L(s) = 1 | + (−0.793 + 1.17i)2-s + (1.68 − 0.898i)3-s + (−0.742 − 1.85i)4-s + (−1.56 − 1.91i)5-s + (−0.281 + 2.68i)6-s + (3.63 − 2.43i)7-s + (2.76 + 0.603i)8-s + (0.353 − 0.529i)9-s + (3.48 − 0.321i)10-s + (−4.39 + 1.33i)11-s + (−2.91 − 2.45i)12-s + (1.74 + 1.42i)13-s + (−0.0388 + 6.19i)14-s + (−4.35 − 1.80i)15-s + (−2.89 + 2.75i)16-s + (3.75 − 1.55i)17-s + ⋯ |
L(s) = 1 | + (−0.560 + 0.827i)2-s + (0.970 − 0.518i)3-s + (−0.371 − 0.928i)4-s + (−0.701 − 0.854i)5-s + (−0.114 + 1.09i)6-s + (1.37 − 0.919i)7-s + (0.976 + 0.213i)8-s + (0.117 − 0.176i)9-s + (1.10 − 0.101i)10-s + (−1.32 + 0.401i)11-s + (−0.842 − 0.709i)12-s + (0.483 + 0.396i)13-s + (−0.0103 + 1.65i)14-s + (−1.12 − 0.466i)15-s + (−0.724 + 0.689i)16-s + (0.909 − 0.376i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.981+0.189i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(0.981+0.189i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.981+0.189i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), 0.981+0.189i)
|
Particular Values
L(1) |
≈ |
1.02299−0.0980705i |
L(21) |
≈ |
1.02299−0.0980705i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.793−1.17i)T |
good | 3 | 1+(−1.68+0.898i)T+(1.66−2.49i)T2 |
| 5 | 1+(1.56+1.91i)T+(−0.975+4.90i)T2 |
| 7 | 1+(−3.63+2.43i)T+(2.67−6.46i)T2 |
| 11 | 1+(4.39−1.33i)T+(9.14−6.11i)T2 |
| 13 | 1+(−1.74−1.42i)T+(2.53+12.7i)T2 |
| 17 | 1+(−3.75+1.55i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.804−8.16i)T+(−18.6+3.70i)T2 |
| 23 | 1+(1.74−0.347i)T+(21.2−8.80i)T2 |
| 29 | 1+(−0.598+1.97i)T+(−24.1−16.1i)T2 |
| 31 | 1+(3.81+3.81i)T+31iT2 |
| 37 | 1+(1.04+0.102i)T+(36.2+7.21i)T2 |
| 41 | 1+(−0.711−3.57i)T+(−37.8+15.6i)T2 |
| 43 | 1+(0.793+0.423i)T+(23.8+35.7i)T2 |
| 47 | 1+(−1.43−3.46i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−1.79−5.91i)T+(−44.0+29.4i)T2 |
| 59 | 1+(4.26−3.49i)T+(11.5−57.8i)T2 |
| 61 | 1+(2.89+5.41i)T+(−33.8+50.7i)T2 |
| 67 | 1+(2.61+4.89i)T+(−37.2+55.7i)T2 |
| 71 | 1+(−0.916−1.37i)T+(−27.1+65.5i)T2 |
| 73 | 1+(−6.52−4.36i)T+(27.9+67.4i)T2 |
| 79 | 1+(4.05−9.80i)T+(−55.8−55.8i)T2 |
| 83 | 1+(0.630−0.0621i)T+(81.4−16.1i)T2 |
| 89 | 1+(−3.26−0.649i)T+(82.2+34.0i)T2 |
| 97 | 1+(12.6+12.6i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.76355045996499708643853754561, −12.51954024286557126994115700370, −11.08739180895677751576310876865, −9.959551090229819163050929908092, −8.507370103133028687115291104304, −7.76869991972290422110601982939, −7.66199479188589657737530140411, −5.43741241230721573118911457962, −4.24003204819980336188134041832, −1.54360325812182180933004949612,
2.54110431857810722440460355564, 3.45210484051890464526484260178, 5.09211553610704047339388490087, 7.54490164628953767390668762033, 8.301739592640086702681419332310, 9.006578995458521407068255385024, 10.47816478386126404860251873630, 11.11111147183805602827016805586, 12.03027316090919291868381780690, 13.38296094840089922269989269265