
| 73 | \( 1 + (-6.52 - 4.36i)T + (27.9 + 67.4i)T^{2} \) |
| 79 | \( 1 + (4.05 - 9.80i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (0.630 - 0.0621i)T + (81.4 - 16.1i)T^{2} \) |
| 89 | \( 1 + (-3.26 - 0.649i)T + (82.2 + 34.0i)T^{2} \) |
| 97 | \( 1 + (12.6 + 12.6i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.76355045996499708643853754561, −12.51954024286557126994115700370, −11.08739180895677751576310876865, −9.959551090229819163050929908092, −8.507370103133028687115291104304, −7.76869991972290422110601982939, −7.66199479188589657737530140411, −5.43741241230721573118911457962, −4.24003204819980336188134041832, −1.54360325812182180933004949612,
2.54110431857810722440460355564, 3.45210484051890464526484260178, 5.09211553610704047339388490087, 7.54490164628953767390668762033, 8.301739592640086702681419332310, 9.006578995458521407068255385024, 10.47816478386126404860251873630, 11.11111147183805602827016805586, 12.03027316090919291868381780690, 13.38296094840089922269989269265